1

3

Optimization/simulation-based risk mitigation in resilient green communication networks Code for optimization procedures

Piotr Chołda and Piotr Jaglarz

To reproduce the steps of the algorithm presented in the paper, save attached files to a common directory and provide required tools.

CONTENTS

Software Requirements	2

nr.mod

SOFTWARE REQUIREMENTS

• CPLEX (including OPL Interpreter): http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

NR.MOD 3

NR.MOD

This CPLEX script presents the optimization problem of optimal assignment of optical flows if energy profiles in links are concave. The recovery option used by all the demands is a lack of recovery NR. The energy profiles are approximated with linear segments.

```
// OPL 12.6.0.0 Model
   // Author: Piotr Cholda, AGH University of Science and Technology
   // piotr.cholda@agh.edu.pl
   // Creation Date: 2 June 2015
    float BigM = 100000; // big constant
8
9
    {string} Nodes = ...; // set of network nodes
10
11
    tuple arc
12
13
     string source;
14
15
     string destination;
16
17
    {arc} Arcs with source in Nodes, destination in Nodes = ...; // set of network links
18
19
20
    tuple demand
21
     string source;
22
     string destination;
23
24
25
    {demand} Demands with source in Nodes, destination in Nodes = ...; // set of demands
26
27
28
    float Volume[Demands] = ...; // volume for each demand
29
    int Path = ...;
30
31
    range Paths = 1..Path;
32
33
34
    int delta[Arcs][Demands][Paths] = ...; // delta[e][d][p] as in the Pioro and Medhi book: ✓
        √equal to one if candate path p for demand d uses link e
35
    dvar boolean flow[Demands][Paths]; // non-bifurcated routing
36
37
    dvar float+ flow_summarized[Arcs]; // total flow on a link
38
39
    int Number_seg = ...;
40
41
    range Segments = 1..Number_seg;
42
43
    float Coeff_a[Segments] = \dots; // coefficient a in the segment ax+b that is used for \checkmark
44
        \linearization of a concave energy profile
45
    float Coeff_b[Segments] = ...; // coefficient b in the segment ax+b that is used for \checkmark
46
        ↓linearization of a concave energy profile
47
    dvar float+ y[Arcs][Segments];
48
49
    dvar boolean u[Arcs][Segments];
50
51
    dvar float+ cost_link[Arcs]; // approximated energy usage in a link
52
53
    minimize sum(a in Arcs) cost_link[a];
54
55
    subject to{
56
57
      forall(d in Demands)
58
        sum(p in Paths) flow[d][p] == 1;
59
60
      forall(a in Arcs)
61
```

4 NR.MOD

```
62
             └];
63
     forall(a in Arcs)
64
      flow_summarized[a] == sum(k in Segments) y[a][k];
65
66
     forall(a in Arcs,k in Segments)
67
      y[a][k] \le BigM*u[a][k];
68
69
     forall(a in Arcs,k in Segments)
70
      u[a][k] \leftarrow BigM*y[a][k];
71
72
     forall(a in Arcs)
73
      sum(k in Segments) u[a][k] == 1;
74
75
     forall(a in Arcs)
76
      cost_link[a] == sum(k in Segments) (Coeff_a[k]*y[a][k] + Coeff_b[k]*u[a][k]);
77
78
79
```