
1

Optimization/simulation-based risk mitigation in
resilient green communication networks

Code for optimization procedures
Piotr Chołda and Piotr Jaglarz

To reproduce the steps of the algorithm presented in the paper, save attached files to a common directory and provide
required tools.

CONTENTS

Software Requirements 2

nr.mod 3

The authors are with the AGH University of Science and Technology, Department of Telecommunications, Krakow, Poland. E-mail:
{piotr.cholda}@agh.edu.pl.

2

SOFTWARE REQUIREMENTS

● CPLEX (including OPL Interpreter): http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

NR.MOD 3

NR.MOD

This CPLEX script presents the optimization problem of optimal assignment of optical flows if energy profiles in links are
concave. The recovery option used by all the demands is a lack of recovery NR. The energy profiles are approximated with
linear segments.

1 // ***/
2 // OPL 12.6.0.0 Model
3 // Author: Piotr Cholda, AGH University of Science and Technology
4 // piotr.cholda@agh.edu.pl
5 // Creation Date: 2 June 2015
6 // ***/
7

8 float BigM = 100000; // big constant
9

10 {string} Nodes = ...; // set of network nodes
11

12 tuple arc
13 {
14 string source;
15 string destination;
16 }
17

18 {arc} Arcs with source in Nodes, destination in Nodes = ...; // set of network links
19

20 tuple demand
21 {
22 string source;
23 string destination;
24 }
25

26 {demand} Demands with source in Nodes, destination in Nodes = ...; // set of demands
27

28 float Volume[Demands] = ...; // volume for each demand
29

30 int Path = ...;
31

32 range Paths = 1..Path;
33

34 int delta[Arcs][Demands][Paths] = ...; // delta[e][d][p] as in the Pioro and Medhi book: ¾
Çequal to one if candate path p for demand d uses link e

35

36 dvar boolean flow[Demands][Paths]; // non-bifurcated routing
37

38 dvar float+ flow_summarized[Arcs]; // total flow on a link
39

40 int Number_seg = ...;
41

42 range Segments = 1..Number_seg;
43

44 float Coeff_a[Segments] = ...; // coefficient a in the segment ax+b that is used for ¾
Çlinearization of a concave energy profile

45

46 float Coeff_b[Segments] = ...; // coefficient b in the segment ax+b that is used for ¾
Çlinearization of a concave energy profile

47

48 dvar float+ y[Arcs][Segments];
49

50 dvar boolean u[Arcs][Segments];
51

52 dvar float+ cost_link[Arcs]; // approximated energy usage in a link
53

54 minimize sum(a in Arcs) cost_link[a];
55

56 subject to{
57

58 forall(d in Demands)
59 sum(p in Paths) flow[d][p] == 1;
60

61 forall(a in Arcs)

4 NR.MOD

62 sum(d in Demands, p in Paths) delta[a][d][p]*flow[d][p]*Volume[d] == flow_summarized[a¾
Ç];

63

64 forall(a in Arcs)
65 flow_summarized[a] == sum(k in Segments) y[a][k];
66

67 forall(a in Arcs,k in Segments)
68 y[a][k] <= BigM*u[a][k];
69

70 forall(a in Arcs,k in Segments)
71 u[a][k] <= BigM*y[a][k];
72

73 forall(a in Arcs)
74 sum(k in Segments) u[a][k] == 1;
75

76 forall(a in Arcs)
77 cost_link[a] == sum(k in Segments) (Coeff_a[k]*y[a][k] + Coeff_b[k]*u[a][k]);
78

79 }

	Software Requirements
	nr.mod

