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 Simple experiments with FP numbers

 Specifics of FP representation

 Basic facts about FP 

 FP distribution

 Round-off errors

 FP representation – IEEE 754 standard

 Computational aspects – recipes, standard algorithms, etc.
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std::cout << "Come to my talk " <<
+ ( 0.1 + 0.2 == 0.3 ? "absolutely" : "& U R welcome" ) << std::endl;  
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std::cout << "Come to my talk " <<
+ ( std::fabs( ( 0.1 + 0.2 ) - 0.3 ) < 1e-12 ? "absolutely" : "& U R welcome" ); 
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std::cout << "Come to my talk " <<
+ ( std::fabs( ( 0.1 + 0.2 ) - 0.3 ) < 1e-12 ? "absolutely" : "& U R welcome" ); 
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std::cout << "Come to my talk " <<
+ ( 1.0 + 2.0 == 3.0 ? "absolutely" : "& U R welcome" ) << std::endl; 
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Problem reformulation
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// Let's generate some float values
std::vector< double > vec;

// How many times this loop iterates?

// Generate 10 values in the interval [0, 0.9] with step 0.1
for( double x { 0.0 }; x != 1.0; x += 0.1 )

vec.push_back( x );

infinite…
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A fix

// Generate 10 values in the interval [0, 0.9] with step 0.1
for( double x { 0.0 }; x < 1.0; x += 0.1 )

vec.push_back( x );

for( auto a : vec )
std::cout << std::setprecision( 24 ) << a << "\n";
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A fix?

// Generate 10 values in the interval [0, 0.9] with step 0.1
for( double x { 0.0 }; x < 1.0; x += 0.1 )

vec.push_back( x );

for( auto a : vec )
std::cout << std::setprecision( 24 ) << a << "\n";

0
0.100000000000000005551115
0.20000000000000001110223
0.300000000000000044408921
0.40000000000000002220446
0.5
0.59999999999999997779554
0.699999999999999955591079
0.799999999999999933386619
0.899999999999999911182158
0.999999999999999888977698

1
2
3
4
5
6
7
8
9
10
11
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A fix

// So, if we want exactly 10 successive values we can do
double x { 0.0 };
for( int i { 0 }; i < 10; ++ i )

vec.push_back( x ), x += 0.1;

for( auto a : vec )
std::cout << std::setprecision( 24 ) << a << "\n";
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A fix
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for( auto a : vec )
std::cout << std::setprecision( 24 ) << a << "\n";

0
0.100000000000000005551115
0.20000000000000001110223
0.300000000000000044408921
0.40000000000000002220446
0.5
0.59999999999999997779554
0.699999999999999955591079
0.799999999999999933386619
0.899999999999999911182158

1
2
3
4
5
6
7
8
9
10



22
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How to compute a sum in C++?

std::cout << "sum = "
<< std::accumulate( vec.begin(), vec.end(), 0 ) << "\n";

sum = 0 ?

0
0.100000000000000005551115
0.20000000000000001110223
0.300000000000000044408921
0.40000000000000002220446
0.5
0.59999999999999997779554
0.699999999999999955591079
0.799999999999999933386619
0.899999999999999911182158
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How to compute a sum in C++?

std::cout << "sum = "
<< std::accumulate( vec.begin(), vec.end(), 0.0 ) << "\n";

sum = 4.5

0
0.100000000000000005551115
0.20000000000000001110223
0.300000000000000044408921
0.40000000000000002220446
0.5
0.59999999999999997779554
0.699999999999999955591079
0.799999999999999933386619
0.899999999999999911182158

Rounding, this time worked for us…
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How serious it is?
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How serious it is?

Launch of the Ariane 5
in 1996
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How serious it is?

Launch of the Ariane 5
in 1996

30 seconds later…
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How serious it is?

Launch of the Ariane 5
in 1996

30 seconds later… 37 seconds later…

- a floating-point roundoff error 

- an unhandled hardware trap

explosion

from Wikipedia…
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A data conversion from 64-bit floating point value to 16-bit signed integer value
to be stored in a variable representing horizontal bias caused a processor trap
(operand error) because the floating point value was too large to be
represented by a 16-bit signed integer.

The software was originally written for the Ariane 4 where efficiency
considerations (the computer had an 80% maximum workload requirement) led
to four variables being protected with a handler while three others, including
the horizontal bias variable, were left unprotected because it was thought that
they were "physically limited or that there was a large margin of safety"…

from Wikipedia…

(The software was written in Ada)
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https://www.gao.gov/assets/220/215614.pdf
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Deadly round-off error failure of the Patriot system in Dhahran 1991:

On February 25, 1991, a Patriot missile defence system operating in Dhahran,
Saudi Arabia, failed to engage an incoming Scud missile. The missile struck U.S.
Army barracks killing 28 soldiers and injuring 98. The reason for the failure of
the Patriot was a fixed-point round-off error in the range-gate algorithm of the
Patriot radar unit’s tracking system.

From: http://www-users.math.umn.edu/~arnold//disasters/patriot.html and from from the paper by Timur Saǧlam

http://www-users.math.umn.edu/~arnold/disasters/patriot.html
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The radar of a Patriot missile system is designed in a way that it has to detect an
incoming missile twice in order to avoid false alarms.

Once an incoming missile is detected, the system calculates where the incoming
missile is expected to be after a certain time. If the incoming missile is detected
at that position after the time expired it is confirmed that the target is actually a
missile.

The Patriot missile is only launched to intercept after the incoming missile is
detected a second time. This is a mechanism to avoid false alarms and to avoid
shooting down other flying targets (e.g. airplanes).
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The problem of the Patriot system was that a 24 bit number was used to
measure time, and it was incremented by 1/10.
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The problem of the Patriot system was that a 24 bit number was used to
measure time, and it was incremented by 1/10.
When converting 1/10 to binary, it results in
00111101110011001100110011001101… with an infinite number of bits. When
cut off after 24 bits, the number is 001111011100110011001100, resulting in an
error of the remaining bits 000000000000000000000000110011001… which is
about 0.000000095 in decimal.
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The problem of the Patriot system was that a 24 bit number was used to
measure time, and it was incremented by 1/10.
When converting 1/10 to binary, it results in
00111101110011001100110011001101… with an infinite number of bits. When
cut off after 24 bits, the number is 001111011100110011001100, resulting in an
error of the remaining bits 000000000000000000000000110011001… which is
about 0.000000095 in decimal.
This means that every second, the time was off by 10*0.000000095, which
results in about a third of a second after 100 hours system operation time.
Since the speed of a Scud missile is over 1500 m/s, it can travel about 500
metres within a third of a second. This error in the time calculation caused the
Patriot system to expect an incoming missile at a wrong location for the second
detection, causing it to consider the first detection as false alarm. The incoming
Scud missile was not intercepted and it hit some barracks, killing 28 soldiers…
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Two weeks before the incident, Army officials received Israeli data indicating
some loss in accuracy after the system had been running for 8 consecutive
hours.

Consequently, Army officials modified the software to improve the system’s
accuracy.

However, the modified software did not reach Dhahran until February 26,1991 -
the day after the Scud incident...

From: https://www.gao.gov/assets/220/215614.pdf
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Let us understand the FP

Let us do conscious computations with the FP
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± d0 d1 ... dp-1

E

p digits

Sign
ExponentUnsigned Significand

(Mantissa)

. d2 B× 

Base

S M

     1 11 1
S SE E

o pD M B d d d B        

A value D of a number is given as follows 

M is unsigned significand (mantissa, fraction), B is a base, and E denotes the exponent

min maxE E E 

For p digits and the base B, a value of the significand is given as follows

 11

0 1 1

p

pM d d B d B
 

     
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 In the FP domain, some real values cannot be exactly represented.

 Due to the roundoff errors, in the FP domain some algebraic conditions do not always
hold. For example it might happen that the commutative low does not hold, that is

( a + b ) + c ≠ a + ( b + c ) for a, b, c  FP.

 Floating point representation of numbers is not unique. The preferable representation
of significand is with no leading zeros to retain the maximum number of significant bits,
that is d0>0. This is so called a normalized form.

 Normalization makes some problems with convenient representation of zero
(preferably with all bits set to 0). Hence, a special encoding is necessary ( denormal).

 Usually the exponent E, which can be negative, is represented in a biased format
E=Etrue+bias, in which its value is shifted, so E is always positive (this is so called the
excess method). Such representation simplifies comparison since with this
representation we can compare a number [S,E,M] as signed-magnitude numbers.
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     1 11 1
S SE E

o pD M B d d d B        

 Floating-point values are shown in red. It is easy to observe
different groups of number “concentrations”, corresponding to
different exponents E.

 4 groups are well visible which correspond to E=-1, 0, 1, and 2,
respectively.

 Spacing within a group is the same.

 However, spacing between the groups increases by a factor of the
base B.
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     1 11 1
S SE E

o pD M B d d d B        
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 1 11
p pB B

    

The smallest possible positive value on the last position is simply for dp-1=1

The above constant , called a machine epsilon, is one of the most important values 
characterizing computations with FP numbers. 
Since FP numbers are represented in the normalized representation,  can be 
interpreted as a distance between value 1 and the closest larger value than 1 
(but not from a 0). 

What are the most characteristic parameters?
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i 0 1 2 3

D 0.5  0.625  0.75  0.875 1  1.25  1.5  1.75 2  2.5  3  3.5 4  5  6  7

E -1 0 1 2

BE 2-1 20 21 22

=B1-p 0.25 0.25 0.25 0.25

=BE 0.125 0.25 0.5 1

s=D 0.125   ...     0.21875 0.25   ...  0.4375 0.5  ... 0.875 1   ...  1.75

 1
S ED M B   



43

i 0 1 2 3

D 0.5  0.625  0.75  0.875 1  1.25  1.5  1.75 2  2.5  3  3.5 4  5  6  7

E -1 0 1 2

BE 2-1 20 21 22

=B1-p 0.25 0.25 0.25 0.25

=BE 0.125 0.25 0.5 1

s=D 0.125   ...     0.21875 0.25   ...  0.4375 0.5  ... 0.875 1   ...  1.75

 1
S ED M B   

Exponent



44

i 0 1 2 3

D 0.5  0.625  0.75  0.875 1  1.25  1.5  1.75 2  2.5  3  3.5 4  5  6  7

E -1 0 1 2

BE 2-1 20 21 22

=B1-p 0.25 0.25 0.25 0.25

=BE 0.125 0.25 0.5 1

s=D 0.125   ...     0.21875 0.25   ...  0.4375 0.5  ... 0.875 1   ...  1.75

 1
S ED M B   

Exponent



45

i 0 1 2 3

D 0.5  0.625  0.75  0.875 1  1.25  1.5  1.75 2  2.5  3  3.5 4  5  6  7

E -1 0 1 2

BE 2-1 20 21 22

=B1-p 0.25 0.25 0.25 0.25

=BE 0.125 0.25 0.5 1

s=D 0.125   ...     0.21875 0.25   ...  0.4375 0.5  ... 0.875 1   ...  1.75

 1
S ED M B   

Exponent



46

i 0 1 2 3

D 0.5  0.625  0.75  0.875 1  1.25  1.5  1.75 2  2.5  3  3.5 4  5  6  7

E -1 0 1 2

BE 2-1 20 21 22

=B1-p 0.25 0.25 0.25 0.25

=BE 0.125 0.25 0.5 1

s=D 0.125   ...     0.21875 0.25   ...  0.4375 0.5  ... 0.875 1   ...  1.75

 1
S ED M B   

Exponent



47

i 0 1 2 3

D 0.5  0.625  0.75  0.875 1  1.25  1.5  1.75 2  2.5  3  3.5 4  5  6  7

E -1 0 1 2

BE 2-1 20 21 22

=B1-p 0.25 0.25 0.25 0.25

=BE 0.125 0.25 0.5 1

s=D 0.125   ...     0.21875 0.25   ...  0.4375 0.5  ... 0.875 1   ...  1.75

 1
S ED M B   

Exponent

machine epsilon



48

i 0 1 2 3

D 0.5  0.625  0.75  0.875 1  1.25  1.5  1.75 2  2.5  3  3.5 4  5  6  7

E -1 0 1 2

BE 2-1 20 21 22

=B1-p 0.25 0.25 0.25 0.25

=BE 0.125 0.25 0.5 1

s=D 0.125   ...     0.21875 0.25   ...  0.4375 0.5  ... 0.875 1   ...  1.75

 1
S ED M B   

Exponent

machine epsilon

spacing in a group



49

i 0 1 2 3

D 0.5  0.625  0.75  0.875 1  1.25  1.5  1.75 2  2.5  3  3.5 4  5  6  7

E -1 0 1 2

BE 2-1 20 21 22

=B1-p 0.25 0.25 0.25 0.25

=BE 0.125 0.25 0.5 1

s=D 0.125   ...     0.21875 0.25   ...  0.4375 0.5  ... 0.875 1   ...  1.75

 1
S ED M B   

Exponent

machine epsilon

spacing in a group



50

i 0 1 2 3

D 0.5  0.625  0.75  0.875 1  1.25  1.5  1.75 2  2.5  3  3.5 4  5  6  7

E -1 0 1 2

BE 2-1 20 21 22

=B1-p 0.25 0.25 0.25 0.25

=BE 0.125 0.25 0.5 1

s=D 0.125   ...     0.21875 0.25   ...  0.4375 0.5  ... 0.875 1   ...  1.75

 1
S ED M B   

Exponent

machine epsilon

spacing in a group



51

i 0 1 2 3

D 0.5  0.625  0.75  0.875 1  1.25  1.5  1.75 2  2.5  3  3.5 4  5  6  7

E -1 0 1 2

BE 2-1 20 21 22

=B1-p 0.25 0.25 0.25 0.25

=BE 0.125 0.25 0.5 1

s=D 0.125   ...     0.21875 0.25   ...  0.4375 0.5  ... 0.875 1   ...  1.75

 1
S ED M B   

Exponent

machine epsilon

spacing in a group



52

i 0 1 2 3

D 0.5  0.625  0.75  0.875 1  1.25  1.5  1.75 2  2.5  3  3.5 4  5  6  7

E -1 0 1 2

BE 2-1 20 21 22

=B1-p 0.25 0.25 0.25 0.25

=BE 0.125 0.25 0.5 1

s=D 0.125   ...     0.21875 0.25   ...  0.4375 0.5  ... 0.875 1   ...  1.75

 1
S ED M B   

Exponent

machine epsilon

Max spacing
in a group



53

D  

For a given value D, the product  gives us a good upper approximation of the 
minimal FP value than can fit into the FP representation. Now we can use this 
property for a more conscious choice of a threshold:

double first_val{ 0.1 }, scnd_val{ 0.2 }, expected_result { 0.3 };

double sum = first_val + scnd_val;
double max_val = std::max( std::fabs( sum ), std::fabs( expected_result ) );

// Let us modify the threshold to be at least as the second argument
double kThresh { eps * max_val };

std::cout << "Come to my talk " <<
+ ( std::fabs( sum - expected_result ) <= kThresh ? "absolutely" : "& U R welcome" ); 
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In numerical analysis many iterative algorithms follow a similar scheme of subtracting
two FP values and checking the result. Usually, the following condition is checked

1n nx x   

and if fulfilled, then iterations are stopped. 

D  

gives us a hint how to use the threshold τ

1n n nx x x   
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double x_n {}, x_n_1 {};

double thresh { 1e-12 }; // An anticipated convergence threshold

1n n nx x x   
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double x_n {}, x_n_1 {};

double thresh { 1e-12 }; // An anticipated convergence threshold

const size_t kMaxIters { 1000 }; // A fuse if computations do not converge

for( size_t n = 0; n < kMaxIters; ++ n )
{

}

1n n nx x x   
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double x_n {}, x_n_1 {};

double thresh { 1e-12 }; // An anticipated convergence threshold

const size_t kMaxIters { 1000 }; // A fuse if computations do not converge

for( size_t n = 0; n < kMaxIters; ++ n )
{

// do computations, x_n_1 is a new value of x_n ...

}

1n n nx x x   



58

double x_n {}, x_n_1 {};

double thresh { 1e-12 }; // An anticipated convergence threshold

const size_t kMaxIters { 1000 }; // A fuse if computations do not converge

for( size_t n = 0; n < kMaxIters; ++ n )
{

// do computations, x_n_1 is a new value of x_n ...

thresh = std::max( thresh, eps * std::fabs( x_n ) );

}

1n n nx x x   
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double x_n {}, x_n_1 {};

double thresh { 1e-12 }; // An anticipated convergence threshold

const size_t kMaxIters { 1000 }; // A fuse if computations do not converge

for( size_t n = 0; n < kMaxIters; ++ n )
{

// do computations, x_n_1 is a new value of x_n ...

thresh = std::max( thresh, eps * std::fabs( x_n ) );

if( std::fabs( x_n_1 - x_n ) <= thresh )
break; // x_n_1 and x_n are approximately equal

}

1n n nx x x   
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double x_n {}, x_n_1 {};

double thresh { 1e-12 }; // An anticipated convergence threshold

const size_t kMaxIters { 1000 }; // A fuse if computations do not converge

for( size_t n = 0; n < kMaxIters; ++ n )
{

// do computations, x_n_1 is a new value of x_n ...

thresh = std::max( thresh, eps * std::fabs( x_n ) );

if( std::fabs( x_n_1 - x_n ) <= thresh )
break; // x_n_1 and x_n are approximately equal

x_n = x_n_1;// copy for the next iteration
}

1n n nx x x   
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// Let us find epsilon for the single precision floating point
const float kBase { 2.0f };

// We will start from this and then this will be successively halved
const float kEpsInit { 1.0f };

// Stores the lastly computed epsilon
float store_eps {};

// Iterate as far as adding eps adds nothing
for( float eps = kEpsInit; 1.0f + eps != 1.0f; eps /= kBase )

store_eps = eps;// We need to catch the one before the last

cout << "Machine epsilon = " << store_eps << endl;

Machine epsilon = 1.19209e-07
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// Let us find epsilon for the single precision floating point
const float kBase { 2.0f };

// We will start from this and then this will be successively halved
const float kEpsInit { 1.0f };

// Stores the lastly computed epsilon
float store_eps {};

// Iterate as far as adding eps adds nothing
for( float eps = kEpsInit; 1.0f + eps != 1.0f; eps /= kBase )

store_eps = eps;// We need to catch the one before the last

cout << "Machine epsilon = " << store_eps << endl;
cout << "Machine epsilon = " << numeric_limits< float >::epsilon() << endl;

Machine epsilon = 1.19209e-07
Machine epsilon = 1.19209e-07
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cout << "numeric_limits< double >::epsilon() = " << numeric_limits< double >::epsilon() << endl;

#include <limits>



64

cout << "numeric_limits< double >::epsilon() = " << numeric_limits< double >::epsilon() << endl;

cout << "numeric_limits< double >::radix = " << numeric_limits< double >::radix << endl;
cout << "numeric_limits< double >::digits (mantissa) = " << numeric_limits< double >::digits << endl;

#include <limits>
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cout << "numeric_limits< double >::epsilon() = " << numeric_limits< double >::epsilon() << endl;

cout << "numeric_limits< double >::radix = " << numeric_limits< double >::radix << endl;
cout << "numeric_limits< double >::digits (mantissa) = " << numeric_limits< double >::digits << endl;

cout << "numeric_limits< double >::min() = " << numeric_limits< double >::min() << endl;
cout << "numeric_limits< double >::max() = " << numeric_limits< double >::max() << endl;

#include <limits>
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cout << "numeric_limits< double >::epsilon() = " << numeric_limits< double >::epsilon() << endl;

cout << "numeric_limits< double >::radix = " << numeric_limits< double >::radix << endl;
cout << "numeric_limits< double >::digits (mantissa) = " << numeric_limits< double >::digits << endl;

cout << "numeric_limits< double >::min() = " << numeric_limits< double >::min() << endl;
cout << "numeric_limits< double >::max() = " << numeric_limits< double >::max() << endl;

cout << "numeric_limits< double >::has_denorm = " << numeric_limits< double >::has_denorm << endl;
cout << "numeric_limits< double >::denorm_min() = " << numeric_limits< double >::denorm_min() << endl;
cout << "numeric_limits< double >::lowest() = " << numeric_limits< double >::lowest() << endl;

#include <limits>
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cout << "numeric_limits< double >::epsilon() = " << numeric_limits< double >::epsilon() << endl;

cout << "numeric_limits< double >::radix = " << numeric_limits< double >::radix << endl;
cout << "numeric_limits< double >::digits (mantissa) = " << numeric_limits< double >::digits << endl;

cout << "numeric_limits< double >::min() = " << numeric_limits< double >::min() << endl;
cout << "numeric_limits< double >::max() = " << numeric_limits< double >::max() << endl;

cout << "numeric_limits< double >::has_denorm = " << numeric_limits< double >::has_denorm << endl;
cout << "numeric_limits< double >::denorm_min() = " << numeric_limits< double >::denorm_min() << endl;
cout << "numeric_limits< double >::lowest() = " << numeric_limits< double >::lowest() << endl;

cout << "numeric_limits< double >::has_infinity = " << numeric_limits< double >::has_infinity << endl;

#include <limits>
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cout << "numeric_limits< double >::epsilon() = " << numeric_limits< double >::epsilon() << endl;

cout << "numeric_limits< double >::radix = " << numeric_limits< double >::radix << endl;
cout << "numeric_limits< double >::digits (mantissa) = " << numeric_limits< double >::digits << endl;

cout << "numeric_limits< double >::min() = " << numeric_limits< double >::min() << endl;
cout << "numeric_limits< double >::max() = " << numeric_limits< double >::max() << endl;

cout << "numeric_limits< double >::has_denorm = " << numeric_limits< double >::has_denorm << endl;
cout << "numeric_limits< double >::denorm_min() = " << numeric_limits< double >::denorm_min() << endl;
cout << "numeric_limits< double >::lowest() = " << numeric_limits< double >::lowest() << endl;

cout << "numeric_limits< double >::has_infinity = " << numeric_limits< double >::has_infinity << endl;

// round_to_nearest or round_toward_zero
cout << "numeric_limits< double >::round_style = " <<
( numeric_limits< double >::round_style == std::round_to_nearest ? "round_to_nearest" : "round_toward_zero"
) << endl;

#include <limits>
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cout << "numeric_limits< double >::epsilon() = " << numeric_limits< double >::epsilon() << endl;

cout << "numeric_limits< double >::radix = " << numeric_limits< double >::radix << endl;
cout << "numeric_limits< double >::digits (mantissa) = " << numeric_limits< double >::digits << endl;

cout << "numeric_limits< double >::min() = " << numeric_limits< double >::min() << endl;
cout << "numeric_limits< double >::max() = " << numeric_limits< double >::max() << endl;

cout << "numeric_limits< double >::has_denorm = " << numeric_limits< double >::has_denorm << endl;
cout << "numeric_limits< double >::denorm_min() = " << numeric_limits< double >::denorm_min() << endl;
cout << "numeric_limits< double >::lowest() = " << numeric_limits< double >::lowest() << endl;

cout << "numeric_limits< double >::has_infinity = " << numeric_limits< double >::has_infinity << endl;

// round_to_nearest or round_toward_zero
cout << "numeric_limits< double >::round_style = " <<
( numeric_limits< double >::round_style == std::round_to_nearest ? "round_to_nearest" : "round_toward_zero"
) << endl;

cout << "numeric_limits< double >::round_error() = " << numeric_limits< double >::round_error() << endl;

#include <limits>
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numeric_limits< double >::epsilon() = 2.22045e-16

numeric_limits< double >::radix = 2

numeric_limits< double >::digits (mantissa) = 53

numeric_limits< double >::min() = 2.22507e-308

numeric_limits< double >::max() = 1.79769e+308

numeric_limits< double >::has_denorm = 1

numeric_limits< double >::denorm_min() = 4.94066e-324

numeric_limits< double >::lowest() = -1.79769e+308

numeric_limits< double >::has_infinity = true

numeric_limits< double >::round_style = round_to_nearest

numeric_limits< double >::round_error() = 0.5

Returns the largest possible rounding error in ULPs (units in the last place).
This can vary from 0.5 (rounding to the nearest digit) to 1.0 (rounding to zero or to infinity).
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// Play with denorms
const auto kInfinity = numeric_limits< double >::infinity();

double val = 0.0;
double next_from_val = nextafter( val, kInfinity );
cout << "nextafter( " << setprecision( 20 ) << val

<< " ) = " << next_from_val
<< hexfloat << " (" << next_from_val << ")\n" << defaultfloat;

val = 1.0;
next_from_val = nextafter( val, kInfinity );
cout << "nextafter( " << setprecision( 20 ) << val

<< " ) = " << next_from_val
<< hexfloat << " (" << next_from_val << ")\n" << defaultfloat;

nextafter( 0 ) = 4.9406564584124654418e-324 (0x0.00000000000010000000p-1022)

nextafter( 1 ) = 1.000000000000000222 (0x1.00000000000010000000p+0)
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// Play with special values
double zero { 0.0 };

double inf { 1.0 / zero };// let us generate infinity, no exception

cout << "infinity = " << inf << endl;
cout << "inf == inf ? " << ( inf == kInfinity ) << endl;
cout << "123.0 + inf == " << 123.0 + inf << endl;
cout << "123.0 / inf == " << 123.0 / inf << endl;

// Let us generate NaN

double nan = sqrt( -0.1 );

cout << "123.0 + nan == " << 123.0 + nan << endl;

infinity = inf
inf == inf ? true
123.0 + inf == inf
123.0 / inf == 0
123.0 + nan == -nan(ind)

Use with assert( … )

"not a number" or "indeterminate" 

The fractional power of a negative number gives a complex num

cout << pow(-3.0, (1.0 / 3.0))
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Trying to fit any conceivable real number to FP representation, taking 32 or 64 bits,
inevitably requires choosing the closest FP representation.

rounding error (a roundoff error) is the characteristic feature of FP computations.
However, even choosing the closest FP representation is not that straightforward, so
there are many rounding strategies.

The following situations need to be properly signaled in the FP arithmetic:

 Overflow – means that the result is too large to be correctly represented.

 Underflow – the result is too small to be correctly represented.

 Inexact – the result cannot be represented exactly, so a rounded value is used
instead.

 Invalid operation such as dividing by 0 or computing square root from a negative
value.
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When choosing the nearest FP value the maximum error is not greater than ½ of units 
in the last place (ULP).
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S eq-1 eq-2 ... e1 e0 d1 d2 ... dp-2 dp-1

q bits p-1 bits1 bit

Sign Exponent E
Unsigned Significand M

(Mantissa)

N bits

Bit representation of the floating-point values in the IEEE 754 standard. There are two
formats: short with the total length of N=32, precision p=24 of the significand, and q=8 bits
for the exponent, and long with N=53, p=53, q=11. The most significant bit d0 of the
significand is always 1 and does not need to be stored. This is the so called hidden bit.
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 IEEE 754 defines many FP formats from which the single precision and double
precision are probably the most commonly encountered in C/C++ compilers.

 Single precision format occupies 4 bytes (32 bits) and has p=24 and q=8 bits. In
some C/C++ compilers represented with float.

 Double precision format occupies 8 bytes (64 bits) and has p=53 and q=11 bits.
In some C/C++ compilers represented with double.

 Extended precision (double extended) format occupies 10 bytes (79 bits), p=64,
q=15. In some C/C++ compilers represented with long double.

 Quadruple precision occupies 16 bytes (128 bits) with p=113 bits (supported by
some C/C++ compilers with long double or special types/flags).
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 The most-important-bit of the significand is not stored since in the normalized FP
representation it is always 1. This is so called a hidden bit trick (Goldberg, 1991).
This also explains why using the binary base B=2 is beneficial (recall also the
smallest wobble). This feature explains also how the above bit partitions are
organized considering also the S sign bit.

 Standard requires only that double is at least as precise as float and long double
as double, respectively.
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 The standard defines some special values which are especially encoded:

 Positive infinity (+∞).

 Negative infinity (−∞).

 Negative zero (0-).

 Positive zero (0+).

 Not-a-number (NaN) –used to represent for example results of forbidden
mathematical operations avoiding an exception, such as a square root of a
negative value, etc.

 The significand and exponent are especially encoded to represent the above special
values. For other than above special encodings, a value 127 in a single, and 1023 in
a double precision, are added to the exponent, respectively.
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 The ‘standard’ FP formats there is a problem with precise representation of 0 and
values close to 0. To remedy this, there is the special encoding (all 0’s in the
exponent bit and d0=0 of the significand) to represent this group of values, which
are called denormals (subnormals). However, in some systems using denormals
comes with a significant run-time cost.
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 The IEEE 754 standard defines all necessary mathematical operations on FP values,
such as addition, multiplication, but also roundings. Rounding is inevitable if the
result cannot fit in the FP representation, e.g. due to insufficient number of bits for
precision. There are five rounding modes, as follows:

 Default round to nearest (ties round to the nearest even digit, i.e. to a value
that makes the significand end in an even digit). It can be shown that rounding
to nearest even leads to lowest errors.

 Optional round to nearest (ties round away from 0).

 Round up (toward +∞).

 Round down (toward –∞).

 Round toward 0 (cuts off fractional). This is also the default rounding for the
integer types.
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 The IEEE 754 standard allows benign propagation of the exceptional conditions,
such as overflow or division by zero, in the software controlled fashion rather than
hardware interrupts.
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2 7

-1

. 2 10× 

1 0
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. 0 10× 

+

2 7

-1

. 2 10× 

0 0. 1 10× 

+
-1

To perform addition the values must be scaled to have the same exponent. In the case 
of large differences in the exponents, this can lead to loss of the significant digits

In our example the following is obtained:

2.7210-1 + 1.0010-3 = 2.7210-1 + 0.0110-1

=2.7310-1.
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To perform addition the values must be scaled to have the same exponent. In the case 
of large differences in the exponents, this can lead to loss of the significant digits

However, if the latter operand was 1.0010-4 then, after the right shifting to obtain the 
common exponent 10-1, the value could not be longer represented with only p=3 digits. 
The conclusion is that if we have a choice, e.g. when adding a series of FP numbers, 
then we always should order the addition in such a way as to add values of as much 
as possible similar exponents.
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When doing FP computations we should be well aware of many peculiarities leading to 
imprecise or even totally incorrect results. The most obvious are the mentioned 
overflows and underflows. However, similarly dangerous are subtractions of numbers 
which are nearly equal in magnitude.
In such a case, majority of the leading digits vanish and the rounding error may occur 
which promotes the digit at the last place to a more significant position. For example, 
when subtracting 2.71828 – 2.71829 we end up with 1e-05 which reflects only the last 
digit since all the other cancelled out. 
However, if 2.71828 and 2.71829 were already rounded off, then the left after 
subtraction last digits can be the less accurate ones, since they might be already 
inaccurate due to the previous roundings. That is, the left from subtraction digits 
convey wrong information. Even worse, it was also promoted to higher significant 
positions of the significand (in our example, 1 would in the first position). 
Errors arising from such situations, called catastrophic cancellations, can be very 
severe.
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Catastrophic cancellations can arise even in simple computations, such as when 
finding roots of the quadratic equation ax2+bx+c=0:

 2

1

1
4

2
x b b ac

a
     2

2

1
4

2
x b b ac

a
   

The problem may arise however if ac«b2 and b<0. Then: 2 4b ac b 

and x1 will suffer from subtraction of two almost identical values. 
A simple way out in this case is first to observe that

1 2x x c

and to compute x2, then finally x1 from
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double a {}, b {}, c {};
// Read in a, b, c ...

double x1 {}, x2 {};

double d = b * b - 4.0 * a * c;
if( d >= 0.0 )
{

if( b < 0.0 )
{

x1 = ( -b + sqrt( d ) ) / ( a + a ); // –b becomes positive – addition
x2 = c / x1;

}
else
{

x1 = ( -b - sqrt( d ) ) / ( a + a ); // addition of two negative values
x2 = c / x1;

}
}

std::fabs( a ) > kThresh
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There are many expressions which need closer look in the light of FP computations before 
implementation. 

Yet another example is 
x2-y2

which almost always is better to implement using the well known equivalent form 

(x-y)(x+y)

Not only we save on one multiplication, but most of all we avoid catastrophic cancellation 
errors which are most likely in its first representation.
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Despite a great advances in hardware and software engineering, the problems of fast and
exact multiplication and summation (MAC) belongs to the most fundamental ones in 
computational science (signal processing, pattern recognition, etc.)
So, let us focus upon computation of the MAC between two vectors v and w

   
1

0

N

i

P v i w i




   v w

v w v

w

v w

P=-1 P=0 P=1

The inner product is that it conveys an information on a distance between two vectors
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Let us test some algorithms:

 The simple multiply-and-add method.

 The method which computes the elementwise products, sorts them and does
summation.

 The Kahan summation method, which applies a correction factor on the
underflow bits.

 Sequential.

 Parallel.

And two modes of operation:



91

...

+

+

+ ...
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   ...

The simple sequential multiply-and-add method
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using DVec = std::vector< double >;
using DT = DVec::value_type;
using ST = DVec::size_type;

using std::inner_product;
using std::transform;
using std::accumulate;
using std::sort;

using std::cout, std::endl;

auto InnerProduct_StdAlg( const DVec & v, const DVec & w )
{

// The last argument is an initial value
return std::inner_product( v.begin(), v.end(), w.begin(), DT() );

}
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An interesting improvement is first to arrange the elements in order of their magnitudes
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An interesting improvement is first to arrange the elements in order of their magnitudes, 
and then to add them up. 
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An interesting improvement is first to arrange the elements in order of their magnitudes, 
and then to add them up. Let us recall the scaling problem:
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An interesting improvement is first to arrange the elements in order of their magnitudes, 
and then to add them up. Let us recall the scaling problem:

So, by arranging the elements due to their magnitude, we can avoid excessive shifts of 
significand which happens when adding FP numbers of highly different exponent.

In effect, the consecutive sums do not require much shifts of the summands and the 
result is usually more accurate compared to summation with arbitrary magnitudes. 

The additional cost of this method comes mostly from the sorting...
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auto InnerProduct_SortAlg( const DVec & v, const DVec & w )
{

DVec z; // Stores element-wise products

// Elementwise multiplication: c = v .* w
std::transform( v.begin(), v.end(), w.begin(), 

back_inserter( z ), 
[] ( const auto & v_el, const auto & w_el) { return v_el * w_el; } );

// Sort in descending order
std::sort( z.begin(), z.end(), // Is it magic?

[] ( const DT & p, const DT & q ) { return fabs(p) < fabs(q); } );

// The last argument is an initial value
return std::accumulate( z.begin(), z.end(), DT() );

}

An interesting improvement is first to arrange the elements in order of their magnitudes, 
and then to add them up. Let us recall the scaling problem:
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Yet another improvement comes in a form of the compensated summation (Kahan):
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auto InnerProduct_KahanAlg( const DVec & v, const DVec & w )
{

DT theSum {};
volatile DT c {};// a "correction" coefficient
const ST kElems = std::min( v.size(), w.size() );

for( ST i = 0; i < kElems; ++ i )
{

DT y = v[ i ] * w[ i ] - c; // From y subtracts the correction factor

DT t = theSum + y; // Add corrected summand to the running sum theSum
// But theSum is big, y is small, so its lower bits will be lost

c = ( t - theSum ) - y; // Low order bits of y are lost in the summation. 
// High order bits of y are computed in ( t - theSum ). Then, when y
// is subtracted from this, the low order bits of y are recovered.

theSum = t;
}
return theSum;

}
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theSum1 theSum2

y1 y2

theSum1 theSum2 + y1

y1 0
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+ y

- theSum

- y2- y c

t

0

Explanation of the recovery of the rounding error y2 in the compensated summation scheme implemented 

in the Kahan compensated summation algorithm.

Yet another improvement comes in a form of the compensated summation (Kahan):
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What can be done more? 

Parallel implementation!

SL comes with the Execution Policy std::execute::par

However, not for all algorithms ...
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// The transform-reduce parallel version
auto InnerProduct_TR_Alg( const DVec & v, const DVec & w )
{

return std::transform_reduce(
std::execution::par,
v.begin(), v.end(), w.begin(), DT(),
[] ( const auto a, const auto b ) { return a + b; },
[] ( const auto a, const auto b ) { return a * b; }

);
}

STL comes with the Execution Policy std::execute::par

However, instead of the std::inner_product the std::transform_reduce has to be used.
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auto InnerProduct_SortAlg( const DVec & v, const DVec & w )
{

DVec z( std::min( v.size(), w.size() ) ); // Stores element-wise products

// Elementwise multiplication: c = a .* b
std::transform( std::execution::par, v.begin(), v.end(), w.begin(), z.begin(), 

[] ( const auto & v_el, const auto & w_el) { return v_el * w_el; } );

// Sort in descending order.
std::sort( std::execution::par, z.begin(), z.end() ); // Is it magic?

// The last argument is an initial value
return std::accumulate( z.begin(), z.end(), DT() );

}

STL comes with the Execution Policy std::execute::par
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...

A hybrid algorithm is one of the best in terms of performance vs. accuracy.
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A hybrid algorithm is one of the best in terms of performance vs. accuracy.
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Some results:
Our custom dataset composed of vectors [v,–v] and [w,w], where 
components of v and w are random values of the Mersenne twister 
(kMersenneRand_InnerZero). Theoretically, their inner product should be 0, 
as explained in formula 

   , , 0P        v v w w v w v w

void Fill_Numerical_Data_MersenneUniform( DVec & inVec, ST num_of_data, DT kDataMag )
{

inVec.resize( num_of_data );
mt19937 rand_gen{ random_device{}() }; // Random Mersenne twister
uniform_real_distribution< double > dist( - kDataMag, + kDataMag );
std::generate( inVec.begin(), inVec.end(), [&](){ return dist( rand_gen ); } );

}
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Some results:
Our custom dataset composed of vectors [v,–v] and [w,w], where 
components of v and w are random values of the Mersenne twister 
(kMersenneRand_InnerZero). Theoretically, their inner product should be 0, 
as explained in formula 

   , , 0P        v v w w v w v w

void Duplicate( DVec & inVec, DT multFactor = 1.0 )
{

ST kElems { inVec.size() };
inVec.resize( 2 * kElems );
std::generate( inVec.begin() + kElems, inVec.end(), 
[ n = 0, & inVec, multFactor ] () mutable { return multFactor * inVec[ n++ ]; } );

}
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Some results:
Our custom dataset composed of vectors [v,–v] and [w,w], where 
components of v and w are random values of the Mersenne twister 
(kMersenneRand_InnerZero). Theoretically, their inner product should be 0, 
as explained in formula 

   , , 0P        v v w w v w v w

data_generator.Fill_Numerical_Data_MersenneUniform( v, kElems / 2, pow( 2.0, dExp ) );
data_generator.Duplicate( v, + 1.0 );

data_generator.Fill_Numerical_Data_MersenneUniform( w, kElems / 2, pow( 2.0, dExp ) );
data_generator.Duplicate( w, - 1.0 );
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Some results:

Cyganek B., Wiatr K.: How orthogonal are we? A note on fast and accurate inner product computation in the floating-

point arithmetic. Int. Conference Societal Automation Technological & Architectural Frameworks, 2019.
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components of v and w are random values of the Mersenne twister 
(kMersenneRand_InnerZero). Theoretically, their inner product should be 0, 
as explained in formula 

   , , 0P        v v w w v w v w N=20000000
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components of v and w are random values of the Mersenne twister 
(kMersenneRand_InnerZero). Theoretically, their inner product should be 0, 
as explained in formula 

   , , 0P        v v w w v w v w N=20000000
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 In the FP domain we always work with approximations of real values.

 Computations with the FP numbers can result in overflow, underflow, or are burdened
by roundoff errors.

 In FP the commutative low does not hold:

( a + b ) + c ≠ a + ( b + c ) for a, b, c  FP.

 Machine epsilon conveys a value represented by the lowest bit of the significand. This
is a difference between 1.0 and the next closest higher value representable in the FP
format. A product with D provides a spacing assessment thresholds in iterations.

 Adding values with different exponents leads to large errors.

 Subtracting close values can lead to severe cancellation errors.
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 IEEE 754 defines standards of FP representation. The most common are the single
precision (float) and double precision (double) formats.

 In C++ FP values are rounded to the nearest, whereas integer values are rounded
toward 0 (cutting off the fractional).

 The std::numeric_limits< T > class conveys information on numerical
properties of a type T, such as minimal, maximal values, etc.
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 Special care must be taken when summing up long series of FP numbers (roundoff,
overflow).

 SL provides the std::accumulate, std::inner_product, std::transform_reduce –
however, they do a ”simple” additions (no compensation).

 A simple value sorting with std::sort greatly improves additions, at an additional cost.

 SL provides the std::execution::par execution policy (paralel for free!)

 A simple compensated summation (Kahan) method greatly improves additions.

 A hybrid compensated algorithm performs accurately and fast.
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 754-2008 - IEEE Standard for Floating-Point Arithmetic, DOI:
10.1109/IEEESTD.2008.5976968, ISBN: 978-0-7381-6981-1, 2008.

 GMP a library for arbitrary precision arithmetic (https://gmplib.org/).

 ttmath – A library for math operations on big integer/floating point numbers
(www.ttmath.org).
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Thank you!

Software available: 
InnerProductMeasurement, GitHub repository, 2019.
https://github.com/BogCyg/InnerProductMeasurement

The new book for beginners and advanced programmers:

Cyganek B.: Introduction to Programming with C++ for Engineers, Wiley, 2020

home.agh.edu.pl/~cyganek/BCProjects.zip

http://home.agh.edu.pl/~cyganek/BCProjects.zip
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Thank you!

Software available: 
InnerProductMeasurement, GitHub repository, 2019.
https://github.com/BogCyg/InnerProductMeasurement

The new book for beginners and advanced programmers:

Cyganek B.: Introduction to Programming with C++ for Engineers, Wiley, 2020

home.agh.edu.pl/~cyganek/BCProjects.zip

http://home.agh.edu.pl/~cyganek/BCProjects.zip
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IEEE 754 representation of -1.000000 is :
1 | 01111111 | 00000000000000000000000
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1

IEEE 754 representation of -1.000000 is :
1 | 01111111 | 00000000000000000000000
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1271

IEEE 754 representation of -1.000000 is :
1 | 01111111 | 00000000000000000000000
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127-127=0

1

IEEE 754 representation of -1.000000 is :
1 | 01111111 | 00000000000000000000000

127
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1

IEEE 754 representation of -1.000000 is :
1 | 01111111 | 00000000000000000000000

127-127=0

127

0



131

Hidden bit

1

IEEE 754 representation of -1.000000 is :
1 | 01111111 | 00000000000000000000000

127-127=0

127

01

0
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1

    01 1 1 0 0 2 1
S ED M B          

IEEE 754 representation of -1.000000 is :
1 | 01111111 | 00000000000000000000000

01
Hidden bit

0127-127=0

127
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IEEE 754 representation of 0.100000 is :
0 | 01111011 | 10011001100110011001101
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0

IEEE 754 representation of 0.100000 is :
0 | 01111011 | 10011001100110011001101
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1230

IEEE 754 representation of 0.100000 is :
0 | 01111011 | 10011001100110011001101
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123-127=-4

0

IEEE 754 representation of 0.100000 is :
0 | 01111011 | 10011001100110011001101

123
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0

IEEE 754 representation of 0.100000 is :
0 | 01111011 | 10011001100110011001101

123-127=-4

123

1 2 22 231 2 0 2 0 1B B         
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Hidden bit

0

IEEE 754 representation of 0.100000 is :
0 | 01111011 | 10011001100110011001101

123-127=-4

123

1

1 2 22 231 2 0 2 0 1B B         

1 2 22 231 2 0 2 0 1B B         
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0

   1 2 22 23 41 1 1 1 2 0 2 0 1 2 0.1
S ED M B B B                   

IEEE 754 representation of 0.100000 is :
0 | 01111011 | 10011001100110011001101

1
Hidden bit

123-127=-4

123

1 2 22 231 2 0 2 0 1B B         

1 2 22 231 2 0 2 0 1B B         


