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Abstract. The paper presents architecture and properties of the ensemble of the 
classifiers operating in the tensor orthogonal spaces obtained with the Higher-
Order Singular Value Decomposition of prototype tensors. In this paper two 
modifications to this architecture are proposed. The first one consists in 
embedding of the Extended Euclidean Distance metric which accounts for the 
spatial relationship of pixels in the input images and allows robustness to small 
geometrical perturbations of the patterns. The second improvement consists in 
application of the weighted majority voting for combination of the responses of 
the classifiers in the ensemble. The experimental results show that the proposed 
improvements increase overall accuracy of the ensemble. 
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1  Introduction 

This paper is an extension of our previous work on development of the image 
classification with the ensemble of tensor based classifiers [4]. The method showed to 
be very robust in terms of accuracy and execution time, since many existing methods 
do not account for the multi-dimensionality of the classified data [19][21][22].  

Processing and classification of the multi-factor dependent data can be addressed 
with help of methods operating with tensors and their decompositions. One of the 
pioneered methods from this group is the face recognition system, coined tensor-
faces, proposed by Vasilescu and Terzopoulos [22]. In their approach tensors are 
proposed to cope with multiple factors of face patterns, such as different poses, views, 
illuminations, etc. Another tensor based method for handwritten digits recognition 
was proposed by Savas et al. [17][15]. Their method assumes tensor decomposition 
which allows representation of a tensor as a product of its core tensor and a set of 
unitary mode matrices. This decomposition is called Higher-Order Singular Value 
Decomposition (HOSVD) [1][14][11]. A similar approach was undertaken by 
Cyganek in the system for road signs recognition [3]. In this case, the input pattern 
tensor is built from artificially generated deformed versions of the prototype road sign 
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exemplars. All aforementioned systems, which are based on HOSVD, show very high 
accuracy and high speed of response. However, computation of the HOSVD from 
large size tensors is computationally demanding since the algorithm requires 
successive computation of the SVD decompositions of matrices obtained from tensor 
flattening in different modes [13]. In practice, these matrices can be very large since 
they correspond to the products of all dimensions of the input tensor. In many 
applications this can be very problematic. To overcome this problem an ensemble 
with smaller size pattern tensor was proposed by Cyganek [4]. In the proposed 
methods tensors are of much smaller size than in a case of a single classifier due to 
the bagging process. However, despite the computational advantages, the proposed 
ensemble based method shows better accuracy when compared to a single classifier. 

In this paper two modifications to the previously presented method are proposed. 
The first one is embedding of the Extended Euclidean Distance metric, recently 
introduced by Wang et al. [23]. This allows robustness to small geometrical 
perturbations of the input patterns since the new metric accounts for the spatial 
relationship of pixels in the input images. The second improvement consists in 
application of the weighted majority voting for combination of the responses of the 
classifiers in the ensemble. The experimental results show that in many cases the 
proposed improvements allow an increase of the overall accuracy of classification. 

The rest of the paper is organized as follows. In section 2 properties of the 
Euclidean Image Distance are presented. In Section 3 the architecture of the proposed 
ensemble of the HOSVD multi-classifiers is discussed. Pattern recognition by the 
ensemble of the tensor classifiers is discussed in section 4. Experimental results are 
presented in section 5. The paper ends with conclusions in section 6. 

2 Embedding Euclidean Image Distance 

Images are 2D structures in which a scalar, vector (color) or multi-dimensional (MRI) 
value of a pixel is as important as its position within image coordinate space. 
However, the second aspect is not easy to be accounted for due to geometrical 
transformation of images of observed objects. On the other hand, image recognition 
heavily relies on comparison of images for which the Euclidean metric is the most 
frequently used one, mostly due to its popularity and simplicity in computations. 
However, Wang et al. proposed a better metric than Euclidean which takes into 
account also spatial relationship among pixels [23]. The proposed metric, called 
IMage Euclidean Distance (IMED), shows many useful properties, among which the 
most important is its insensitivity to small geometrical deformations of compared 
images.  

More specifically, instead of the Euclidean metric between the two images X and 
Y of dimensions M×N each, given as follows 
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Wang et al. propose to use the following extended version  
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where x and y are column vectors formed by the column- or row-wise vectorization of 
the images X and Y, respectively, and gkl are elements of the symmetric nonnegative 
matrix G of dimensions MN×MN, which defines the metric properties of the image 
space.  

Thanks to the above formulation, information on spatial position of pixels can be 
embedded into the distance measure, through the coefficients gkl. In other words, the 
closer the pixels are, the higher value of gkl should be, reaching its maximum for k=l. 
The distance between pixel positions (not values) is defined on an integer image 
lattice simply as a function of the 'pure' Euclidean distance between the points, as 
follows 
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p pP  denotes position of the i-th pixel in the image, while σ is a 

width parameter, usually set to 1 [23]. Finally, incorporating (3) into (2) the IMED 
distance among image X and Y is obtained, as follows 
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The DIMED image metric given in (4) can be used for a direct comparison of images, 
such as in the case of the k-nearest neighbor method, etc. It can be also incorporated 
into other classification algorithms, such as the discussed HOSVD. This can be 
achieved substituting DIMED into all places in which the DE was used.  

However, for large databases of images direct computation of (4) can be expensive. 
An algorithm to overcome this problem was proposed by Sun et al. after observing 
that computation of DIMED can be equivalently stated as a transform domain 
smoothing [18]. They developed the Convolution Standardized Transform (CST) 
which approximates well the DIMED . For this purpose the following separable filter 
was used 

= ⊗ =T TH h h hh , (5)

where ⊗ denotes the Kronecker product of two vectors h and hT with the following 
components 

 =  0.0053 0.2171 0.5519 0.2171 0.0053
T

h . (6)
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The filter h given by (6) was also used in our computations since it offers much faster 
computations than direct application of (4). 

Fig. 1 shows examples of application of the Standardizing Transformation for 
selected pictograms of the road signs in implementation with the filter h in (6). It is 
visible that ST operates as a low-pass filter (lower row). This way transformed 
patterns are fed to the classifier system. 

   

   

Fig. 1. Visualization of Standardizing Transform applied to the road sign pictograms. Original 
pictograms (upper row). After transformation (lower row). 

Finally, it should be noticed that the IMED transformation should not be confused 
with the Mahalanobis distance or the whitening transformation [6][5]. Specifically, in 
equation (2) we do not assume computation of any data distribution nor probabilistic 
spaces. In other words, the main difference lies in definition of the matrix G in (2) 
which elements, given by (3), convey information on mutual positions of the points. 
In contrast, for the Mahalanobis distance G would be an inverse of the covariance 
matrix which elements are computed directly from the values of x and y disregarding 
their placement in the images. 

3 Architecture of the Ensemble of HOSVD Multi-classifiers 

Multidimensional data are handled efficiently with help of the tensor based methods 
since each degree of freedom can be represented with a separate index of a tensor 
[1][2]. Following this idea, multidimensional training patterns can be efficiently 
represented by a prototype tensor [3]. For the purpose of pattern recognition the 
prototype patterns tensor can be further decomposed into the orthogonal components 
which span a prototype tensor space. For the decomposition the Higher-Order 
Singular Value Decomposition can be used [1][13][11]. This way obtained orthogonal 
bases are then used for pattern recognition in a similar way to the standard PCA based 
classifiers [5][20][21]. 
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The HOSVD method allows any P-dimensional tensor 1 2 m n PN N N N N× × × ×∈ ℜ     to 
be equivalently represented in the following form [13][14]  

1 1 2 2 P P
= × × ×S S S  , (7)

where Sk are Nk×Nk unitary mode matrices, 1 2 m n PN N N N N× × × ×∈ ℜ    is a core tensor. 

  fulfills the following properties [13][14]:  

1. (Orthogonality) Two subtensors 
kn a=  and 

kn b=  for all possible values of k for 

which a≠b it holds that 

0
k kn a n b= =⋅ =  . (8)

2. (Energy) All subtensors of   for all k can be ordered according to their 
Frobenius norms, as follows 

1 2
0

k k k Pn n n N= = =≥ ≥ ≥ ≥   , (9)

The a-mode singular value of  is defined as follows 

σ= = .
k

k
n a a
  (10)

An algorithm for computation of the HOSVD is based on successive computations of 
the SVD decomposition of the matrices composed of the flattened version of the 
tensor  . The algorithm requires a number of the SVD computations which is equal 
to the valence of that tensor. The detailed algorithm can be referred to in the literature 
[1][13][14]. 

Fig. 2. Architecture of the ensemble with the HOSVD classifiers. Data preprocessed with the 
Image Euclidean Transformation. Bagging method used for training. Outputs are combined 
with the weighted majority voting. 
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Fig. 2 shows architecture of the proposed ensemble of the HOSVD classifiers. All 
training and testing data are preprocessed with the Image Euclidean Transformation 
described in section (2). Then, each HOSVD is trained with only a partition of the 
training dataset obtained in the bagging process.  

In the next step, accuracies of each of the classifiers in the ensemble are assessed 
using the whole training dataset. These are then used to compute the weights of the 
classifiers in the ensemble. In the run-time their outputs are combined with the 
weighted majority voting scheme, as will be described in the next section. 

4 Pattern Recognition by the Ensemble of Tensor Classifiers 

It can be observed that thanks to the commutative properties of the k-mode tensor 
multiplication [17], the following sum can be constructed for each mode matrix Si 
in (7)  

1

PN
h

h P P
h=

= × s  . (11)

In the above the tensors 

1 1 2 2 1 1h P P− −= × × ×S S S   (12)

form the basis tensors, whereas sh
P denote columns of the unitary matrix SP. Because 

each h  is of dimension P-1 then ×P in (11) is an outer product, i.e. a product of two 

tensors of dimensions P-1 and 1. Moreover, due to the orthogonality properties (8) of 
the core tensor in (12), h are also orthogonal. Hence, they can constitute a basis 

which spans a subspace. This property is used to construct a HOSVD based classifier.  
 In the tensor space spanned by h, pattern recognition can be stated as a measuring 

a distance of a given test pattern Px to its projections into each of the spaces spanned 
by the set of the bases h in (12). This can be written as the following minimization 

problem [17] 
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where the scalars ci
h denote unknown coordinates of Px in the space spanned by h

i, 

H≤NP denotes a number of chosen dominating components.  
To solve (13) the squared norm Q of (13) is created for a chosen index i. Assuming 

further that i
h
  and 

x
P  are normalized the following is obtained (the hat mark 

indicates tensor normalization) 
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Thus, to minimize (13) the following value needs to be maximized 
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Thanks to the above, the HOSVD classifier returns a class i for which its ρi from (15) 
is the largest. 

Table 1. Structure of a matrix of partial accuracies for each classifier and each training 
prototype pattern 

Digit 0 1 2 3 4 5 6 7 8 9 

HOSVD0 p00 p00 p00 …       

HOSVD1 p10 p11 p12 …       

HOSVD2 p20 p21 p22 …       

… … … … …       

In this work also different fusion methods were tested. Especially, the majority 
voting scheme was substituted for the weighted majority vote [10][16]. As alluded to 
previously, we proposed to use bagging to train the HOSVD classifiers from the 
ensemble which allows efficient memory usage. However, the partitions used for 
bagging contain less exemplars than all available for each prototype pattern. 
Therefore we further propose to use the whole training dataset to test each classifier 
trained with only fraction of that dataset for recognition of each pattern. This way we 
can assign some weight accuracies pkl for each classifier k and for each trained class l. 
These are defined as follows 

=
+

l
TP

kl l l
TP FP

N
p

N N
, (16)

where l
TP
N  denotes a number of true positive responses and l

FP
N  false positives, 

respectively. Table 1 visualizes this process for ten training patterns, such as digits. 
 Further, it is assumed that the classifiers are independent and each is endowed 
with its individual accuracies pkl. If their outputs are combined with the weighted 
majority voting scheme, then accuracy of the ensemble is maximized by assigning the 
following weights [12][9]  

=
−
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p
b

p
, (17)
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where pkl are given by (16). On the other hand, for a test pattern Px each of the 
HOSVD classifiers in the ensemble responds with its class and assigned vote strength, 
as follows 

ρ= 


ˆ ,

0,
kl k

kl

if HOSVD labels class l
d

otherwise
, (18)

where ρ̂
kl

denotes a maximal value of ρ̂
i
 in (15) and for the l-th classifier in 

ensemble and for pattern class k=i. Finally, the following discriminating function is 
computed  
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1

ˆ log
L

k x k kl kl
l

g P d bP , (19)

where Pk denotes the prior probability for the k-th class. However, the latter is usually 
unknown, so in the rest of experiments the first term in (19) was set to 0. 

5 Experimental Results 

The presented method was implemented in C++ using the HIL library [2]. 
Experiments were run on the computer with 8 GB RAM and Pentium® Quad Core Q 
820 (clock 1.73 GHz).  

For the experiments the USPS dataset was used [8][24]. The same set was also 
used by Savas et al. [17], as well as in the paper [4]. This dataset contains selected 
and preprocessed scans of the handwritten digits from envelopes of the U.S. Postal 
Service. Fig. 3 depicts some digits from the training and from the testing sets, 
respectively. The dataset is relatively difficult for machine classification since the 
reported human error is 2.5%. Therefore it has been used for comparison of different 
classifiers [15][17]. Originally the test and train patterns from the ZIP database come 
as the 16×16 gray level images.  

  

Fig. 3. Two data sets from the ZIP database. Training set (a), and testing set (b). 
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Fig. 4. Comparison of the accuracies of the three different ensemble settings without and with 
modifications proposed in this paper (the lower, the better). Blue bars for reference settings 
from [4]. Red bars relate to the method proposed in this paper, i.e. with the IMED and weighted 
majority voting. 

The database is divided into the training and testing partitions, counting 7291 and 
2007 exemplars, respectively. 

Each experimental setup was run number of times and an average answer is 
reported. In all cases the Gaussian noise was added to the input image at level of 10%, 
in accordance with the procedure described in [2]. An analysis of different 
combinations of data partitions, number of classifiers in ensemble, number of 
dominating components, as well as input image size is discussed in our previous work 
[4]. In this paper we choose the best settings described in experimental results of the 
mentioned paper [4] and tested influence of the new IMED based preprocessing 
method, as well as new output fusion method. Results for three different settings are 
shown in the bar graph in Fig. 4. 
 For the experimental setups in this work were chosen three best setups from our 
previous work [4]. These are summarized in Table 2. 

Table 2. Three best experimental setups of the ensemble from [4]  

No.       Param. 
 

Number 
of 
experts 

Data in 
samples 

Important 
components 

Image 
resolution 

Noise 
[%] 

1 11 64 16 16x16 10 

2 15 192 16 32x32 10 

3 33 64 16 16x16 10 
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The first experiments were run with configurations of the ensembles from Table 2. 
Then new propositions of IMED and weighted majority voting were introduced and 
run again. Each experiment setup was run 25 times and average parameters are 
reported. In all cases the proposed modifications allowed better results of 0.2-1% with 
negligible time penalty due to separability of the IMED filter.  

6 Conclusions 

In this paper an extended version of our previous work on image classification with 
the ensemble of tensor based classifiers is presented [4]. In this method, thanks to the 
construction of the ensemble of cooperating classifiers, tensors are of much smaller 
size than in a case of a single classifier. Each classifier in this ensemble is trained with 
data partition obtained from bagging. Such approach allows computations with much 
smaller memory requirements. However, the method shows also better accuracy when 
compared to a single classifier. In this paper two modifications to this formulation 
were discussed. The first is to apply input pattern preprocessing with embedding of 
the Extended Euclidean Distance metric. This allows robustness to small geometrical 
perturbations thanks to the metric which accounts for the spatial relationship of pixels 
in the input images. The second improvement consists in application of the weighted 
majority voting for combination of the responses of the classifiers in the ensemble. 
The experimental results show that in many cases the proposed improvements allow 
an increase of the overall accuracy of classification in order of 0.2-1%. The method is 
highly universal and can be used with other types of patterns. 
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