
 OBJECT DETECTION AND RECOGNITION IN DIGITAL IMAGES
by Bogusław Cyganek, Wiley 2013

 Technical Report – written by Bogusław Cyganek © 2013 Rev. 1.0

 REV DATE DOCUMENT HISTORY

 1.0 10.03.2013 Document created by Bogusław Cyganek.

 1.0 21.06.2013 Document updated by B. Cyganek

DeRecLib User's Manual

Companion to the book
OBJECT DETECTION AND RECOGNITION IN DIGITAL IMAGES: THEORY AND

PRACTICE
by Bogusław Cyganek, Wiley 2013

Copyrights 2013

 OBJECT DETECTION AND RECOGNITION IN DIGITAL IMAGES
by Bogusław Cyganek, Wiley 2013

 Technical Report – written by Bogusław Cyganek © 2013 Rev. 1.0

This document is intended only as a companion to the book Object Detection and

Recognition in Digital Images: Theory and Practice by B. Cyganek (Wiley, 2013) [1].

Its main objective is to provide additional information on software attached to this

book (available from the book web page [6]) which was published in an electronic

version to keep track of possible changes and updates to the software platform.

 OBJECT DETECTION AND RECOGNITION IN DIGITAL IMAGES
by Bogusław Cyganek, Wiley 2013

 Technical Report – written by Bogusław Cyganek © 2013 Rev. 1.0

3

Table of Contents

1 Introduction ... 5

1.1 What this Technical Report Contains .. 5

1.2 What is DeRecLib Software ... 5

1.3 Software Copyright Note .. 5

2 Getting Started .. 6

2.1 User Requirements .. 6

2.2 System Requirements ... 6

2.3 Development Platform ... 6

2.4 Software Architecture .. 7

2.5 Installation and the First Build .. 8

2.6 Debugging.. 9

3 Software Components .. 10

3.1 Input and Output Operations ... 10

3.1.1 Input/Output of the Images .. 10

3.1.2 Input/Output of the Video ... 13

3.2 Interface to the SVD Computations ... 15

3.3 Class EigenImageFor .. 16

3.4 Class PCA_BackgroundSubtraction .. 19

3.5 Examples of Anisotropic Diffusion ... 22

3.6 Structural Tensor and its Versions... 23

3.6.1 Extended and Compact Versions of the Structural Tensor .. 23

3.7 Testing k-Means Clustering ... 24

3.8 Testing Kernels .. 25

3.9 Testing Tensor Decompositions .. 25

3.10 Working with the HOSVD Based Classifier ... 28

4 Summary .. 30

Bibliography ... 31

 OBJECT DETECTION AND RECOGNITION IN DIGITAL IMAGES
by Bogusław Cyganek, Wiley 2013

 Technical Report – written by Bogusław Cyganek © 2013 Rev. 1.0

4

List of Abbreviations

API Application Programming Interface

DMA Direct Memory Access

FPGA Field Programmable Gate Array

HIL Hardware Image Library

IDE Integrated Development Platform

OOD Object-Oriented Design

OOP Object-Oriented Programming

SDK Software Development Kit

STL Standard Template Library

 OBJECT DETECTION AND RECOGNITION IN DIGITAL IMAGES
by Bogusław Cyganek, Wiley 2013

 Technical Report – written by Bogusław Cyganek © 2013 Rev. 1.0

5

1 Introduction

1.1 What this Technical Report Contains

This document is a supplement to the book An Introduction to 3D Computer Vision Techniques and
Algorithms by Bogusław Cyganek & J. Paul Siebert (Wiley, 2008) [2]. It contains additional information
on inner mechanisms of the library, as well as on practical use of the software platform provided for
readers of the book. Therefore it should be read after reading at least Chapter 3 of the aforementioned
book which contains information on basic data structures used in the presented library. Because of
this, this technical report can be treated as a ‘dynamic’ contents of Chapter 14 of the book [2].

1.2 What is DeRecLib Software

The DeRecLib library contains software components (functions and classes) presented in the book
Object Detection and Recognition in Digital Images: Theory and Practice [1]. It contains a number of
examples to show calling context of the procedures.

DeRecLib does not use OpenCV, although it can be joined to that library through the adapters which
translate matrix (image) formats between the two platforms. Details of such connection are described
in the HIL manual [5].

1.3 Software Copyright Note

The software [6] accompanying the book Object Detection and Recognition in Digital Images: Theory
and Practice by Bogusław Cyganek (Wiley, 2013) [1] is supplied as it is without any guarantees or
responsibility for its use in any application. You are free to use this software if the copyright notice is
retained.

If software or its parts are used in scientific publications, the citation of the book is greatly
acknowledged.

 OBJECT DETECTION AND RECOGNITION IN DIGITAL IMAGES
by Bogusław Cyganek, Wiley 2013

 Technical Report – written by Bogusław Cyganek © 2013 Rev. 1.0

6

2 Getting Started

The goal of this chapter is to provide basic information necessary to install, build, run, and debug the
projects included in the software available from the web site of the book [6].

2.1 User Requirements

The only requirement is basic knowledge of the C++ language.

The basics theory of software operation of the methods in the DeRecLib are described in the book
Object Detection And Recognition in Digital Images: Theory and Practice [1]. Thus, it is advisable to at
least skim over the related sections of this book. If one is interested in definition of basic data
structures and base operations, then the book An Introduction to 3D Computer Vision Techniques and
Algorithms can be recommended [2].

Since the Visual Studio 2010 is used, a basic knowledge of this platform is also useful.

2.2 System Requirements

In order to be able to run the attached software examples it is necessary to have installed the following
software components on the computer:

• Windows 7 or higher.

• Microsoft Visual Studio 2010 or higher.

However, software is written in the plain C++ and therefore it can be also compiles on Linux.

2.3 Development Platform

The main development platform is Visual Studio 2010 by Microsoft®, or higher. However, the source
code is written in the style which allows its easy porting to other platforms, such as Linux. Therefore
only standard C++ features and libraries are used [10][8].

Visual Studio provides also easy to use editor and debugger.

 OBJECT DETECTION AND RECOGNITION IN DIGITAL IMAGES
by Bogusław Cyganek, Wiley 2013

 Technical Report – written by Bogusław Cyganek © 2013 Rev. 1.0

7

2.4 Software Architecture

Figure 2.1 presents the components diagram which visualizes relationships between the DeRecLib
and other utility components.

The attached software relies on a number of external libraries from which the most important are

• HIL - this is our previous library which supplies all definitions of the images and matrices, as
well as the most basic operations (such as convolution, morphology, etc.). This library is
described in [2][5].

• EigenLib - used to compute SVD decomposition of matrices [3].

• TIFF - used to open and save TIFF files [9].

• JPEG - used to open and save JPEG files [9].

Figure 2.1. Component diagram of the DeRecLib and associated libraries.

As already mentioned, the most important dependence of the DeRecLib is the HIL library, described in
the previous book [2], as well as in the Internet documentation [5]. HIL provides the basic definitions of
the image data structures, as well as basic operations such as convolutions and morphological
operations. However, DeRecLib utilizes only a fraction of this functionality.

 OBJECT DETECTION AND RECOGNITION IN DIGITAL IMAGES
by Bogusław Cyganek, Wiley 2013

 Technical Report – written by Bogusław Cyganek © 2013 Rev. 1.0

8

As shown in Figure 2.1 the DeRecLib library can be also connected with the OpenCV library through
the interface in the HIL platform, as described in the manual available at [5].

2.5 Installation and the First Build

Installation consists in downloading the .zip’ped repository and unpacking it into your disk. Make sure
that after this all files have the read/write attribute set to ‘on’. After unpacking, the following directories
should be visible in the chosen master directory:

• DeRecLib

• HIL

• JPEG

• Tiff

• TestData1

The main software is contained in the DeRecLib directory. Its structure is as follows

• Platforms

• Source

The TestData directory contains the test files which are used in the examples placed in the DeRecLib
library. The output directory is (where results are written):

DeRecLib\Platforms\Windows\NET 2010\DeRecLib

To access this directory from the source files, the common prefix string is defined as follows
(main.cpp):

// This string defines a common path to the test images
const string kTestImageFolder("..\\..\\..\\..\\..\\TestData\\");

If it happens that data files are in other directory, this string should be changed appropriately to point to
that directory tree.

The projects require installed Microsoft Visual C++ 2010 or higher. Other IDEs can also be used.
These, however, can require some changes to the organization of the project and/or minor
modifications to the source files.

1 The used images come from the following repositories:

• Face images from Georgia Tech® face database

• Face images from the AT&T Laboratories Cambridge® database (formerly the database from Olivetti Research Lab
(ORL)).

 OBJECT DETECTION AND RECOGNITION IN DIGITAL IMAGES
by Bogusław Cyganek, Wiley 2013

 Technical Report – written by Bogusław Cyganek © 2013 Rev. 1.0

9

After installing, load the project

Platforms\Windows\NET 2010\DeRecLib.sln

then launch “Build” and then “Run” commands. The project should get built and executed. If there are
some problems with this, first thing to check are setting of the paths of the header files. These are
available after choosing the "Project : DeRecLib Properties ..." menu.

There are two versions of the project:

• Debug

• Release

The first one allows code debugging, however at a cost of run-time operation. It has to be remembered
that some tensor decomposition procedures require high amount of memory and quite a lot of time to
finish, especially if run in Debug mode. Also in Debug mode the REQUIRE assertion is active.

The Release mode is optimized for speed of execution. It should be built and launched after the code
has been well checked in the Debug mode.

Finally, let us notice that if possible the x64 version should be chosen. This is especially important
when trying to allocated large buffers of memory for tensor decompositions.

2.6 Debugging

Some hints on code debugging are described in the manual attached to the HIL platform (available at
[5]). When running DeRecLib example functions it may be the case that some REQUIRE assertions
will not hold. Most probably this happens if some accuracy of a tensor decomposition is placed in such
an assertion. Such situation is harmless, since it indicates that the desired accuracy of decomposition
cannot be met for the chosen parameters. Usually the code can be launched to execute further
procedures. Nevertheless, each REQUIRE which does not hold should be checked and the problem
fixed.

Debugging greatly facilitates code understanding. Therefore each interested procedure should be in-
depth debugged to grasp their main steps.

 OBJECT DETECTION AND RECOGNITION IN DIGITAL IMAGES
by Bogusław Cyganek, Wiley 2013

 Technical Report – written by Bogusław Cyganek © 2013 Rev. 1.0

10

3 Software Components

In this section discussed are software components which are new, auxiliary, or additional to the ones
described in the book.

3.1 Input and Output Operations

Input and output functions are auxiliary in order to be able to show functionality of the procedures
presented in the book. However, although they require many files, this is not a primary functionality of
the DeRecLib library which internally operates not on JPEG, TIFF or other image formats but on image
and vide objects defined in the HIL library. Therefore, if used in other projects, the IO functionality can
be removed and substituted with other IO modules2.

3.1.1 Input/Output of the Images

Input and output operation are necessary to test operation of basic procedures with real data
examples. However, their usage is cumbersome since frequently they are heavily platform dependant.
In order to avoid such limitations, special input/output function interfaces were created to accompany
the main exemplary procedures. These are summarized below (for details see the
.\DeRecLib\Source\PR\Motion\VideoHelpers.h header).

There are two basic functions to load monochrome and color images, respectively. These are defined
as follows:

///
// This function
// tries to create a monochrome image from that file
///
//
// INPUT:
// fileName - full path name of the file to open
//
// OUTPUT:
// auto ptr to the monochrome image, or
// 0 if failure
//
// REMARKS:
//
//
MIAP OrphanMonochromeImageFromFile(const string & fileName);

2 DeRecLib was tested in an application written with help of the MFC classes. In this version, file paths were not hard coded
but chosen by a user in a file dialog.

 OBJECT DETECTION AND RECOGNITION IN DIGITAL IMAGES
by Bogusław Cyganek, Wiley 2013

 Technical Report – written by Bogusław Cyganek © 2013 Rev. 1.0

11

///
// This function
// tries to create a monochrome image from that file
///
//
// INPUT:
// fileName - full path name of the file to open
//
// OUTPUT:
// auto ptr to the color image, or
// 0 if failure
//
// REMARKS:
//
//
CIAP OrphanColorImageFromFile(const string & fileName);

Both functions try to figure out a type of an image to open. This can be either JPEG or TIFF. Other
types are not supported. Their only parameter fileName should contain either the full path to a file, or a
path to a file relative to the current directory. Both functions return auto-pointers to the monochrome or
color images, respectively. However, a calling function should always check if a returned pointer is
different from 0 which indicates function failure.

It is also possible to explicitly load either JPEG or TIFF files. To load and store the images saved in a
JPEG format we use the following functions:

///
// This function
// tries to create a monochrome image from that file
///
//
// INPUT:
// fileName - full path name of the file to open
//
// OUTPUT:
// auto ptr to the monochrome image, or
// 0 if failure
//
// REMARKS:
//
//
MIAP OrphanMonochromeImageFrom_JPEG_File(const string & fileName);
// Color version
CIAP OrphanColorImageFrom_JPEG_File(const string & fileName);

 OBJECT DETECTION AND RECOGNITION IN DIGITAL IMAGES
by Bogusław Cyganek, Wiley 2013

 Technical Report – written by Bogusław Cyganek © 2013 Rev. 1.0

12

///
// This function saves a given image to a file
///
//
// INPUT:
// outImage - image to be saved in the JPEG format
// defaultName - a default name which will be
// displayed as default in a user's file dialog
//
// OUTPUT:
// none
//
// REMARKS:
// If failure, then a message pops up to the user
//
void Save_JPEG_Image(const MonochromeImage & outImage,
 const string & defaultName = "MonoImage");
void Save_JPEG_Image(const ColorImage & outImage,
 const string & defaultName = "ColorImage");

Analogously, to load and store the images saved in the TIFF format the following functions should be
used:

///
// This function
// tries to create a monochrome image from that file
///
//
// INPUT:
// fileName - full path name of the file to open
//
// OUTPUT:
// auto ptr to the monochrome image, or
// 0 if failure
//
// REMARKS:
//
//
MIAP OrphanMonochromeImageFrom_TIFF_File(const string & fileName);
// Color version
CIAP OrphanColorImageFrom_TIFF_File(const string & fileName);

 OBJECT DETECTION AND RECOGNITION IN DIGITAL IMAGES
by Bogusław Cyganek, Wiley 2013

 Technical Report – written by Bogusław Cyganek © 2013 Rev. 1.0

13

///
// This function saves a given image to a file
///
//
// INPUT:
// outImage - image to be saved in the JPEG format
// defaultName - a default name which will be
// displayed as default in a user's file dialog
//
// OUTPUT:
// none
//
// REMARKS:
// If failure, then a message pops up to the user
//
void Save_TIFF_Image(const MonochromeImage & outImage,
 const char * defaultName = "MonoImage");
void Save_TIFF_Image(const ColorImage & outImage,
 const char * defaultName = "ColorImage");

Examples of using the above functions can be observed in the attached code. These can be easily
found with help of the "Find in Files" function (Ctrl+Shift+F).

3.1.2 Input/Output of the Video

It is assumed that each video sequence is stored as a series of frames, each also in JPEG or TIFF
formats. Their names should end with consecutive numbers. For example, the frames should be
named as image_0, image_1, image_2, and so on. The whole series can be loaded into a single
MonochromeVideo or ColorVideo objects (defined in the HIL platform), using one of the following
functions.

///
// This creates a MONOCHROME video from files, if possible.
// The idea is to take a common part of the file name, add a consecutive
// number of a frame, open the frame, and finally add it to the video
///
//
// INPUT:
// commonFileName - base part of the names of the files
// of a video (for files like "image_2.jpg" this is
// "image_")
// fileTypeSuffix - file suffix without a dot which is
// added automatically
// frameNumStart - frame start number (such as 0)
// frameNumEnd - frame end number (default 1000)
//
// OUTPUT:
// An orphaned MonochromeVideo object

 OBJECT DETECTION AND RECOGNITION IN DIGITAL IMAGES
by Bogusław Cyganek, Wiley 2013

 Technical Report – written by Bogusław Cyganek © 2013 Rev. 1.0

14

//
// REMARKS:
// If colour images are encountered, these
// will be converted into a monochromatic
// representation, if possible.
//
MonochromeVideo * CreateAndOrphan_MonoVideo_FromFiles(
 const string & commonFileName,
 const string & fileTypeSuffix = "jpg",
 int frameNumStart = 0, int frameNumEnd = 100);

///
// This creates a COLOR video from files, if possible.
// The idea is to take a common part of the file name, add a consecutive
// number of a frame, open the frame, and finally add it to the video
///
//
// INPUT:
// commonFileName - base part of the names of the files
// of a video (for files like "image_2.jpg" this is
// "image_")
// fileTypeSuffix - file suffix without a dot which is
// added automatically
// frameNumStart - frame start number (such as 0)
// frameNumEnd - frame end number (default 1000)
//
// OUTPUT:
// An orphaned MonochromeVideo object
//
// REMARKS:
// If colour images are encountered, these
// will be converted into a monochromatic
// representation, if possible.
//
ColorVideo * CreateAndOrphan_ColorVideo_FromFiles(
 const string & commonFileName,
 const string & fileTypeSuffix = "jpg",
 int frameNumStart = 0, int frameNumEnd = 100);

Important assumption here is that the commonFileName parameter should contain the "common"
name of all the frames without the ending sequence number and extension. That is, for the above
example, we should place "image_". If the sequence is in some other directory, then this should be
preceded with the appropriate path name, such as "D:\\Research\\

 OBJECT DETECTION AND RECOGNITION IN DIGITAL IMAGES
by Bogusław Cyganek, Wiley 2013

 Technical Report – written by Bogusław Cyganek © 2013 Rev. 1.0

15

///
// This function dispalys frames from the video
///
//
// INPUT:
// theVideo - reference to the video object
// start_frame - an initial frame in the video
// stream to be displayed (indexing starts
// from 0)
// end_frame - the last frame that will be
// displayed
// step - step of accessing frames (1 is default)
//
// OUTPUT:
// none
//
// REMARKS:
//
//
template < typename PIX >
void DisplayFramesFrom(const TVideoFor< PIX > & theVideo,
 int start_frame, int end_frame, int step = 1,
 const char * commonName = "Frame");

There are also two specialized versions named DisplayAllFramesFrom to display all frames in a video
and in a tensor. In the latter case, each slice of a tensor is treated as an image.

template < typename T >
void DisplayAllFramesFrom(const TFlatTensorFor< T > & inTensor,
 const char * text2Display = "TensorFrame");

template < typename PIX >
void DisplayAllFramesFrom(const TVideoFor< PIX > & theVideo,
 const char * commonName = "Frame");

3.2 Interface to the SVD Computations

As shown in the diagram in Figure 2.1, DeRecLib utilizes the Eigen library which details can be found
on the Internet site [3]. This is an object-oriented library which allows computation of the SVD
decomposition in many variants. Also important is possibility of using user defined data types, such as
the TFixedFor defined in HIL for representation of the fixed-point data and arithmetic [5].

 OBJECT DETECTION AND RECOGNITION IN DIGITAL IMAGES
by Bogusław Cyganek, Wiley 2013

 Technical Report – written by Bogusław Cyganek © 2013 Rev. 1.0

16

However, the Eigen library uses different matrix format than HIL. Therefore, there is the adapter
(template) class named Compute_SVD_For. Its details are available in the
..\DeRecLib\Source\Auxiliary\Math\SVD\Compute_SVD.h file.

3.3 Class EigenImageFor

PCA decomposition is described in Section 3.3.1 of the book. The PCA_For class (Section 3.3.1.1)
computes PCA decomposition of any data. However, it is optimized for rather low-dimensional data
types. In other words, this is the L«N case (for L - data dimensionality, N - number of data). On the
other hand, many methods assume computation of PCA decomposition for data being vectorized
versions of the images. In this case we have L»N (see pg. 209 of the book). The template class
EigenImageFor implements just the latter case.

Figure 3.1. A class hierarchy of the PCA and EigenImageFor.

The most important members of the EigenImageFor class are listed in Algorithm 3-1,

 OBJECT DETECTION AND RECOGNITION IN DIGITAL IMAGES
by Bogusław Cyganek, Wiley 2013

 Technical Report – written by Bogusław Cyganek © 2013 Rev. 1.0

17

///
// This class implements a specialized version for
// PCA computation on video objects. In this case
// dimensionality of each data object (i.e. an image)
// is much larger than a total number of data (i.e. images
// in a sequence): L >> N (much greater).
// For this purpose a slightly different approach
// that the classical covariance matrix build is more
// computationally feasible.
///
template < typename IN_DATA_TYPE, typename NUMERIC_TYPE >
class EigenImageFor : public PCA_For< IN_DATA_TYPE, NUMERIC_TYPE >
{
 protected:

 Matrix * fX_AV; // in columns of this matrix
 // already zero-mean data points
 // are stored
 public:

 typedef typename PCA_For< IN_DATA_TYPE, NUMERIC_TYPE > BaseClass;

 public:

 EigenImageFor(void) : fX_AV(0) {}
 virtual ~EigenImageFor() { delete fX_AV; }

 public:

 ///
 // These functions computes the covariance matrix sigma
 ///
 //
 // INPUT:
 // inVideo - reference to the series of frames (a video)
 // in which each frame contains ONE data point,
 // i.e. the whole image
 // theMean - on success contains the mean data point
 // orphanCovarMatrix - on success this is computed
 // covariance matrix (an orphaned object) but
 // of the fX_AV(T) * fX_AV
 //
 //
 // OUTPUT:
 // true on success
 // false otherwise
 //
 // REMARKS:
 // orphanCovarMatrix should be deleted by the calling
 // function
 //
 virtual bool Compute_CovarianceMatrix(const Video & inVideo,
 DataPoint & theMean,
 Matrix * & orphanCovarMatrix);

 OBJECT DETECTION AND RECOGNITION IN DIGITAL IMAGES
by Bogusław Cyganek, Wiley 2013

 Technical Report – written by Bogusław Cyganek © 2013 Rev. 1.0

18

 ///
 // These functions computes the principal component
 // decomposition (called: PCA)
 ///
 //
 // INPUT:
 // inVideo - reference to the series of frames (a video)
 // in which each frame contains one feature
 // of data (i.e. it is only one component
 // of the feature vector)
 // orphanCovarMatrix (optional) - on successful exit this
 // points at an orphaned covariance matrix
 // object of input data
 // orphanEigenvalues (optional) - on success points at orphaned
 // matrix with eigenvalues set in descending order
 // (actually this is a one row image)
 //
 // OUTPUT:
 // true on success
 // false otherwise
 //
 // REMARKS:
 // It computes and saves the fMean member
 // which contains the mean point.
 //
 // orphanEigenvalues, orphanCovarMatrix should be deleted
 // by the caller
 //
 virtual bool Compute_PCA(const Video & inVideo,
 Matrix * & orphanCovarMatrix,
 Matrix * & orphanEigenvalues);

};

Algorithm 3-1. Definition of the TFlatTensorFor class for tensor representation in the matricized (flattened) form
(the most important members shown). A tensor is defined providing its series of indices, flattening mode, and
index permutation (cyclic) mode

The outlined class EigenImageFor plays a major role in the PCA based background method described
in Section 3.3.1.3 of the book. The class for this method is described in the next section.

 OBJECT DETECTION AND RECOGNITION IN DIGITAL IMAGES
by Bogusław Cyganek, Wiley 2013

 Technical Report – written by Bogusław Cyganek © 2013 Rev. 1.0

19

3.4 Class PCA_BackgroundSubtraction

Algorithm 3-2 presents definition of the PCA_BackgroundSubtraction class with the most important
members shown. As already mentioned, the class allows background subtraction.

//==================================
// This class implements a background
// detector based on fast PCA
//==================================
class PCA_BackgroundSubtraction
{
 public:

 typedef MonochromeImage::PixelType PixelType;
 typedef TImageFor< PixelType > ImageType;
 typedef auto_ptr< ImageType > IMAP;
 typedef TVideoFor< PixelType > VideoType;

 typedef double ArithmType;
 // this type is used for all intermediate computations
 typedef EigenImageFor< PixelType, ArithmType > EigenImageProcessorType;

 typedef MonochromeImage BackgroundMapImageType;
 typedef auto_ptr< BackgroundMapImageType > BMAP;

 typedef TVideoFor< ArithmType > ArithmVideoType;
 // for scalar video objects
 typedef auto_ptr< ArithmVideoType > RVAP;

 protected:

 VideoType * fInputVideo;
 // this object contains the input video
 // it is NOT managed by this class. However it can be get/set if necessary

 EigenImageProcessorType fEigenImageProcessor;
 // this object does efficient PCA

 public:

 enum { kMinNumOfFramesForPCA = 3 };
 // at least this number of frames to compute PCA

 enum { kBackgroundVal = 0, kForegroundVal = -1 };

 private:

 int fBackgroundModel_NumOfFrames;

 OBJECT DETECTION AND RECOGNITION IN DIGITAL IMAGES
by Bogusław Cyganek, Wiley 2013

 Technical Report – written by Bogusław Cyganek © 2013 Rev. 1.0

20

 // number of frames used from the input video to build the background model

 public:

 ///
 // Default constructor
 ///
 //
 // INPUT:
 // inputVideo - a pointer to the orphaned video
 // object which specified frames will be used to
 // build the background model
 //
 // OUTPUT:
 // none
 //
 // REMARKS:
 // The input video will be destroyed by the
 // class destructor unless released
 // with ReleaseInputVideo
 //
 PCA_BackgroundSubtraction(VideoType * inputVideo = 0)
 : fInputVideo(inputVideo), fBackgroundModel_NumOfFrames(0)
 {
 }

 public:

 ///
 // This function builds the background model by constructing
 // the PCA from the selected frames of the input video
 ///
 //
 // INPUT:
 // from_frame_index - start frame from the input
 // video to be used in the model (default 0)
 // to_frame_index - one-after-the-last frame
 // to be used (-1 by default, means the very
 // end of the video)
 //
 // OUTPUT:
 // true if ok
 // false otherwise
 //
 // REMARKS:
 // The input video should be set by calling
 // the SetInputVideo() member
 //
 virtual bool BuildBackgroundModel(int from_frame_index = 0,
 int to_frame_index = -1);

 ///
 // This function projects the input image onto the
 // background model to build a background map
 ///

 OBJECT DETECTION AND RECOGNITION IN DIGITAL IMAGES
by Bogusław Cyganek, Wiley 2013

 Technical Report – written by Bogusław Cyganek © 2013 Rev. 1.0

21

 //
 // INPUT:
 // testImages - a reference to the image to
 // be confronted with the model
 // kBackThresh - a threshold value on the
 // change of pixels (if above then such pixel
 // differs from the model)
 // OUTPUT:
 // binary map of the background
 // 0 if failed
 //
 // REMARKS:
 // Prior to this call BuildBackgroundModel(),
 // otherwise the function will fail
 //
 virtual BMAP ComputeBackgroundMap(const ImageType & testImages,
 const PixelType kBackThresh = 44,
 ImageType * * orphanReconstructedImage = 0);

 virtual bool ComputeBackgroundMap(const ImageType & testImages,
 BackgroundMapImageType & backgroundMap,
 const PixelType kBackThresh = 44,
 ImageType * * orphanReconstructedImage = 0);

 public:

 ///
 // This helper function which converts the already
 // computed principal components into images.
 // Thus, the eigenimages can be directly observed
 ///
 //
 // INPUT:
 // none
 //
 // OUTPUT:
 // auto ptr to the real video
 // 0 if failure
 //
 // REMARKS:
 // The model has to be built prior to this function call.
 //
 RVAP OrphanEigenImagesFromModel(void);

};

Algorithm 3-2. Definition of the PCA_BackgroundSubtraction class with the most important members shown.

Examples of background subtraction are presented in Section 3.3.1.3 of the book (pg. 214). These can
be generated with help of the attached code in the DeRecLib with the function
BackgroundSubtraction_PCA_Test, declared as follows:

 OBJECT DETECTION AND RECOGNITION IN DIGITAL IMAGES
by Bogusław Cyganek, Wiley 2013

 Technical Report – written by Bogusław Cyganek © 2013 Rev. 1.0

22

///
// This function performs background subtraction
// in the supplied video
///
//
// INPUT:
// videoFileName - a common name of frames (preceded
// with the path). This video is used to build
// the scene model.
// testFileName - an image which is checked against
// the built scene model
// kBackThresh - a threshold of a difference between
// a model and a test file
//
// OUTPUT:
// none
//
// REMARKS:
//
//
void BackgroundSubtraction_PCA_Test(const string & videoFileName,
 const string & testFileName,
 const PCA_BackgroundSubtraction::PixelType kBackThresh = 22);

3.5 Examples of Anisotropic Diffusion

Anisotropic diffusion is discussed in Section 2.6.2 of the book. Based on theoretical derivations, the
implementation of the diffusion processes was organized in a class hierarchy - see Section 2.6.3 (pg.
40). The main class is the AnisotropicDiffusion.

Anisotropic diffusion can be used in many practical applications, such as for filtering in the extended
and compact structural tensors (Section 2.7.4), or to build the nonlinear scale-space used for dental
implant recognition (Section 5.4.3).

The DeRecLib contains the following function to test basic behavior of the anisotropic diffusion:

///
// This function carries out the anisotropic filtering
// on a color image
///
//
// INPUT:
// testFileName - a full path to the input color image
// resultFileName - (optional) a path to the output file
// max_iterations - (optional) maximal number of allowed
// iterations for filtering
//
// OUTPUT:

 OBJECT DETECTION AND RECOGNITION IN DIGITAL IMAGES
by Bogusław Cyganek, Wiley 2013

 Technical Report – written by Bogusław Cyganek © 2013 Rev. 1.0

23

// none
//
// REMARKS:
// The result is saved to the
//
void AnisotropicFilter_Test(const string & testFileName,
 const string & resultFileName = "Anisotropic_diffusion_image",
 int max_iterations = 15);

It is called from the main function and the results are saved to the current output directory. Since the
anisotropic diffusion performs iteratively, the procedure accepts also the maximally allowed number of
iterations.

Yet a different version of the AnisotropicDiffusion is attached to the software. It allows signal
smoothing, however the smoothing control function is driven by a gradient of other signal. Such
version was used to anisotropically smooth a probability field controlled with the intensity signal of the
original image. The implementation is included in the AnisotropicDiffusion_WithDifferentControl class.

3.6 Structural Tensor and its Versions

Structural tensor is discussed in Section 2.7 of the book. Its properties are also presented in the
previous book [2]. Implementation of the structural tensor is contained in the HIL library [5].

3.6.1 Extended and Compact Versions of the Structural Tensor

Implementation of different versions of the structural tensor is presented in Section 2.7.4.1 of the book.
DeRecLib contains two functions (..\DeRecLib\Source\Tensor\ST\ExtCompactStructTensor_Test.cpp):

///
// This function computes the extended structural tensor
// from the input image.
///
//
// INPUT:
// testFileName - a path to the image file
// max_iterations - a maximal number of iterations
// allowed for the anisotropic filtering
//
// OUTPUT:
// none
//
// REMARKS:
//
//
void TensorAnisotropicExtended_Test(const string & testFileName,
 int max_iterations = 25);

 OBJECT DETECTION AND RECOGNITION IN DIGITAL IMAGES
by Bogusław Cyganek, Wiley 2013

 Technical Report – written by Bogusław Cyganek © 2013 Rev. 1.0

24

///
// This function computes the compact structural tensor
// from the input image.
///
//
// INPUT:
// testFileName - a path to the image file
// max_iterations - a maximal number of iterations
// allowed for the anisotropic filtering
// numOfImportantComponents - a number of important
// components in the PCA
//
// OUTPUT:
// spectrum ratio of the PCA
//
// REMARKS:
//
//
double TensorAnisotropicCompact_Test(const string & testFileName,
 int max_iterations = 25,
 int numOfImportantComponents = 2);

The above are launched in the main function to test the extended and compact structural tensor,
respectively.

3.7 Testing k-Means Clustering

The following function was added to show basic properties of the k-means family of objects.

///
// This function does k-means clustering of the input
// data file (data of any length).
///
//
// INPUT:
// fileName - name of the text file (ASCII) with
// data to be clustered. Each data is stored
// in a separate line.
// expected_clusters - the assumed number of clusters
//
// OUTPUT:
// none
//

 OBJECT DETECTION AND RECOGNITION IN DIGITAL IMAGES
by Bogusław Cyganek, Wiley 2013

 Technical Report – written by Bogusław Cyganek © 2013 Rev. 1.0

25

// REMARKS:
//
//
void Test_k_Means(const string & fileName, int expected_clusters);

It is called from the main function with the data file containing skin samples in the RGB space. Results
are saved to the output files (their names are placed in the Test_k_Means function and can be easily
chenged).

The above function creates the basic k_Means object. However, in its place any other object from the
hierarchy can be used (see Section 3.11 of the book).

3.8 Testing Kernels

A simple tests for the Gaussian kernel contains the following function
(..\DeRecLib\Source\Auxiliary\Kernels\KernelTest.cpp):

///
// A function to test the Gaussian (RBF) kernel and to
// show how it can be used in a context.
///
//
// INPUT:
// none
//
// OUTPUT:
// none
//
// REMARKS:
//
//
void GaussianKernel_TestFunction(void);

3.9 Testing Tensor Decompositions

There is a number of simple test functions which show basic calling mechanisms to different
decompositions of tensors. Some of their parameters were hard coded to simplify the interfaces.
These can be easily changed. The first from the mentioned test functions does rank-1 tensor
approximation:

 OBJECT DETECTION AND RECOGNITION IN DIGITAL IMAGES
by Bogusław Cyganek, Wiley 2013

 Technical Report – written by Bogusław Cyganek © 2013 Rev. 1.0

26

///
// This function does rank-1 tensor decomposition.
// Tensor data is loaded from the txt file
///
//
// INPUT:
// tensor_FileName - name of a file with data of
// the 3x3x3 tensor
//
// OUTPUT:
// none
//
// REMARKS:
// Results of decomposition are save to the
// output text files
//
void Best_Rank_1_TEST(const string & tensor_FileName)

The next function carries out the rank-1 decomposition of tensors for different numbers of elements in
the series (see Section 2.12.6 of the book):

///
// This function does rank-1 tensor decompositions
// for different number of components R (see Section
// 2.12.6 of the book).
// Tensor data is loaded from the txt file
///
//
// INPUT:
// tensor_FileName - name of a file with data of
// the 3x3x3 tensor
//
// OUTPUT:
// none
//
// REMARKS:
// Results of decomposition are save to the
// output text files
//
void Best_Rank_1_DECOMPOSITION_TEST(const string & tensor_FileName);

Best rank-R is tested in the following function (see Section 2.12.7 of the book):

///
// This function does rank-R tensor decompositions
// (see Section 2.12.7 of the book).
// Tensor data is loaded from the txt file
///
//
// INPUT:

 OBJECT DETECTION AND RECOGNITION IN DIGITAL IMAGES
by Bogusław Cyganek, Wiley 2013

 Technical Report – written by Bogusław Cyganek © 2013 Rev. 1.0

27

// tensor_FileName - name of a file with data of
// the 3x3x3 tensor
//
// OUTPUT:
// none
//
// REMARKS:
// Results of decomposition are save to the
// output text files
// Requested ranks for each dimension are
// set to the ranks vector
//
void Test_Best_Rank_R(const string & inTensor_FileName);

For simplicity, results of the all above test functions are saved to the text files in the current directory.

The last one does video tensor compression, as discussed in section 2.12.8.2 of the book. It allows
reproduction of the images shown in Figure 2.37 of the book. Its declaration looks like the following:

///
// This function does tensor (video) compression as described
// in Section 2.12.8.2 of the book.
///
//
// INPUT:
// colorVideoFileName - common frame name with access
// path (it should NOT contain the frame number,
// the dot, neither the extensio - see manual)
//
// OUTPUT:
// message string (to display)
//
// REMARKS:
// Results are saved to the current directory.
//
// Requested ranks are set to the requested_ranks variable.
// Large values can result in long operation of the procedure
// (even hours)
//
string C_o_l_o_r___Rank_R_Compression_Test(const string & colorVideoFileName);

The requested ranks of the output tensor are set in the function code. However, it has to be
remembered that this procedure can require substantial amounts of memory, as well as long time to
complete (from few minutes, up to hours, depending on the size of the input tensor, requested ranks,
and certainly computational power of the computer).

 OBJECT DETECTION AND RECOGNITION IN DIGITAL IMAGES
by Bogusław Cyganek, Wiley 2013

 Technical Report – written by Bogusław Cyganek © 2013 Rev. 1.0

28

3.10 Working with the HOSVD Based Classifier

The HOSVD based classifier is described in Section 5.8 of the book. However, the HOSVD
decomposition is presented in Section 2.12.2, while the HOSVD induced tensor bases are discussed
in Section 2.12.4. In this section we present two functions to train and to run the multi-class HOSVD
classifier, respectively. To perform the HOSVD classification three steps are necessary:

1. Initialization of the _HOSVD_MultiClass_Classifier object, as well as paths to directories
containing training images - each directory for a separate class.

2. Training of the HOSVD multi-classifier with the HOSVD_Classifier_TRAIN_Test function.

3. Classification of unknown pattern with the HOSVD_Classifier_RUN_Test function.

Their declarations are as follows (see ..\DeRecLib\Source\PR\HOSVD
Classifier\HOSVD_Classifier_Test.cpp).

///
// This function trains the HOSVD classification with multiple
// classes. For each class a separete HOSVD space
// is built (see Section 5.8 of the book).
///
//
// INPUT:
// HOSVD_MultiClassifier - the HOSVD multi-class
// classifier object
// video_paths - a vector with paths to the frames
// defining each class
//
// OUTPUT:
// true if training ok
// false otherwise
//
// REMARKS:
//
//
bool HOSVD_Classifier_TRAIN_Test(
 T_HOSVD_MultiClass_Classifier & HOSVD_MultiClassifier,
 vector< string > & video_paths);

The training function accepts the already created T_HOSVD_MultiClass_Classifier object as well as a
vector with paths to the directories containing patterns (images). Each directory contains exemplars of
a single class. Numbers of patterns for each class can be different, however.

///
// This function does HOSVD classification among multiple
// classes. For each class a separete HOSVD space

 OBJECT DETECTION AND RECOGNITION IN DIGITAL IMAGES
by Bogusław Cyganek, Wiley 2013

 Technical Report – written by Bogusław Cyganek © 2013 Rev. 1.0

29

// is built (see Section 5.8 of the book).
///
//
// INPUT:
// video_paths - a vector with paths to the frames
// defining each class
// testFileName - file name of the test image
//
// OUTPUT:
// number of a class (starting form 0)
// -1 if error
//
// REMARKS:
//
//
int HOSVD_Classifier_RUN_Test(
 T_HOSVD_MultiClass_Classifier & HOSVD_MultiClassifier,
 const string & testFileName);

On the other hand, the HOSVD_Classifier_RUN_Test function should receive the already trained
T_HOSVD_MultiClass_Classifier object as its first argument and an unknown test pattern (image) as
its second argument, respectively.

In the attached example the ORL ATT face library was used. First five directories were used to train
the HOSVD classifier. In each directory there is 10 images, from which 9 is taken for training and the
remaining one for testing. In this simple example HOSVD attains 100% accuracy.

 OBJECT DETECTION AND RECOGNITION IN DIGITAL IMAGES
by Bogusław Cyganek, Wiley 2013

 Technical Report – written by Bogusław Cyganek © 2013 Rev. 1.0

30

4 Summary

The document contains additional information on the software library DeRecLib which constitutes an
accompanying software platform to the book Object Detection and Recognition in Digital Images:
Theory and Practice by B. Cyganek (Wiley, 2013).

DeRecLib contains all code fragments which were presented in the aforementioned book. Additionally
it contains a number of test functions which show application of these procedures in straightforward
calling scenarios. The main idea was to present basic functionality with relatively small amount of
code, thus facilitating its understanding and possible modifications. Therefore the examples run in a
console mode. However, they can be easily moved to other applications and platforms, such as Linux.

The platform is planned to be extended. For all further questions, hints on possible improvements, bug
reports, etc. please contact myself at: cyganek (at) agh.edu.pl

 OBJECT DETECTION AND RECOGNITION IN DIGITAL IMAGES
by Bogusław Cyganek, Wiley 2013

 Technical Report – written by Bogusław Cyganek © 2013 Rev. 1.0

31

Bibliography

[1] Cyganek, B. Object Detection And Recognition in Digital Images: Theory and Practice. Wiley,
2013.

[2] Cyganek, B., Siebert J.P. An Introduction to 3D Computer Vision Techniques and Algorithms.
Wiley, 2009.

[3] Eigen Library. http://eigen.tuxfamily.org/ , 2013.

[4] Gamma E., Helm R., Johnson R., Vlissides J. Design Patterns. Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995.

[5] www.wiley.com/go/cyganek3dcomputer

[6] www.wiley.com/go/cyganekobject

[7] OpenCV llibrary: http://opencv.org/ , 2013.

[8] Josuttis N.M. The C++ Standard Library. A tutorial and Reference. 2nd Edition. Addison-
Wesley, 2012.

[9] Levine J. Programming for graphic files in C and C++. Wiley, 1994.

[10] Stroustrup B. The C++ Programming Language. Addison-Wesley, 2013.

[11] Vandervoorde D., Josuttis N.M. C++ Templates. The Complete Guide. Addison-Wesley, 2003.

Kraków, 2013

