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Abstract

Proposing novel methods for tackling complex and multidimensional data is

a focus of current machine learning research. The problem of representa-

tion of such data, in order to find a trade-off between easy processing and

maintaining discriminative power is one of the crucial issue. In this paper,

we propose a new method for efficient classification of multidimensional data

based on tensor-based kernel applied in Support Vector Machines. We repre-

sent data as tensors, in order to preserve the spatial dependencies among the

data and allow to process complex structures (such as color images or video

sequences) as single objects. To allow for an effective classification, we aug-

ment a Support Vector Machine trained with Sequential Minimal Optimiza-

tion procedure with a chordal distance-based kernel for efficient computation

of tensor-based objects. We present full implementation details, required to

∗Corresponding author
Email addresses: cyganek@agh.edu.pl (Bogus law Cyganek),

bartosz.krawczyk@pwr.wroc.pl (Bartosz Krawczyk), michal.wozniak@pwr.wroc.pl
(Micha l Woźniak)
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use such a kernel in practice. The proposed method is evaluated in both

binary and multi-class classification problems. Comprehensive experimental

analysis carried on face recognition problem, shows the high usefulness of the

proposed approach.

Keywords: machine learning, pattern recognition, support vector machine,

chordal distance, tensor decomposition.

1. Introduction

Majority of the classical pattern recognition methods relies on vector

spaces [13]. This reflects basic properties of simple measurements which stack

different feature values of measurements into one-dimensional (1D) vectors,

which are then assigned to predefined classes. However, many phenomena

lead to measurements, which change specifically depending on a chosen di-

mension or a coordinate. Well known examples are video sequences, which

are composed of two-dimensional frames containing three-valued pixels, dis-

played a number of times per second. Naturally, they are four-dimensional

data which become even five-dimensional considering sound. Such examples

arise in many domains when measuring signals under different settings of

an experiment. Such data is called multidimensional or tensor like signals

[10, 25, 26]. However, they do not fit well into the classical 1D vector based

framework. Although there are many ways to vectorize multidimensional

data, it has been observed that such operation usually leads to significant

loss of important information, since some values which were close (in terms

of a chosen coordinate) become differently separated if data are arbitrar-

ily linearized into a vector. Therefore in recent years much attention gained
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development of pattern recognition methods which inherently consider multi-

dimensionality of the classified data [8, 37, 40, 41]. On the other hand, one

of the newest and highly appreciated achievements in pattern recognition of

recent two decades are Support Vector Machines (SVMs) which, operating

on vector spaces, successively classify different types of data with support of

the kernel functions [7, 13].

In this paper we analyze properties of the SVMs employed to a multi-

dimensional data classification task. More specifically, we consider classifi-

cation of the monochrome and color images, directly treated as 2D and 3D

tensor respectively, and with help of the recently proposed chordal kernel

for tensor data [37]. The kernel is employed to different versions of SVMs

trained with the Sequential Minimal Optimization (SMO) algorithm [35].

The purpose of this work is to verify usefulness of such approach to the com-

mon image classification problem, as well as to scrutinize its basic properties

and implementation issues. To the best of our knowledge this is a first re-

search that directly shows properties of the chordal tensor and SMO trained

SVMs. Also, the obtained results lead us to the important conclusions on

favor of such approach which we believe can be successively employed to

many systems requiring image classification with significant improvement to

the classification accuracy. We also analyze computational costs of this new

approach.

The main contributions of this work are as follows:

• Proposal of efficient tool for handling complex and multidimensional

data (e.g., color images, hyperspectral images or video sequences) as

tensors, based on SVM with chordal distance-based kernel and trained
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with SMO algorithm.

• Detailed information and solutions to the implementation issues con-

sidered with efficient running of the described tensor kernel.

• Comprehensive experimental evaluation and statistical assessment of

the proposed system, carried out on face recognition datasets.

The rest of this paper is organized as follows. The next Section describes

state-of-the-art connected with SVMs and tensors for image processing and

classification. Then, the used chordal distance-based kernel, together with all

of the required details for a highly efficient implementation are described. In

Section 4 the experimental study is presented, while the last section concludes

the paper.

2. Related works

Let’s briefly review recent works which were influential to our work. Ker-

nel design is still an active research topic. However, there is a gap between

the kernel methods and multidimensional data which stems from the fact

that kernel functions in their basic definition accept two vector arguments,

whereas tensor data frequently are not identical with vectors. Thus, a com-

mon practice when classifying objects with SVM is to vectorize image pat-

terns before applying them to a classifier. However, such strategy leads to

worse classification results compared to methods which directly account for

multi-dimensionality of the input data [33, 37, 40, 41].

In [26] de Lathauwer introduced tensors to the signal processing domain.
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He proposed the higher order singular value (HOSVD) decomposition of ten-

sors and analyzed the chosen tensor’s properties.

A tensor approach for recognition of human faces from a series of im-

ages with exemplary faces under different view, pose and illumination, was

originally proposed by Vasilescu and Terzopoulos [40]. Their method, called

tensorfaces, relies on HOSVD decomposition of a data tensor containing all

the prototype face patterns. This decomposition allows classification of an

unknown face image to the best fit person class, as well as a synthesis of a

view of any person under new illumination or pose conditions [41].

The problem of tensor factorization for face recognition was addressed

in many works. Tenenbaum and Freeman proposed a bilinear model which

allows face analysis in the context of two unknown factors, such as people

and views, peoples and expressions, or peoples and illumination conditions

[38]. Similarly, Lin et al. [29] proposed an alternating update and consists in

changing one factor while the other is kept fixed. Peng and Qian proposed

a method for online gesture spotting from visual hull data in which pose

features are extracted using the HOSVD decomposition and the alternating

least-squares algorithm [34]. This method was also applied to an individual

subspace modeling of pattern faces belonging to a different person is proposed

[33]. Such approach leads to reduction of the number of factors which need to

be determined in the prototype tensor factorization to three factors, i.e., to

the face, expression and illumination. On the other hand, the factorization

problem is stated as the least squares problem for the Kronecker product of all

of the unknown parameters with the quadratic equality constraint. Park and

Savvides proposed also kernel version of their factorization method. It was
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shown that mapping of the patterns into a higher dimensional feature space

by a kernel function leads to higher accuracy at an acceptable computational

cost, mostly due to the well known kernel trick [33].

An introduction of the kernel-based approach to the multi-factor analysis

for image synthesis and recognition was proposed in [27]. This method relies

on kernel-based factorization with the HOSVD method and it is suitable for

new image synthesis and underlying factor estimation. Further overview of

tensors in pattern recognition can be found in the book by Cyganek [8].

SVM belong to the newest and most effective classifiers, originally pub-

lished by Cortes and Vapnik [7]. The most original properties of the SVM

is a construction of a maximal separable classifier between two classes, as

well as transformation of data into the higher dimensional feature space in

which data separation can be done with a linear hyper-surface. Since then

SVMs gain much attention due to their superior accuracy and relatively easy

parameter tuning. Due to these properties, SVMs found broad applications

in image classification which are the simplest examples of multidimensional

signals. There are plethora of examples of their successful applications in

this domain. Ko and Byun proposed combination of SVM classifiers for

multi-class problem with application to face recognition [24]. The authors

analyzed the one-per-class, as well as pairwise coupling output combiners

method. However, the obtained accuracies do not exceed 93% tested on the

AT&T Database of Faces (formerly ORL database) 1.

Wang et al. [42] analyzed application of the SVM endowed with the

1http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
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error correction mechanism to face recognition task. In their approach both,

the PCA and Fisherface features were used as input vectors. The authors

advocate for good abilities of the the error-correcting output codes (ECOC)

[11], which improved overall accuracy of the system. The obtained results on

the ORL face database reach up to 97%. Shavers et al. [36] presented a face

detection system based on SVM with the polynomial kernels. A method for

face image gender recognition based on the Gabor transform and SVM was

proposed by Yan [43]. In this work the 2D Gabor features are fed to the SVM

classifier with the linear, polynomial, as well as RBF and sigmoid kernels.

The reported accuracy of the final gender response is in the range of up to

83%. SVM classifiers are also employed in the face recognition system based

on the curvelet features, proposed by Mandal et al. [30]. In their paper the

curvelet transform is reported to produce better results than the well known

wavelet transforms. The experiments were performed on the Georgia Tech

Face Database2, as well as on the AT&T Database of Faces. Performance of

the multi-class SVM for face recognition is also reported in the work by Lihan

et al. [28]. In their system, PCA is first used for dimensionality reduction and

feature extraction, then, the one-versus-all SVMs were trained. The obtained

accuracies are 93.5% for the ORL, and 97.3% for the Yale face databases3,

respectively.

Valuvanathorn et al. proposed a multi-feature face recognition based on

PSO-SVM [39]. In this system the global and local features are investigated

for the face recognition. The features are obtained based on histograms,

2http://www.anefian.com/research/face_reco.htm
3http://vision.ucsd.edu/content/yale-face-database
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PCA, as well as two-dimensional PCA (2D-PCA) techniques. For classifi-

cation the SVM classifier was joined with the particle swarm optimizatio

(PSO) to automatically determine classification parameters. As reported,

the 2D-PCA provides the best results, for which the obtained accuracies of

face recognition reached 95.6%.

The face recognition problem, discussed in this paper, belongs to the

difficult classification tasks for which many methods have been proposed, as

Jiang et al. [22] proposed a subspace approach which regularizes and extracts

co called eigenfeatures. Face recognition with help of the random projections

was described by Goel et al. [17].In the work by Nefian [32] the embedded

Bayesian network (EBN), which is a generalization of the embedded hidden

Markov model, was proposed to the face recognition task. Nevertheless, as

we will show later the method presented in this paper outperforms majority

of the results reported in the aforementioned experiments.

A method of decomposing the tensor kernel support vector machine for

neuroscience data with structured labels is discussed in the paper by Hardoon

and Shawe-Taylor [20]. In their approach the tensor product kernels is an-

alyzed towards decomposing the tensor kernel SVM weight vector without

accessing the feature spaces. It was shown that the decomposed weights can

also be used as single source classifiers as well as to the task content based

information retrieval.

An important kernel - called a chordal tensor - that allows direct appli-

cation to any dimensional tensors, was introduced by Signoretto et al. [37].

The proposed non-parametric tensor-based model showed very high discrim-

inative power, compared to the previously proposed methods. It overcomes
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the commonly applied naive tensor comparisons, by taking into considera-

tion each of the spaces spanned by each of the dimension spaces spanned

by the flattened versions of the input tensors. In the presented experiments

the least-squares version of the SVM classifiers was employed, however. In-

fluenced by good results obtained with the chordal tensor, in this paper we

investigate its properties to the common problem of image recognition with

the SMO versions of the SVM classifiers.

3. Chordal Distance Between Pattern Tensors

In this Section, we will discuss the basis of tensors applied in pattern

recognition and machine learning, as well as methodology for computing the

chordal distance for tensor-based kernels.

3.1. Tensors for Pattern Recognition

Tensors play an important role in physics, especially in mechanics and rel-

ativistic physics [12][23]. They are used to describe relations among physical

values, which follow changes of the coordinate systems change in accordance

with strict rules called tensor transformation laws. The other definition of

tensors can be constructed with help of the multi-linear functions operat-

ing on a vector field and its dual [3]. However, in data analysis tensors are

limited to represent multidimensional cubes of data. In other words, data

that depends on multiple factors, or degree of freedom, can be grouped into

such a multidimensional array. An example can be measurements of groups

of clients buying specific groups of merchandize at certain days, prices, etc.

Similarly, a color video signal can be seen as a four dimensional cube of values

changing in accordance with the x -y spatial, c color, and t time dimensions.
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Thus, frequently patterns which are expressed as multidimensional cubes of

data need to be analyzed with mathematical tools relevant to tensor analy-

sis. In this paper we focus on tensor representation of different image types.

Theretofore, a brief introduction to tensor representation for data analysis

with special stress on image processing is presented. A more detailed descrip-

tion with further explanations can be found in literature [5][8]. A tensor

A ∈ ℜN1×N2×...NL (1)

is a L-dimensional ”cube” of real valued data, in which each dimension cor-

responds to a different factor of the input data space. For further discussion,

scalars are denoted with small letters, such as a, column vectors with bold

a, matrices with the bold capitals, such as A, and higher order structures -

tensors - with bold calligraphic letters, such as A.

With the above definition of a tensor, the j -mode vector of the K -th

order tensor is a vector obtained from elements of A by varying only one its

index Nj while keeping all other indices fixed. Further, if from the tensor A

the matrix

A(j) ∈ ℜNj×(N1N2...Nj−1Nj+1...NL) (2)

is created, then the columns of A(j) are j-mode vectors of A . Also A(j) is

a matrix representation of the tensor A, called a j -mode tensor flattening

(known also as tensor matricization). The j -th index becomes a row index

of A(j), while its column index is a product of all the rest L-1 indices. An

analysis of sufficient computer representations of (2) are discussed in many

publications [26]. Figure 1 shows three flattenings of a 3D tensor.
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Figure 1: Examples of 3D tensor flattening in the forward index permutation mode.

The three distinct flattenings of a N 1×N 2×N 3 (3×4×2) tensor shown

in Figure 1 assume a forward mode of index permutations which is more

suitable for video processing [9]. The matrix A(1), which directly reflects

video location in memory, has dimensions N 1×N 2N 3, A(2) – N 2×N 3N 1,

and A(3) – N 3×N 1N 2, respectively.

A useful concept of tensor algebra is a p-mode product of a tensor A ∈

ℜN1×N2×...NL with a matrix M ∈ ℜQ×Np . A result of this operation is the

tensor B ∈ ℜN1×N2×...Np−1×Q×Np+1×...NL whose elements are as follows

Bn1n2...np−1qnp+1...nL
= (A×pM)n1n2...np−1qnp+1...nL

=

Np∑
np=1

an1n2...np−1npnp+1...nL
mqnp .

(3)
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As was shown, the p-mode product can be equivalently represented in

terms of the flattened versions of the tensors A(p) and B(p) [26][25]. That is,

if the following holds

B = A×pM (4)

then

B(p) = MA(p) (5)

An important property of the tensor flattening is that each gives rise to

a different matrix with specific properties. Thus, an analysis of the space

properties spanned by each flattening matrix A(j), gives unique information

of data cube seen from the j -th dimension. This property is used to build

the higher-order singular value decomposition (HOSVD), as well as will be

used to construct a suitable kernel for data analysis, as will be discussed in

the next section.

To analyze properties of a space spanned by each matrix A(j), it is de-

composed with the Singular Value Decomposition (SVD) decomposition, as

follows [31]

A(j) = S(j)V(j)DT (j) =

RA(j)∑
i=1

v
(j)
i s

(j)
i d

T (j)
i =

[
S
(j)
A,1 S

(j)
A,2

] V
(j)
A,1 0

0 0

 D
T (j)
A,1

D
T (j)
A,2

 .

(6)

In the above, A,1 and A,2 denote indices of block matrices related to the

kernel and null spaces of A(j), respectively. It holds also that S
(j)
A,1 and D

T (j)
A,1
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are unitary matrices of the kernel of A(j). Finally,V
(j)
A,1 is a diagonal matrix

with RA non-zero elements, whose size determines rank of the matrix A(j).

It immediately follows also that

D
T (j)
A,1 D

(j)
A,1 = IRA×RA

(7)

The analogous conditions hold for the j -th mode flattening of the tensor

B. However, in this case, its rank can be different which is further denoted

by RB.

In pattern recognition one of the most important concepts is a distance

between patterns. In the well know vector space, frequently used is the Eu-

clidean distance. It can be also directly applied to the patterns represented

as tensors. However, such simplistic approach disregards important informa-

tion hidden behind the spatial composition and interrelations among data.

In this case a useful concept is to consider distances of the subspaces spanned

by the flattening matrices of pattern tensors. In this formulation a more ap-

propriate is a distance among principal angles, called projection Frobenius

norm [6] or a chordal distance [19]. For two tensors in their j -th flattened

mode matrices A(j) and B(j), their chordal distance is defined as follows [37]

D2
ch

(
A(j),B(j)

)
= D2

F

(
ΠA(j)

,ΠB(j)

)
=

∥∥∥ΠA(j)
− ΠB(j)

∥∥∥2

F
(8)

where ΠA(j)
denotes a projector matrix of A(j), defined as follows [31]

ΠA(j)
= D

(j)
A,1D

T (j)
A,1 (9)

Inserting (9) into (8) yields

13



D2
ch

(
A(j),B(j)

)
=

∥∥∥D(j)
A,1D

T (j)
A,1 −D

(j)
B,1D

T (j)
B,1

∥∥∥2

F
(10)

Based on D2
ch a tensor kernel can be defined as follows [37]

Kj (A,B) = exp
(
− 1

2σ2D
2
ch

(
A(j),B(j)

))
= exp

(
− 1

2σ2

∥∥∥D(j)
A,1D

T (j)
A,1 −D

(j)
B,1D

T (j)
B,1

∥∥∥2

F

)
.

(11)

Thus, for a L-dimensional tensor a product kernel can be defined as fol-

lows

K (A,B) =
L∏

j=1

Kj (A,B) =
L∏

j=1

exp

(
− 1

2σ2

∥∥∥D(j)
A,1D

T (j)
A,1 −D

(j)
B,1D

T (j)
B,1

∥∥∥2

F

)
(12)

Evidently, computation of (12) requires prior computations of 2·L SVD

decompositions, after which the Frobenius norm needs to be computed out

of the kernel space matrices D. However, in the case of large tensors this

might require a prohibitive time of computations and the expression can be

simplified, as will be discussed.

3.2. Computation of the Chordal Distance

Let us denote the squared norm in (10) as follows

∥P−Q∥2 = Tr
(
PTP

)
− 2Tr

(
PTQ

)
+ Tr

(
QTQ

)
(13)

where the two matrices P and Q are defined as follows

P = D
(j)
A,1D

T (j)
A,1 , Q = D

(j)
B,1D

T (j)
B,1 (14)
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Figure 2: Visualization of the computation of the chordal distance between two tensors A

and B.

The two matrices P and Q are of the same size. Now, for the consecutive

terms in (13), the following is obtained (we skip the indices 1 and 2 for

simplicity)

Tr
(
PTP

)
= Tr

((
DAD

T
A

)T (
DAD

T
A

))
= Tr

DADT
ADA︸ ︷︷ ︸
I

DT
A

 =

Tr
(
DAD

T
A

)
= Tr

(
DT

ADA

)
= RA.

(15)

Similarly, it holds that

Tr
(
QTQ

)
= RB (16)

On the other hand, the middle term in (13) can be expressed as follows
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Tr
(
PTQ

)
= Tr

((
DAD

T
A

)T
DBD

T
B

)
= Tr

(
DAD

T
ADBD

T
B

)
=

Tr
(
DT

ADBD
T
BDA

)
= Tr

DT
BDA︸ ︷︷ ︸
G

T

DT
BDA︸ ︷︷ ︸
G

 = Tr
(
GTG

)
.

(17)

Thus, (13) can be written as follows

D2
ch

(
A(j),B(j)

)
= RA + RB − 2Tr

(
GT

(j)G(j)

)
(18)

where

G(j) = D
T (j)
B,1 D

(j)
A,1 (19)

Expressions (18) and (19) are easier for computation than (10) since only

the matrix G(j) needs to be computed after computation of the SVD decom-

positions of j -th mode flattened versions A(j) and B(j) of the tensors A and

B, respectively. For the computation of the chordal kernel distance, such

computations need to be repeated L times, which is a dimensionality of the

two tensors.

In practice, choice of the non-zero values, denoted by RA and RB in

the matrices VA as well as VB, respectively, is a non-trivial one. In our

approach a simple threshold value was used, i.e., all singular values falling

below this threshold are assumed to be 0. Thus, for each A(j), its RA(j) is a

number of singular values above the experimentally chosen threshold.

When comparing computations of Dch with (10) and (18) we see a

significant difference. The first is that the matrix G(j) is of dimensions RB(j)

x RA(j), whereas each product in the difference in (10) is of dimensions N j x
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N j which is always larger. The second benefit of using (18) is that Tr can be

directly computed from the matrix G given in (19) with no further matrix

multiplications.

For a matrix of dimensions r x c, the computational complexity of de-

termining only the matrices V and D from the SVD decomposition is of

order 4c2(r + 2c)[18]. This can seem prohibitive for large tensors. How-

ever, in many pattern recognition tasks, such as computation of the nearest

neighbors, SVD for the prototype patterns can be computed beforehand and

stored in a database. This greatly simplifies computations since once a test

pattern is SVD decomposed. Then only (18) needs to be determined which

requires one matrix multiplication given in (19), as well as one inner product

to determine the third term in (18).

4. Experimental Investigations

In this section, we will present the experimental evaluation of the SVM

classifier with the chordal distance based (CDB) kernel for analysis of com-

plex multi-dimensional data. We want to establish, if the tensor represen-

tation of complex data can boost the quality of the kernel classifier. We

compare the proposed method with a popular SVM with RBF kernel, that is

widely used in many practical applications. We run two kinds of experiments:

• Binary classification task, in which we analyse the performance of

chordal distance based kernel for two-class problems. This is a first

choice due to the binary nature of SVM classifier.

• Multi-class classification task, as it reflects many real-life problems with

a set of possible class labels. Here, a reconstruction scheme must be
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applied in order to aggregate local binary decisions of SVM classifiers

into a single multi-class output.

4.1. Datasets

Chordal distance based kernel was designed in order to efficiently repre-

sent and analyze complex, multi-dimensional data such as images or video

sequences. In order to evaluate its usefulness, we have selected two popular

datasets from the face recognition domain: Georgia Tech Faces and AT&T

(ORL). They both have a high number of classes and are characterized by a

high interclass and low intraclass variances. Therefore, they are most suit-

able for comparing the tensor representation with a standard vector one for

the purpose of training SVM classifier.

Georgia Tech Faces4 dataset consists of images of 50 people taken

during 1999. Each person from the dataset is described by 15 corresponding

JPEG color images with cluttered background taken at resolution 640x480

pixels. The average size of the faces in these images is 150x150 pixels. The

pictures show frontal and/or tilted faces with different facial expressions,

lighting conditions and scale. A sample of Georgia Tech Faces dataset is

presented in Figure 3.

AT&T (ORL)5 dataset consists of images of 40 people taken between

April 1992 and April 1994. Each person from the dataset is described by

10 corresponding 8-bit grayscale PGM images taken at resolution 92 x 112

pixels. Images in this database were taken at different times varying the

4http://www.anefian.com/research/face_reco.htm
5http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
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Figure 3: Sample of different objects and classes from the Georgia Tech Faces dataset.
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lighting, facial expression and facial details (e.g., with and without glasses).

All the images were taken against a dark homogeneous background with

the subjects in an upright, frontal position (with tolerance for some side

movement). A sample of Georgia Tech Faces dataset is presented in Figure 4.

4.2. Experimental set-up

As a base classifier, we use Support Vector Machine trained with the SMO

procedure [35]. In our experiments, we use both RBF and CDB kernels and

tune their parameters according to the parameter selection procedures imple-

mented in LIBSVM package [4]. Tensor representation and decompositions

were implemented in C++ using the DeRecLib software package [2].

RBF kernel uses vector representations of classifier images, while CDB

kernel uses tensor representation.

For binary classification experiments, used multi-class datasets are de-

composed into a set of binary problems. This is done with one-versus-all

scheme [14] (in which one of the classes is compared against the remaining

ones).

For using SVM on multi-class problems, one needs a reconstruction scheme

in order to aggregate local binary decisions of SVM classifiers into a single

multi-class output. In our experiments, we use the one-versus-one Pairwise

Coupling method [21], as it was experimentally proved that this is among

best choices for aggregating binary classifiers [15].

For simultaneous training/testing and pairwise statistical analysis, we use

a 5x2 CV combined F-test [1]. It repeats five-time two fold cross-validation so

that in each of the folds the size of the training and testing sets is equal. The

combined F-test is conducted by comparison of all versus all. As a test score
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Figure 4: Sample of different objects and classes from the AT&T (ORL) dataset.
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the probability of rejecting the null hypothesis is adopted, i.e. that classifiers

have the same error rates. As an alternative hypothesis, it is conjectured that

tested classifiers have different error rates. A small difference in the error rate

implies that the different algorithms construct two similar classifiers with

similar error rates; thus, the hypothesis should not be rejected. For a large

difference, the classifiers have different error rates and the hypothesis should

be rejected.

Additionally, one should note that for binary classification we have a large

number of comparisons. To analyze them, we use the Shaffer post-hoc test

[16] to find out which of the tested methods are distinctive among an n x

n comparison. The post-hoc procedure is based on a specific value of the

significance level α. Additionally, the obtained p-values should be examined

in order to check how different given two algorithms are.

We fix the significance level α = 0.05 for all comparisons.

4.3. Experimental Results

The results for binary classification problems for both datasets are given

in Tables 1 - 4, with respect to accuracy and p-values from pairwise statistical

analysis. Table 3 presents the results of Shaffer test for binary problems.

Results for multi-class analysis are given in Table 2. Computational time is

presented in Table 5.

4.4. Discussion

Experimental investigations allow us to draw some interesting conclusions

about the usefulness of the proposed SVM with chordal distance-based kernel.
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Table 1: Accuracy [%] and statistical analysis for Georgia Tech Faces dataset, decomposed

into 50 binary problems. Symbol ’+’ stands for a situation in which the proposed method

is superior, ’-’ for vice versa, and ’=’ represents a lack of statistically significant differences.

Person SVM (CDB kernel) SVM (RBF kernel) p-value Person SVM (CDB kernel) SVM (RBF kernel) p-value

Person 1 87.24 81.30 + (0.0064) Person 26 89.76 69.16 + (0.0046)

Person 2 91.20 83.19 + (0.0045) Person 27 83.29 78.16 + (0.0261)

Person 3 78.38 69.29 + (0.0106) Person 28 86.43 78.49 + (0.0328)

Person 4 74.90 74.11 = (0.0743) Person 29 89.10 78.49 + (0.0296)

Person 5 82.18 64.29 + (0.0023) Person 30 91.20 82.46 + (0.0183)

Person 6 85.87 73.77 + (0.0280) Person 31 87.04 80.24 + (0.0348)

Person 7 92.46 74.06 + (0.0185) Person 32 82.65 75.89 + (0.0416)

Person 8 94.82 82.38 + (0.0132) Person 33 84.58 71.90 + (0.0088)

Person 9 85.39 83.51 = (0.1056) Person 34 78.72 76.84 = (0.0893)

Person 10 91.05 76.39 + (0.0019) Person 35 87.82 81.29 + (0.0368)

Person 11 94.28 75.20 + (0.0120) Person 36 79.85 77.93 = (0.7006)

Person 12 93.78 78.49 + (0.0206) Person 37 81.28 69.48 + (0.0062)

Person 13 87.93 73.98 + (0.0326) Person 38 83.78 78.30 + (0.0421)

Person 14 92.30 85.29 + (0.0392) Person 39 88.56 72.19 + (0.0086)

Person 15 86.58 71.18 + (0.0158) Person 40 85.39 74.20 + (0.0146)

Person 16 87.38 72.29 + (0.0187) Person 41 80.68 68.90 + (0.0073)

Person 17 86.83 64.98 + (0.0065) Person 42 88.36 80.48 + (0.0250)

Person 18 88.32 75.83 + (0.0382) Person 43 84.93 68.39 + (0.0102)

Person 19 89.38 75.30 + (0.0109) Person 44 87.03 79.12 + (0.0184)

Person 20 84.39 73.94 + (0.0306) Person 45 84.37 72.58 + (0.0097)

Person 21 87.39 86.12 = (0.2503) Person 46 79.17 78.60 = (0.1837)

Person 22 90.32 78.39 + (0.0128) Person 47 83.58 72.16 + (0.0113)

Person 23 86.37 80.34 + (0.0407) Person 48 86.12 70.84 + (0.0074)

Person 24 88.72 76.38 + (0.0168) Person 49 85.28 67.89 + (0.0038)

Person 25 87.29 74.39 + (0.0094) Person 50 90.06 77.05 + (0.0072)

23



Table 2: Accuracy [%] and statistical analysis for AT&T (ORL) dataset, decomposed into

40 binary problems. Symbol ’+’ stands for a situation in which the proposed method is

superior, ’-’ for vice versa, and ’=’ represents a lack of statistically significant differences.

Person SVM (CDB kernel) SVM (RBF kernel) p-value Person SVM (CDB kernel) SVM (RBF kernel) p-value

Person 1 93.72 77.28 + (0.0106) Person 21 87.98 79.24 + (0.0125)

Person 2 94.87 79.40 + (0.0089) Person 22 90.07 82.18 + (0.0246)

Person 3 89.38 82.89 + (0.0174) Person 23 91.28 81.52 + (0.0283)

Person 4 90.07 82.37 + (0.0218) Person 24 94.52 86.88 + (0.0139)

Person 5 90.93 82.78 + (0.0236) Person 25 86.34 85.75 = (0.2501)

Person 6 91.85 79.88 + (0.0168) Person 26 89.74 81.29 + (0.0202)

Person 7 90.19 68.70 + (0.0036) Person 27 87.26 82.68 + (0.0408)

Person 8 93.28 82.78 + (0.0138) Person 28 82.93 80.90 = (0.3770)

Person 9 90.92 83.74 + (0.0274) Person 29 83.18 81.06 = (0.1390)

Person 10 83.89 81.27 = (0.1602) Person 30 88.46 76.19 + (0.0054)

Person 11 87.92 81.63 + (0.0149) Person 31 90.71 82.05 + (0.0118)

Person 12 92.37 79.36 + (0.0107) Person 32 92.18 85.38 + (0.0247)

Person 13 93.10 84.28 + (0.0138) Person 33 90.86 80.19 + (0.0094)

Person 14 91.18 78.49 + (0.0064) Person 34 84.26 82.37 = (0.3118)

Person 15 92.23 84.15 + (0.0237) Person 35 85.49 81.23 = (0.0736)

Person 16 91.37 86.38 + (0.0398) Person 36 93.58 82.97 + (0.0163)

Person 17 92.03 82.17 + (0.0196) Person 37 91.28 77.47 + (0.0304)

Person 18 87.46 85.12 = (0.1592) Person 38 85.46 77.05 + (0.0248)

Person 19 90.24 85.49 + (0.0387) Person 39 90.63 79.48 + (0.0379)

Person 20 94.12 83.78 + (0.0109) Person 40 84.28 82.97 = (0.0719)

Table 3: Results for Shaffer test over 90 different binary classification experiments (50 from

Georgia Tech Faces dataset and 40 from AT&T (ORL) dataset). Symbol ’+’ stands for a

situation in which the proposed method is superior, ’-’ for vice versa, and ’=’ represents

a lack of statistically significant differences.

Methods p-value

SVM (CDB kernel) vs. SVM (RBF kernel) + (0.0082)
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Table 4: Accuracy [%] and statistical analysis for Georgia Tech Faces and AT&T (ORL)

datasets with Pairwise Coupling for multi-class classification. Symbol ’+’ stands for a

situation in which the proposed method is superior, ’-’ for vice versa, and ’=’ represents

a lack of statistically significant differences.

Dataset SVM (CDB kernel) SVM (RBF kernel) p-value

Georgia Tech Faces 97.03 76.28 + (0.0048)

AT&T (ORL) 97.89 81.24 + (0.0102)

Table 5: Average time [s.] required for training a Support Vector Machine with given

kernel for considered problems.

Dataset SVM (CDB kernel) SVM (RBF kernel)

Georgia Tech Faces (binary) 119.38 93.20

Georgia Tech Faces (multi-class) 288.24 241.39

AT&T (ORL) (binary) 98.34 72.26

AT&T (ORL) (multi-class) 204.38 158.23
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One can observe a significant gain in accuracy for both binary and multi-

class problems, when using the chordal distance-based kernel. RBF kernel

is inferior in almost all of the cases, and never achieves statistically better

results than the proposed tensor-based SVM. RBF kernel requires a vector

input of data, and therefore loses valuable information about the images un-

der consideration. Chordal distance-based kernel allows to process the entire

image (regardless of the fact, if it is color or gray-scale) as a single object,

thus preserving the spatial relations between pixels and maintaining addi-

tional information for the classification process. This is especially vivid in

case of Georgia Tech Faces dataset, which consists of color images. Using

RBF kernel forces the user to present it as a very long vector (three times

the number of pixels), while the presented SVM with chordal distance-based

kernel is able to efficiently represent each color matrix. Therefore, the pro-

posed method can highly useful for very complex data, such as hyperspectral

images or video sequences. Both pairwise and multiple comparisons statisti-

cal tests prove, that the proposed tensor version of SVM classifier achieves

statistically superior results over all of the datasets.

The proposed classification system suffers the same limitations, as stan-

dard SVM methods - it is binary by nature. Therefore, we have used an

efficient pairwise coupling aggregation method in order to reconstruct the

original multi-class problem from a number of binary outputs. Experiments

show, that the proposed algorithm significantly outperforms RBF kernel and

returns highly competitive results in comparison to the ones presented in

literature. Please note, that we do not use any kind of feature extraction

or preprocessing - the implemented kernel allows us to efficiently process
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complex images with high final accuracy.

Finally, we must report that the proposed SVM version requires a longer

training time than its RBF counterpart. However, for most of the classifi-

cation task this is not a problem, as we may train the classifier beforehand

without any time constraints. In such scenarios, the gain in accuracy is far

more important than increase of the training time. We should note, that

the response times of both RBF-based and chordal distance-based SVMs are

almost identical - so it is suitable for real-time operation. For cases, in which

one would require a re-trainable / adaptive classifier (e.g., data streams with

concept drift), one of our future goals is to introduce a distributed version of

our SVM classifier suitable to be run on GPU (e.g.,CUDA) architecture.

5. Conclusions

In this paper, we have presented a novel approach for handling complex

and multidimensional data. It was based on processing data structures as

tensors and classifying them with a Support Vector Machine with chordal

distance-based kernel. By handling data as tensors, we were able to process

multidimensional data (such as color images) as single objects, preserving

the spatial relations between pixels. The used kernel allowed to efficiently

tackle the tensor-based objects and compute distances between them. Sup-

port Vector Machine with this kernel was trained with Sequential Minimal

Optimization procedure in order to provide a highly efficient pattern recogni-

tion algorithm. Necessary details for efficient implementation of the chordal

distance-based kernel were provided.

We have examined our method on a number of experiments from face
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recognition domain, both binary and multi-class. We observed a significant

increase in accuracy, when using chordal distance-based kernel. Statistical

analysis, both pairwise and multiple comparison, allowed us to conclude that

the proposed version of SVM classifier is highly more effective than its pop-

ular version with RBF kernel.

As future works, we plan to use the tensor-based kernel for one-class

classification task and to formulate ensembles of SVM with chordal distance-

based kernels for efficient decomposition of massive and multi-class data. We

also plan to use this approach for handling hyperspectral images.
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