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Abstract 

The paper presents a work-in-progress on a 
classification system for object detection in vision based 
industrial applications. The main idea of the presented 
system is application of the ensemble of one-class 
classifiers trained with specific features of objects of the 
whole scene. During recognition stage the ensemble tries 
to recognize the trained patterns. The system is well 
suited for parallel processing and therefore it can 
operate in real-time conditions. Preliminary experiments 
in automotive applications show promising results. 

1. Introduction 

Visual signals in different spectra are frequently used 
for object detection and recognition in industrial 
applications, such as line production surveillance, 
automotive, underwater, etc. However, despite the 
acquisition system, what really counts is an accurate and 
fast response of such systems [9][13][5][14].  

In this paper a system of cooperating classifiers is 
proposed in various industrial applications aimed at 
object detection and scene analysis based on visual 
signals in different spectra. Such system of cooperating 
base classifiers is called an ensemble of classifiers. 
However, despite its relatively weak member classifiers, 
thanks to their cooperation and diversity, it was shown 
that such ensembles achieve superior results when 
compared to even complex but single classifiers 
[12][10]. In our proposition for base classifiers we use 
the one-class support vector machines (OC-SVM) [15], 
which are versions of the well known SVMs originally 
proposed by Cortes and Vapnik [3]. 

The specificity of the one-class classifiers is that they 
can deal with data of only one class. Such situations 
arise frequently if exemplars of other classes are too 
numerous or unknown. As an example can serve fault 
detection systems in which frequently only data of the 
normal conditions of operation are available since 
acquiring data of faulty operation would demand 
destroying of the system. Such situation is depicted in 

Figure 1. A task here is to detect objects which in some 
sense are different than the other for which the system 
was trained.  

 

Figure 1. An example of a line production 
under surveillance of the computer vision 
system. 

Another example is object detection in digital images 
in which only a model of an object is available, whereas 
other are unknown. Such situations are frequently 
encountered in real applications. An example here is the 
seat occupation detection system for proper passenger 
airbag deployment, discussed in Section 4. 

The presented here methods is based on our previous 
works on the one-class pattern classification, scene 
analysis, as well as on image segmentation [6][7]. 

Last but not least, in this paper serial and parallel 
implementations of the proposed systems are discussed. 
This addresses the problem of real-time processing, 
which frequently is a necessary assumption in real 
industrial applications.  

2. System Description 

As already mentioned, the ensemble can be trained 
with data specific to an object of interest. However, each 
member classifier of the ensemble receives different 
chunk of data. These can be obtained with the feature 
bagging, clustering, or spatial partitioning of an object. 
Such a situation is depicted in Figure 2. In this case it is 
assumed that an object is represented by a set of sparse 
but salient points and features gathered around these. 



 

Figure 2. Specific object detection in a 
scene based on the ensemble of classifiers 
trained with different object features. Black 
dots denote salient points. 

Yet another mode of operation is presented in Figure 
3. In this case, the goal is to encode a scene of interest by 
an ensemble of ensemble of OC-SVM classifiers. More 
concretely, at first the input image is divided into a 
predefined number of tiles. Then, in each tile features are 
detected, which are then used to train the ensemble 
assigned to that tile. Once again, type of features, as well 
as the way of their distribution between member 
classifiers of the ensemble (such as bagging or 
clustering), are application dependent as will be 
discussed.  

Also, the tiles can be obtained not in an arbitrary 
fashion described above, but for example from the prior 
image segmentation.  

 

Figure 3. Scene representation with a set 
of ensembles of classifiers. Training 
images are split into tiles from which 
characteristic features are extracted. Each 
set of features of each tile is used to train 
its specific ensemble. The whole scene is 
represented by a set of ensembles, each 
responsible for a single tile. 

Answer of the system depends on the aforementioned 
type of operation. In the first case, after detection of 
salient points and feature extraction, the ensemble 
provides its response to each possible configuration. This 
way an object can be detected. In the second mode, 
shown in Figure 3, an unknown image is fed to the 
ensembles which provide their answer on a percentage 
points which belong to specific one-class definitions [6].  

3. Structure of the Ensemble of Classifiers 
for Object Detection and Scene 
Representation 

In this section building blocks of the ensemble of 
classifiers are presented and discussed.  

3.1. Image Feature Extraction 
As already pointed out, feature extraction plays the 

major role in object/scene definition. Depending on an 
application, features can be prepared from object 
prototypes either as dense data or sparse representations 
around salient points. These, in turn, can be obtained 
from the Harris corner detector or more advanced 
methods, such as SIFT, etc. In either case, the final 
features are specific to an object of interest. These 
should be as discriminative as possible. The well known 
methods are orientation, color, texture histograms, log-
polar representation, just to name the few [9][4][5][13]. 

3.2. One-Class Base Classifiers 
As alluded to previously, for base classifier the OC-

SVM are assumed [15][7]. These classifiers are 
characteristic of many useful properties from which the 
most important are listed below: 

• Only one-class data are necessary for training. 
• After training, the whole class is represented 

exclusively by the not so numerous support 
vectors (data can be discarded). 

• Kernel mapping allows better separation of the 
class of interest. 

• Very fast response time (real-time operation). 
Figure 4 depicts the hypersphere enclosing the 

training class data. It can be characterized by its centre a 
and a radius r. The volume of the hypersphere, which is 
proportional to rn, should be as minimal as possible to 
tightly encompass the data.  
 The above requirement boils down to the 
minimization with respect to r2. In effect, the 
minimization functional Θ is as follows [15] 

( ) 2, r rΘ =a  (1)

with the constraint 
2: ii

r∀ − ≤x a , (2)

where xi are data points. To be more realistic, the 
slack variables ξi are introduced to allow points distant 
further than r (the outliers). 



This is introduced to (1) as follows 

( ) 2, i
i

r r C ξΘ = + ∑a  (3)

with the new constraints 
2: i ii

r ξ∀ − ≤ +x a ,  0iξ ≥ ,. (4)

In the above, C denotes a parameter that controls the 
optimization process. The larger C, the less outliers are 
possible, at the larger volume of the hypersphere.  

 

 

Figure 4. Hypersphere enclosing data 
points from a single class (black dots). 
Support vectors are the points on the 
surface (white). Points outside are outliers 
(gray). 

  
Given a set of training points {xi}, solution to the 
equations (3) and (4) can be computed with the Lagrange 
multipliers [3]. From this a distance d from the centre a 
of the hypersphere to a test point xx can be found [15].  
 During classification it can be assumed that an 
unknown point xx is classified as belonging to the class 
enclosed by this hypersphere if the following is fulfilled 

( )2 2, ,xd r≤x a  (5)

 After solving (3) and (4), it can be shown that the 
above classification rule can be expressed as follows 

( )
( )

( )
( )

, ,i x i i s i
i Idx SV i Idx SV

K Kα α δ
∈ ∈

≥ =∑ ∑x x x x . (6)

where Idx(SV) denotes a set of computed support vectors 
(see Figure 4) and αi are scalar coefficients returned by 
the training procedure. K denotes a kernel function, 
which in our system are the Gaussian kernels, as follows 

( )
2

, i j

RBF i jK e γ− −= x xx x , (7)

where γ denotes a spread parameter. The right side of (6) 
is constant in the recognition stage. Thus it can be 
precomputed to a value δ which denotes a cumulative 
kernel-distance of a SV to all other SVs. Equation (6) is 
used to test a pattern xx if it belongs to a class 
represented by a set of SVs. Thus, if real-time operation 

is required, equation (7) needs fast implementation, as 
will be discussed. 

3.3. Ensemble Arbitration 
The role of the arbitration unit is to orchestrate partial 

responses of the member classifier and provide a single 
answer out of the system. The simplest versions of this 
process that were used in our experimental systems 
relied on the majority and the weighted majority voting. 
Nevertheless, more advanced options are also possible. 
For details see [10][11]. 

4. Case Study 

In this section we discuss applications of the 
presented system in the automotive domain.  

These are as follows: 
• Skin segmentation for driver behavior 

monitoring 
• The seat occupation detector 
Figure 5 depicts some results of application of the 

ensemble of OC-SVMs to the first task. 
  

Input color image Face segmentation map 

Figure 5. Human skin detection with an 
ensemble of classifiers for automotive 
applications. 

 
The classifiers were trained with skin color samples. 

The system can operate in real time and in difficult 
lighting conditions encountered in the cars. 

Figure 6 presents a system of seat occupation 
detection. Its main task is to assess parameters for proper 
airbag deployment in a car depending on measurements 
of seat occupation. In this application a person is 
observed by a NIR camera, although some simpler 
detectors can be also used [1]. 



 

Figure 6. An example of seat occupation 
detection for proper passenger airbag 
deployment. 

Similarly to the skin detection, this system is trained 
to detect NIR signals which allow detection of a seating 
person.  

5. Implementation Issues 

The described system was implemented in C++ with 
help of the HIL library [5] and LIBSVM [2]. The 
experiments were carried out on the system with the 
Intel® quad-core processor i7 Q820 with a clock 
1.73GHz and 8GB of the system RAM, and Windows 
64-bit OS. The conducted experiments show that 
application of more than one classifier in an ensemble 
leads to the higher accuracy.  

To allow real-time operation the part of the software 
implementing equations (6) and (7) were ported to the 
graphics card with help of the CUDA environment [16]. 
Thanks to this a speed-up of over two orders of 
magnitude was obtained, as reported in [8]. Also a 
hardware FPGA implementation is relatively 
straightforward, although in this case the fixed-point 
arithmetic should be employed [17]. 

6. Conclusions 

The paper presents a work-in-progress on 
classification system for object detection and scene 
analysis in visual industrial applications. The main 
building block of the system is the ensemble of one-class 
classifiers trained with the specific features of an object 
of the whole scene. During recognition stage the 
ensemble tries to recognize the trained patterns. As 
shown, the proposed system is well suited for parallel 
processing thanks to which it can operate in real-time 
conditions.  Preliminary experiments in automotive 
applications show promising results and real-time 
operation. Further research will concentrate on 
application of the system to other vision based tasks. 
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