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Abstract. In this paper we propose a system for visual object detection and 
tracking based on the extended structural tensor and the ensemble of one-class 
support vector machines. First, the input color image is transformed with the 
anisotropic process into the extended structural tensor. Then the tensor space is 
clustered into the number of partitions which are used to train a corresponding 
number of one-class support vector machines composing an ensemble of 
classifiers. In run-time the ensemble classifies the input video stream into an 
object and background. Thanks to high discriminative properties of the 
extended structural tensor and to the diversity of the ensemble of classifiers the 
method shows very good properties which were shown by experiments on real 
video sequences. 

1 Introduction 

Object detection and tracking belong to the fundamental tasks of computer vision. 
However, these depend greatly on chosen definition of an object and the method of 
signal analysis. An object can be defined providing its template, sparse representation 
or statistical model [9]. Nevertheless, detection of an object in real images is still 
difficult due to geometric transformations, lighting conditions, occlusions and noise. 
In many cases, a suitable definition of an object or a group of objects is available only 
on pixel bases. In such cases chosen group of pixels constitute a model of an object 
for detection or tracking.  

In this paper we propose a system of pixel based object detection and tracking. The 
two novelties come from connection of the extended structural tensor (EST) for 
feature detection, proposed in paper [14], with the ensemble of one-class support 
vector machines (OC-SVM) for classification, presented in our previous work [7]. 
Additionally, different tensors comparison measures are investigated. Experimental 
results show high discriminative power of EST and ensemble of OC-SVMs. 

The paper is organized as follows. Section 2 describes architecture and overall 
operation of the proposed system. In section 3 we present details of the EST. The 
methods of their comparisons are discussed in section 4. The paper ends with 
experimental results in section 5 and conclusions in section 6. 
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2 Object Tracking with an Ensemble of OC-SVM 

Fig. 1 depicts architecture of the proposed system for object detection and tracking in 
video streams. Basically it is a combination of an improved tracking system proposed 
in [6] and the framework for pattern classification by an ensemble of OC-SVMs, 
proposed in [7]. The system has two basic paths of processing. The first one 
constitutes a training module which goal is to prepare the ensemble of classifiers used 
during system run-time. For each classifier the OC-SVM was chosen [22][23][24]. 

 

Fig. 1. Architecture of the front-end of the tracking system with the ensemble of OC-SVMs  

Training is instantiated by selection of the features characteristic to the objects of 
interest [6]. This makes relatively large spectrum of applications of the proposed 
method. Features which define the class of objects of interest usually come from an 
extracted template object from a reference frame. In the proposed system the features 
are computed with the EST, as discussed in the next section. 

In the run-time the input consists of the video stream from which the same type of 
features needs to be computed before classification. Then each classifier in ensemble 
provides its output. All such responses are resolved in the arbitration unit [12]. 

During classification by OC-SVM, a test pattern xx is assigned to a class 
represented by that classifier if the following inequality is fulfilled [7] 
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where Idx(SV) represents a set of support vectors xs found for this problem, while αi 
are their associated scalar parameters. In computation of (1) the Gaussian kernel with 
the tensor distance (discussed in the next section) is used. It is given as follows 
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where ( ) ( )2
,d A B  denotes a distance between tensors A and B, while the parameter γ  

controls kernel spread. Details on choosing A, B, and a distance d are discussed in the 
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section (4) of this paper. On the other hand, details on construction process and 
operation of the ensemble of OC-SVM are presented in [7]. 

3 Feature Collection with the Extended Structural Tensor 

Determining right number and type of features in a signal for pattern recognition is 
the first step influencing performance of the recognition process. Too few, or not 
characteristic features, can lead to poor object discrimination. On the other hand, too 
many or ad hoc chosen features usually result in poor generalization properties and 
excessive processing time of a classifier. In images, the most obvious features are 
color and textures, although there exists dozens of different approaches, such as 
image jets, wavelets [15], statistical moments [10][11], or non-parametric measures 
[26], to name a few. However, even for the color and texture there are many ways of 
their computation and processing. For instance, there are many color spaces which 
show different characteristics for various tasks [13]. On the other hand, texture can be 
computed e.g. with wavelets . Last but not least is a question on the computational 
complexity of feature detection, as well as their fitness to the classifier. In this respect, 
good results can be obtained incorporating tensor algebra into feature detection. 

 

Fig. 2. Computation of the dominating orientation vector w in a pixel neighborhood U based on 
signal gradients gi 

The 2D structural tensor is a symmetric matrix which eigenvector w, 
corresponding to the largest eigenvalue, points in a direction which is the most 
concordant with directions of all gradient vectors in a certain region U. This is shown 
in Fig. 2. The 2D structural tensor is defined as follows [11] 
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where I stands for image intensity signal, G=[Ix Iy]
T is a gradient vector in which 

Ix=∂I/∂x, Iy=∂I/∂y, F denotes a smoothing operator, i.e. integration in the continuous 
and summation in discrete cases, respectively.  
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Structural tensor provides valuable information on structure of local regions in the 
input image. However, in many applications it is desirable to use intensity or color 
values and texture information together. For instance, such compound information 
was proposed in the previous version of the system [6]. A slightly different idea was 
proposed by Luis-García et al. for image segmentation [14]. In this version mixed 
products of gradients and intensity signal are created. This way the nonlinear 
extended structural tensor for monochrome image is obtained, as follows 
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where again F denotes the averaging operator, Ix and Iy denote directional derivatives 
of the intensity signal I in the x and y directions, respectively. Tensor TM in (4) is 
symmetric. Hence, TM provides n(n+1)/2=6 independent features.  

In the case of color images, composed of three channels [IR IG IB]T, GE is further 
extended to GC, which is now of size n=5, as follows 

T

C x y R G BI I I I I′ ′ =  G . (5)

In the above 

( )1

3 R G BI I I I′ = + +  (6)

is simply an averaged intensity signal (i.e. a monochrome intensity signal). This 
simply leads to the extended structural tensor for color images 

( )T
C C CF=T G G , (7)

which due to the symmetry provides 15 independent components.  
For discrete signals, the operator F can be implemented as one of the smoothing 

operators, such as Gaussian or binomial filters [11]. However, smoothing with these 
filters results in dislocation of edges. To remedy this problem Brox et al. proposed to 
employ the nonlinear diffusion into the smoothing process [2]. This is accomplished 
with the anisotropic diffusion.  

Anisotropic diffusion was proposed by Perona et al. [18] as a modification to 
image smoothing with the heat equation which preserves sharp object boundaries. The 
main idea is to use a control function g in the computation of the Laplacian that stops 
smoothing if an edge is encountered. This procedure can be written in the PDE form 

( )( )( , , ) ( , , ) ( , , )t f x y t div g f x y t f x y t∂ = ∇ ⋅∇ , (8)

where f denotes a signal to be smoothed. In our case we also use the above equation 
for discrete monochrome signal I' from (6). For the control function g Perona et al. 
propose to use g(x)=(1+x2/k2)-1, where k is a positive constant [18]. However, as 
shown by Shapiro, the Tukey biweight function, given as follows 
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shows its superiority in leaving untouched strong signal variations [21]. For the 
parameter k in (9) the so called robust scale 

( )( )1.4826rk med I med I= ⋅ ∇ − ∇  (10)

can be used. It is computed from the gradient ∇I of the monochrome version of the 
original image, while med denotes a median function [21]. 

To compute Ix and Iy in (3), (4) and (8) the derivative filters for discrete signals are 
used. However, instead of the popular finite difference method [19], the discrete 
signal to be differentiated is first approximated with the continuous polynomial for 
which then derivatives are computed which finally are back sampled to the discrete 
domain. In effect computation of PDE (8) is stable and efficient since the filters are 
also separable. Further details on this method with references can be found in [5]. 

4 Distance Measures for Tensor Data 

Pattern recognition in tensor space requires definition of a tensor distance. There are 
many ways to accomplish this task, however. The simplest comparison can be done 
with a version of the Frobenius norm, given as follows [16]: 

( ) ( ) ( )2
,Fd Tr  = − A B A B ,

 
(11)

where A and B are two tensors and Tr denotes the trace. A statistical approach to 
tensor comparisons follows the Kullback-Leibler distance among probability 
distributions. Its symmetric version, called J-divergence, was proposed for tensors by 
Wang et al. as follows [25]: 

( ) ( ) ( )1 11
, 2

2Jd Tr n− −= − −A B A B B A , (12)

where n stands for tensor dimensionality (n=3 for TM and n=5 for TC, respectively).  
An interesting measure for comparison of the diffusion tensors arising in MRI was 

proposed by Pennec et al. [17]. It is given as follows: 
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in which for symmetric tensors T it holds that T2=TT=TTT. However, computation of 
(13) can be time consuming and for this purpose Arsigny et al. proposed a simplified 
Log-Euclidean distance, as follows: 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )2
, log ,log log logLF Fd d Tr  = = −

 
A B A B A B , (14)

For the sake of computational complexity the most appropriate measures are d(F) and 
d(LF). They were also verified experimentally by Rittner et al. as the ones which show 
the best performance for comparisons of color images [20]. It is also interesting to 
notice, that the extended tensors, TM in (4) and TC in (7), due to multiplications of 
internal components show high variability of their values. Therefore, to assure well 
balanced comparisons, they can be normalized. However, as mentioned in the paper 
by Luis-García et al. [14], a simple normalization is not recommended since it leads 
to noise amplification in channels containing no information. Instead, they propose to 
replace the values by their square roots. In this paper we tested the d(F) and d(LF) 
measure, given in (11) and (14), respectively. The latter follows geodesics in the 
manifold of symmetric positive defined matrices [1]. Moreover, it can be seen as a 
simple Frobenius norm on log preprocessed input signals. This property also 
simplifies implementation, since all classifiers operating with the Frobenius norm do 
not need to be changed - only the input signals need to be preprocessed with the 
logarithm function.  

Computation of the natural logarithm function in (14) is possible only for positive 
definite matrices. This simplifies further for symmetric matrices which have only real 
eigenvalues. In this case a symmetric matrix A can be first eigen-decomposed  

T=A RΛR , (15)

where R is an orthogonal matrix with eigenvectors, Λ is a diagonal matrix with 
eigenvalues. The above allows simple computation of the logarithm, as follows [15] 

( ) ( )log log T=A R Λ R . (16)

However, to apply the measures (13) and (14) we need to be sure that the compared 
tensors are positive definite. From (3), (4) and (7) we easily notice that these tensors can 
be represented as an outer product of a vector. Thus, such a tensor can be represented as 
A=aaT. Now, checking the positive definite condition the following is obtained 

( ) ( ) ( )= = ≥ 0
T

T T T T Tx Ax x aa x x a x a . (17)

The last equation indicates the tensors of this type are positive semidefinite. Thus, to 
compute their logarithms we need to check a special case of eigenvalues equal to 0. In 
our implementation we set a threshold of 1e-13 below which a log value -30.0 is put. 
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a b c 

Fig. 4. Road sign detection based on its internal pixels (a). Detection with OC-SVM ensemble 
with 2 classifiers (b). Detection with 5 classifiers in the ensemble (c). The d(LF) used. 

Fig. 4a depicts results of real object detection based on tensor definition of the 
pixels in the green rectangle (a road sign). Detection results with the ensemble of 2 
and 5 OC-SVMs are shown in Fig. 4b and Fig. 4c, respectively. In the former, an 
excessive number of false positives is present. This is improved with larger ensemble. 

Table 1 contains parameters of the OC-SVM classifiers in the ensemble of used to 
obtain results presented in Fig. 4c. Further details are in [6]. 

Table 1. Parameters of the ensemble of OC-SVM used to obtain Fig. 4c 

 #SVs γ ν ρ 

1 11 0.0441257   0.206667     3.2132      

2 7  0.0535715   0.161429     2.91624    

3 9  0.0383056   0.0017331   0.739651  

4 9  0.0081370  0.0640351  3.24109    

5 5  0.0129474   0.0049751 0.870604  

 
Fig. 5 shows results of tracking of a person head in a driver's monitoring system. 

Detected pixels with an ensemble of three OC-SVMs are shown in the top row of Fig. 
5. Head orientation from the mean shift method is shown in the bottom row [4]. 
Parameters of the classifiers are presented in Table 2, whereas details of the mean 
shift in this context are presented in [6][4]. 

Results presented in Fig. 5 were obtained with the d(LF) measure. However, 
comparison of d(LF) with d(F) shows no winner in our experiments. Considering much 
larger computational demands of the former, this makes d(F) more favorable. 
Nevertheless, this comparison needs further research and in the context of other vision 
tasks. 

The drawback of the presented method is processing time necessary for iterative 
computation of the TC in (7), as well as the distance d(LF) in (14) if used. However, 
structure of the proposed ensemble of classifiers allows their independent and parallel 
operation during classification (see Fig. 1). Recently this module was ported to the 
GPU using the CUDA framework [8]. As a result, in a classification stage a speed-up 
ratio of two orders of magnitude was achieved. 



112 B. Cyganek and M. W
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