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Abstract—This paper introduces a novel method for forming
efficient one-class classifier ensembles. A common problem in
one-class classification is a complex structure of the target
class, which often leads to creation of a too expanded decision
boundary. We propose to employ a clustering step in order to
partition the target class into atomic subsets and using these
as input for one-class classifiers. By this, we are able to detect
sub-structures in the target concept. Additionally, to increase
the diversity and robustness of our method weighted one-class
classifiers are used. We introduce a novel scheme for calculating
weights for training objects. Membership functions, obtained
from the fuzzy clustering, are used to initialize the weighted
classifiers. Based on the results of a number of computational
experiments we show that the proposed method outperforms
both the single one-class methods, as well as popular one-class
ensembles. Other advantages are the highly parallel structure
of the proposed solution, which facilitates parallel training and
execution stages, and the relatively small number of control
parameters.

I. INTRODUCTION

Nowadays we are faced with a plethora of new and chal-

lenging problems such as an atypical class distribution, non-

stationary environments, or massive data. Such cases very

often cannot be handled efficiently by canonical and well-

known classifiers. Therefore, there is a need for introducing

novel methods with such arising difficulties and improve the

quality of real-life decision support systems.

One of these newly introduced methodologies is known as

one-class classification (OCC) [1]. It is based on the principle,

that during the training stage only objects coming from a

single class are at our disposal. These are called the target

concept or target class, and are denoted by ωT . OCC aims at

calculating a decision boundary that encloses all available data

objects, thereby describing the given concept [2]. During the

exploitation step, new objects, unknown during training, may

appear. These may originate from one or more distributions

and represent data that do not belong to the target concept.

Such objects, denoted by ωO, are called outliers.

For a single OCC classifier it may be fairly difficult or even

impossible to find a good decision boundary owing to limited

training data, high feature space dimensionality, and/or the

properties of the particular classifier. To avoid a too complex

model and overfitting of the training target data, a simpler

model with a lower number of features or one that has been

trained with smaller chunks of data, can be created. Although

the complexity of such a model is reduced, the quality thereof

also declines significantly. However, it has been shown that

a group of individual OCC models can help alleviate the

aforementioned problems.

Here one may use an approach known as multiple classifier

systems (MCSs). MCSs are based on the idea of combining

a number of learners into one compound system, which takes

advantages of the competence areas of all its members. Each

classifier may display individual learning properties, and so

have different competence areas [3]. When carefully com-

bined, the quality of the combined decision can outperform

any of the individual predictors. However, several important

issues, such as selecting the individual classifiers, as well as

choosing a fusion method to establish a group decision, must

be considered when designing an MCS. Classifiers used to

create the ensemble in an ideal situation should be highly

accurate and complement each other (i.e., the ensemble should

display high diversity). Adding classifiers that are not diverse

with respect to those already in the pool will not improve the

accuracy of the compound classifier, but will only increase the

overall computational cost [4]. On the other hand, building an

MCS with highly diverse but poor quality classifiers will result

in a weak committee [5].

MCSs are a promising yet still unexplored, direction for

tackling OCC problems. Most of the works done in this field

deals with practical applications of OCC ensembles. Much still

needs to be done to gain insight into the theoretical background

to this problem, as well as to draw conclusions on how to build

efficient OCC ensembles regardless of the intended application

[6].

We propose a novel approach for forming one-class classi-

fier committees, based on data clustering in the feature space.

Partitioning approach had performed very good in our previous

work, where it was used for decomposing multi-class datasets

[7]. OCC models are built based on each of the clusters. In

this way we ensure that the pool of predictors is highly diverse

and mutually complementary (owing to training on different

inputs, i.e., clusters of training objects). This can be seen as

an extension of the popular family of ensembles derived from

the idea of clustering and selection proposed by Kuncheva

[8]. So far, two other research teams have worked on this
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topic, proposing very simple hybrid methods for combining

clustering and OCC [9]. In our approach we further extend

this concept by utilizing weighted one-class classifiers and

proposing a new scheme for calculating their weights.

The contributions of this work are as follows:

• We propose building an ensemble of one-class classifiers

based on clustering of the target class. This ensures initial

diversity among the classifiers in the pool (as they are

based on different inputs) and the correct handling of

possible issues embedded in the nature of data, such as

a rare distribution or chunks of objects.

• We apply weighted one-class classifiers, as they are more

robust to complex data structures than their canonical

counterparts. However, calculating the weights assigned

to each object is a difficult and computationally costly

task. Therefore, methods for improving the weighting

step can significantly boost the quality of these methods.

• We introduce a novel weighting scheme, based on the

output of the feature space partitioning phase. By utilizing

fuzzy clustering, one obtain membership values for each

object in the given cluster. Our proposed ensemble uses

these values to initialize the weights in classifier trained

on the given chunk of data. Therefore, weights reflect

the importance of the object in the cluster and are

calculated beforehand, reducing the complexity of the

training phase. We show, that the proposed weighting

scheme returns highly satisfactory performance.

Our ensemble is easy to use in many practical applications

where it is difficult or even impossible to obtain counter-

examples (e.g., machine fault diagnosis), or where, owing to

a complex data distribution, the class decomposition approach

can lead to a significant improvement in recognition quality

over the well known multi-class approaches (e.g., imbalanced

classification).

II. ONE-CLASS CLASSIFICATION

OCC uses training objects coming from a single class to

create a classifier. It aims at dichotomizing between the given

data and new, unseen examples that cannot be considered as

target objects. Hence, OCC is also known as learning in the

absence of counter-examples. Although OCC is quite similar

to binary classification, the primary difference lies in how the

one-class classifier is trained. In standard dichotomy problems

it is expected that objects from the other classes tend to come

from one direction. Here the available class must be separated

from all the possible outliers, which leads to a situation in

which a decision boundary must be estimated in all directions

in the feature space around the target class.

OCC is a solution to many real-life problems where there

are abundant data for a single class, but it is difficult or even

impossible to obtain data for other objects. This is often the

case in problems such as intrusion detection [10] or machine

fault diagnosis.

Several methods dedicated to solving OCC problems have

recently been introduced. Based on the literature, three main

approaches can be distinguished:

• Density estimation of a target class [11].

• Reconstruction methods, based on clustering algorithms

[12].

• Methods, that estimate only the close boundary for the

given data, assuming that such a boundary will suffi-

ciently describe the target class [13].

There are some works that discuss the problem of building

OCC committees [14] and identifies areas of their practical

applications [10]. Combined classifiers are a promising di-

rection for OCC [6]. Their main advantage lies in training

less complex individual classifiers, thereby reducing the risk

of model overfitting, which is one of the major problems

in OCC. Additionally, they can be easily implemented in a

distributed environment; most of the OCC classifiers (espe-

cially the boundary-based ones) requires a high computational

processing time, and therefore, relying on several weak models

that run independently may significantly reduce the overall

training time of the recognition system.

A. Weighted One-Class Support Vector Machine

One-Class Support Vector Machine (OCSVM) [15] is a

boundary-based method for OCC. It estimates the decision

surface in a form of a hypersphere enclosing all the objects

from ωT . During the exploitation phase a decision made

about the new object is based upon checking whether it falls

inside the hypersphere. If so, the new object is labeled as one

belonging to ωT . Otherwise it belongs to ωO.

The center a and a radius R are the two parameters that

are sufficient for describing such a decision hypersphere. To

have a low acceptance of the possible outliers the volume of

this d-dimensional hypersphere, which is proportional to Rd,

should be minimized in such a way that tightly encompasses

all available objects from ωT . The minimization of Rd implies

minimization with respect to R2. Following this the minimiza-

tion functional may be formulated as follows:

Θ(a,R) = R2, (1)

with respect to the constraint:

∀1≤i≤N : ‖xi − a‖2 ≤ R2, (2)

where xi are objects from ωT , and, N stands for the

quantity of training objects. Additionally to allow the fact that

there may have been some outliers in the training set and to

increase the robustness of the trained classifier some objects

with distance to a greater than R are allowed in the training

set, but associated with an additional penalty factor. This is

done identically as in a standard SVM by the introduction of

slack variables ξi.
This concept can be further extended to a Weighted One-

Class Support Vector Machine (WOCSVM) [16] by the in-

troduction of weights wi that allows for an association of

an importance measure to each of the training objects. This

forces slack variables ξi, to be additionally controlled by wi.

If with object xi there is associated a small weight wi then the

corresponding slack variable ξi indicates a small penalty. In
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effect, the corresponding slack variable will be larger, allowing

xi to lie further from the center a of the hypersphere. This

reduces an impact of xi on the shape of a decision boundary

of WOCSVM.

By using the above mentioned ideas we can modify the

minimization functional:

Θ(a,R) = R2 +O
N∑
i=1

wiξi, (3)

with the modified constraints that almost all objects are

within the hypersphere:

∀1≤i≤N : ‖xi − a‖2 ≤ R2 + ξi, (4)

where ξi ≥ 0, 0 ≤ wi ≤ 1. Here O stands for a parameter

that controls the optimization process - the larger O, the less

outliers are allowed with the increase of the volume of the

hypersphere.

The differences between OCSVM and WOCSVM are de-

picted in Figure 1.

Fig. 1. Decision boundaries for a toy problem produced by OCSVM and
WOCSVM (with weight values for each point from the target class).

III. PROPOSED ONE-CLASS CLASSIFIER ENSEMBLE

In this paper we propose a new architecture for creating

ensembles of one-class classifiers based on the clustering of

a feature space into smaller partitions - a novel committee

named one-class clustering-based ensemble (OCClustE). The

idea behind OCClustE originates in our previous works where

we showed that increasing the number of one-class classifiers

assigned to the target class can often lead to a significant

improvement in classification accuracy [17].

However, in such an approach we face the problem on how

to create a pool of base one-class classifiers, that are at the

same time individually accurate and mutually diverse.

Our method uses a clustering algorithm to partition the

feature space into atomic subsets. In the next step each of

these clusters is used to train a one-class classifier. This leads

to the formation of a pool of K classifiers assigned to the

target class, as follows:

Π = {Ψ(1),Ψ(2), ...,Ψ(K)}. (5)

This allows us to easily create a pool of several one-

class learners, dedicated to the target class. It assures the

initial diversity (as a result of using different inputs in their

training) and complementarity (as classifiers together cover all

the decision space), which leads to better performance of the

ensemble.

For the clustering step, OCClustE uses kernel fuzzy c-
means, which is a modification of the fuzzy c-means algorithm

that operates in an artificial feature space created by a kernel

function [18].

An overview of the proposed OCClustE method is illus-

trated in Fig. 2.

Fig. 2. Overview of the OCClustE.

Main differences between the single-model OCC and the

proposed OCClustE are presented in Figure 3.

Fig. 3. Differences between the outputs of a standard approach and the
proposed one for a one-class toy problem. (Left) Target concept enclosed by
a single model approach. (Right) Target concept after OCClustE classification
with four clusters.

To further boost the quality of OCClustE, we propose to

use weighted one-class support vector machine (WOCSVM)

as the base learner. It has been shown, that weighted one-

class classifiers can outperform the canonical ones, due to

manipulating the influence degree that each object has on

the shape of the decision boundary. Additionally, weighted

methods are insensitive to internal outliers, that may be present

in the target class (as it may contain irrelevant, noisy objects).

By assigning them a low weight, they have minimal impact

on the process of shaping the decision boundary.

The crucial element in using WOCSVM is the process of

establishing weights, which is heuristic and time-consuming

[16]. We introduce a novel approach for establishing the degree

of importance of objects, based on the output of clustering

algorithm. We use fuzzy clustering algorithm, that returns the

membership functions for each object in the given cluster. We

use these membership values as weights for WOCSVM. This
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way, the new weights reflect the degree of importance of a

given object in a cluster and are pre-calculated, therefore re-

ducing the computational time needed for training WOCSVM.

Number of clusters on the target class reflects the number of

classifiers delegated for handling the given one-class problem.

One may see, that this has an crucial impact on the per-

formance of the proposed method. For automatic assessment

of the number of clusters we propose to use the entropy of

the membership values, which depends on the data and the

number of clusters C, as it is a good indicator of the quality

of clustering [19]. This is computed as:

E(C) = −
C∑

c=1

N∑
i=1

wcilogwci, (6)

where N denotes the number of data points and wci is the

weight assigned to a given cluster. If the number of clusters

C is not known in advance, clustering can be performed for

a varying numbers of clusters, and the number with minimal

entropy can be chosen to build the ensemble [20]. Such a

strategy usually provides a useful indication of the number

of means, which is data dependent. We acknowledge that the

entropy criterion is not a perfect solution for estimating the

number of clusters. Yet, at the same time, it is less time-

consuming than manually checking the correlation between

the number of clusters and final accuracy. As our aim is

to create an ensemble classifier that will require minimal

intervention with regard to parameter settings from the end-

user, the entropy criterion seems an attractive solution.

Finally, we need to combine the individual outputs of base

classifiers at our disposal. One-class boundary methods (as

used here WOCSVM) are based on computing the distance

between the object x and the decision boundary that encloses

the target class ωT . To apply fusion methods we require the

support function of object x for a given class.

We propose to use the following heuristic solution:

F̂ (x, ωT ) =
1

c1
exp(−d(x|ωT )/c2), (7)

which models a Gaussian distribution around the classifier,

where d(x|ωT ) is an Euclidean distance metric between the

considered object and a decision boundary, c1 is the normal-

ization constant and c2 is the scale parameter. Parameters c1
and c2 should be fitted to the target class distribution.

There are several propositions on how to fuse the outputs

of individual OCC models after such a mapping [21]. Let us

assume that there are K OCC classifiers in the pool. In this

paper, we use the mean of the estimated support functions

which is expressed by:

ymp(x) =
1

K

∑
k

(Fk(x, ωT )). (8)

This fusion method assumes that the outlier object distribution

is independent of x and thus uniform in the area around the

target concept.

In summary, the approach proposed in this paper leads

to several improvements compared with the standard OCC

models:

• Boundary-based approaches (such as WOCSVM) were

shown to display better generalization abilities than

clustering-based (reconstruction) OCC [22], but are

highly prone to atypical and complex data distributions.

Therefore, a hybrid method utilizing both approaches

combines the advantages of each while reducing their

drawbacks.

• As each classifier is trained only on a reduced chunk

of the data, its computational complexity is reduced in

comparison to a single model approach. This reduces

the probability of overtraining the one-class learner. Ad-

ditionally, a number of individual classifiers can easily

be applied in a distributed environment, leading to a

significant decrease in execution time.

• Using chunks of data as the classifier input reduces the

influence of negative effect, known as the empty sphere;

that is, the area covered by the boundary in which no

objects from the training set are located.

• A boundary classifier trained on a more compact data

partition usually has a lower number of support vectors.

• By combining the fuzzy clustering with weighting

scheme, we are able to obtain good estimation of weights

assigned to training objects in a reduced time.

IV. EXPERIMENTAL INVESTIGATIONS

The aims of this experiment was to evaluate the effective-

ness of the proposed ensemble and compare it to popular

single-model and committee approaches for one-class classi-

fication.

A. Datasets

As there are no benchmarks dedicated to one-class classi-

fication, we have chosen 10 binary datasets - 9 from the UCI

Repository and an additional one, originating from chemoin-

formatics domain and describing the process of discovering

pharmaceutically useful isoforms of CYP 2C19 molecule. The

data set is available for download at [23].

The objects from the minor class were used as the target

concept, while objects from the major class as outliers.

Details of the chosen data sets are given in Table I.

B. Set-up

For the experiment a Weighted One-Class Support Vector

Machine with a RBF kernel is used as a base classifier.

The pool of classifiers were homogeneous, i.e. consisted of

classifiers of the same type.

In order to present a detailed comparison among a group of

machine learning algorithms, one must use statistical tests to

prove, that the reported differences among classifiers are sig-

nificant. We use both pairwise and multiple comparison tests.

Pairwise tests give as an outlook on the specific performance

of methods for a given data set, while multiple comparison

allows us to gain a global perspective on the performance
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TABLE I
DETAILS OF DATASETS USED IN THE EXPERIMENTAL INVESTIGATION.

NUMBERS IN PARENTHESES INDICATES THE NUMBER OF OBJECTS IN THE

MINOR CLASS IN CASE OF BINARY PROBLEMS.

No. Name Objects Features Classes
1 Breast-cancer 286 (85) 9 2
2 Breast-Wisconsin 699 (241) 9 2
3 Colic 368 (191) 22 2
4 Diabetes 768 (268) 8 2
5 Heart-statlog 270 (120) 13 2
6 Hepatitis 155 (32) 19 2
7 Ionosphere 351(124) 34 2
8 Sonar 208 (97) 60 2
9 Voting records 435 (168) 16 2

10 CYP2C19 isoform 837 (181) 242 2

of the algorithms over all benchmarks. With this, we get a

full statistical information about the quality of the examined

classifiers.

• For a pairwise comparison, we use a 5x2 combined CV F-

test. It repeats five-time two fold cross-validation so that

in each of the folds the size of the training and testing

sets is equal. This test is conducted by comparison of all

versus all.

• For assessing the ranks of classifiers over all examined

benchmarks, we use a Friedman ranking test. It checks,

if the assigned ranks are significantly different from

assigning to each classifier an average rank.

• We use the Shaffer post-hoc test to find out which

of the tested methods are distinctive among an n x

n comparison. The post-hoc procedure is based on a

specific value of the significance level α. Additionally, the

obtained p-values should be examined in order to check

how different given two algorithms are.

We fix the significance level α = 0.05 for all comparisons.

To put the obtained results into a context, we compare

our method with a single WOCSVM and its bagged and

boosted version (each consisting of 10 classifiers in the pool).

Additionally, we present the results for a one-class clustering

ensemble that uses standard OCSVM as a base learner, to

show that using weighted classifiers boost the quality of the

proposed OCClustE.

C. Results

The results are presented in Table II. SINGLE stands

for a single WOCSVM model, BAGG stands for a bagged

WOCSVM, BOOST for a boosted WOCSVM, CLUST
for simple clustering-based ensemble without the weighting

module and OCCLUSTE for the proposed method. Small

numbers under each method stands for the indexes of models

from which the considered one is statistically better. The last

row presents ranks according to the Friedman test.

Results of the Shaffer post-hoc test between the OCClustE

and reference methods are depicted in Table III

D. Results Discussion

For 7 out of 10 cases the proposed OCClustE outperforms

in a statistically significant way both single WOCSVM and

TABLE II
RESULTS OF THE EXPERIMENTAL RESULTS WITH THE RESPECT TO THE

ACCURACY [%] AND STATISTICAL SIGNIFICANCE. SMALL NUMBERS

UNDER EACH METHOD STANDS FOR THE INDEXES OF MODELS FROM

WHICH THE CONSIDERED ONE IS STATISTICALLY BETTER.

No. SINGLE1 BAGG2 BOOST3 CLUST4 OCCLUSTE5

1. 57.86 58.56 60.94 59.43 63.79
− − 1,2 1,2 1,2,3,4

2. 87.21 89.52 89.87 89.23 91.45
− 1 1 1 1,2,3,4

3. 69.90 75.37 73.95 76.65 78.03
− 1,3 1 1,3 1,2,3,4

4. 58.45 59.21 59.12 60.46 62.05
− − − 1,2,3 1,2,3,4

5. 83.12 86.90 86.73 85.72 87.11
− 1,4 1,4 1 1,4

6. 58.23 58.02 59.12 58.41 60.46
−2 − − − 1,2,3,4

7. 73.52 79.41 81.04 77.21 80.63
− 1,4 1,2,4 1 1,2,4

8. 85.23 90.01 89.34 87.53 92.12
− 1,4 1,4 1 1,2,3,4

9. 87.45 89.32 89.71 88.30 89.64
− 1,4 1,4 1 1,4

10. 73.90 76.04 77.56 75.28 80.09
− 1,4 1,2,4 1 1,2,3,4

Rank 4.78 3.35 2.39 3.02 1.46

TABLE III
SHAFFER TEST FOR COMPARISON BETWEEN THE OCCLUSTE AND

REFERENCE METHODS. SYMBOL ’=’ STANDS FOR CLASSIFIERS WITHOUT

SIGNIFICANT DIFFERENCES, ’+’ FOR SITUATION IN WHICH THE METHOD

ON THE LEFT IS SUPERIOR AND ’-’ VICE VERSA.

hypothesis p-value
OCClustE vs SINGLE + (0.0032)
OCClustE vs BAGG + (0.0140)
OCClustE vs BOOST + (0.0298)
OCClustE vs CLUST + (0.0127)

remaining one-class ensemble methods. In the remaining three

cases it returns statistically similar results to the ensemble

reference methods. What is of high importance is the fact,

that the proposed method, for tested cases, is never inferior to

any of the remaining one-class classifiers. Shaffer test shows,

that OCClustE is statistically superior to all other algorithms,

when taking int account its performance over multiple data

sets.

OCClustE always outperforms a single WOCSVM. This is

due to the fact, that single one-class classifier often cannot

find a good description boundary. Either the boundary volume

is too big (due to the complex distribution), which leads to

a high outlier acceptance rate; or it is too fitted to the data,

which results in poor generalization. Using a larger number

of less complex classifiers seems to reduce this problem and

generates a robust classifier with good generalization abilities.

OCClustE often shows better performance than bagging and

boosting, popular ensemble methods in one-class classifica-

tion. This is due to the fact, that both bagging and boosting

were originally introduced for multi-class problems and are

not fitted to the specific nature of OCC. Bagging uses sub-

groups of objects, but do not assure that they are atomic.

This leads to forming classifiers with too big volume of the
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decision boundary. Boosting reduces the error rate on a single

class, which often may lead to overfitting to the training data,

especially if the number of training objects is small. OCClustE

can prevent both of these situations from happening by using

effective kernel clustering and weighted classification.

In comparison with its simpler version (without using

weighted classifiers) OCClustE always scores superior results.

This shows the importance of weighting the influence of

training objects in OCC. It also proves, that our proposed

method for calculating weights based on the cluster member-

ship functions, is an effective way for producing accurate and

diverse classifiers.

Use of the entropy criterion allowed for the automatic

determination of the most promising number of clusters for an

ensemble. The experimental results confirm that this criterion

coped well with the proposed classification architecture, elim-

inating the time-consuming manual tuning phase. Of course,

the entropy criterion is merely a suggestion for the number

of clusters and better results may be achieved after manual

experimentation with the settings; this was, however, not our

goal. We aimed to create an ensemble classifier that would

be easy for the end-user to use. To this end, automatic

cluster selection by means of the entropy criterion worked

satisfactorily. In future work, we would like to explore the

possibility of using clustering methods that do not require a

priori knowledge about the number of groups in the data, e.g.,

DBSCAN.

V. CONCLUSION

This paper presented a novel method for forming a one-class

classifier ensemble based on feature space partitioning. The

main advantage of the proposed method is that the combined

classifiers trained on the basis of clusters allow us to exploit

individual classifier strengths and reduce their complexity.

Additionally, we proposed a novel method for establishing

weights for WOCSVMs, used as base classifiers. As a result,

our committee usually outperform traditional methods for one-

class classification and popular ensemble approaches. This

observation was confirmed by the computational experiments

carried out using a wide range of benchmark data sets. Our

approach leads to a decrease in the overall training time by

distributing the computations for each of the clusters, which

could even be executed on different processors.
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