
1 INTRODUCTION 
 

The newest information technologies lead to gen-

eration and processing of enormous amounts of data. 

The associated problems of data processing and in-

formation retrieval require not only the newest com-

puter technologies but also the most efficient new 

algorithms for data representation and recognition of 

patterns [Duda_2001][Tadeusiewicz_2010]. In this 

paper we address the problem of pattern recognition 

in multi-dimensional visual signals based on the best 

rank-(R1, R2, …, RK) tensor approximation. Its appli-

cation to pattern recognition in medical images, as 

well as details of software implementation, is also 

discussed. 

One of the well known methods of data dimen-

sionality reduction and subspace pattern recognition 

rely on the Principal Component Analysis (PCA) 

[Duda_2001]. However, in the case of multi-

dimensional data, such as in video, hyper-spectral 

imaging, or ensemble of patterns, qualitatively better 

results can be obtained with the tensor based ap-

proach, as discussed in literature [Chen_2009] 

[Lathauwer_2000][Muti_2007][Savas_2007][Wang

_2004][Wang_2008]. In the tensor approach, rather 

than vectorizing multi-dimensional data, data is set 

into a multi-dimensional cube of values in which 

each different feature of data corresponds to a sepa-

rate dimension of the representing tensor. However, 

huge data repositories frequently are characteristic of 

redundant information. In this respect, the real bene-

fit of the tensor approach is that the dominating di-

mensions can be extracted which convey the most 

essential information content. For this purpose the 

three fundamental tensor decomposition methods 

can be named:  

 The Higher-Order Singular Value Decomposi-

tion (HOSVD) [Lathauwer_1997].  

 The best rank-1 [Lathauwer_2000] 

[Wang_2004]. 

 The best rank-(R1, R2, …, RK) approximations 

[Lathauwer_2000][Kolda_2008][Wang_2008].  
HOSVD can be used to build the orthogonal 

space for pattern recognition [Savas_2007]. HOSVD 
with its variants is discussed in [Cyganek_2013]. Its 
version called truncated HOSVD, results in exces-
sive errors and therefore can be treated only as a 
coarse approximation or it can serve as an initializa-
tion method for the best rank decompositions. In this 
respect improved results can be obtained with the 
best rank-1 decomposition [Wang_2004]. However, 
as was presented by Wang and Ahuja, the rank-(R1, 
R2, …, RK) approximation can lead to the superior 
results in respect to dimensionality reduction, recon-
struction error, as well as to pattern recognition in 
the multi-dimensional signals [Wang_2008].  

In this paper a method of pattern recognition in 
digital images is discussed. It is based on the best 
rank-(R1, R2, …, RK) decomposition of the prototype 
pattern tensors which are obtained from the patterns 
defining a class. In the case of a single prototype, a 
prototype pattern tensor is proposed to be construct-
ed from the geometrically deformed versions of the 
available pattern. Object recognition is accomplished 
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by comparing distances of the features obtained by 
projecting the test patterns into the best rank tensor 
subspaces of different pattern classes. The method 
was tested on the number of image groups and 
showed high accuracy and fast response time. In this 
paper we focus on object recognition in radiograph 
images. However, the tensor processing methods are 
computationally very demanding. In this paper we 
address also this problem. An object-oriented soft-
ware framework which allows efficient tensor repre-
sentation and decompositions is presented and dis-
cussed. This frameworks is based on our previous 
realizations [Cyganek_2013][Cyganek_2010].  

2 PATTERN RECOGNITION WITH THE BEST 
RANK TENSOR DECOMPOSITION 

2.1 Pattern representation with tensors 

In this section the basics of the tensor algebra are 

presented. However, a more in-depth treatment can 

be found in other publications such as 

[Lathauwer_1997][Cichocki_2009][Kolda_2008] 

[Cyganek_2013].  

 First definition concerns tensor representation in 

the form of vectors and matrices. The j-mode vector 

(a fiber) of the K-th order  tensor  
 1 2 KN N N  is a 

vector obtained from its elements by varying only 

one index nj while keeping all other indices fixed. If 

from the tensor   a following matrix  

 
  


 1 2 1 1j j j KN N N N N N

j
T  (1) 

is formed, then columns of T(j) are j-mode vectors of 

. Also, T(j) is a matrix representation of the tensor 

. The j-th index becomes a row index of T(j), while 

its column index is a product of all other K-1 indices 

of . However, a place in memory where an element 

of the tensor is stored depends on an assumed per-

mutation order of these K-1 indices. From the all 

possible (K-1)! order schemes only two are com-

monly used – the so called forward and backward 

cycling modes [Lathauwer_1997][Cichocki_2008]. 

For example, for a 2-mode flattening of a 4D tensor 

(K=4), we obtain the following orderings of the other 

indices 3-4-1, and 1-4-3, for the forward and back-

ward cycle modes, respectively [Cyganek_2013]. 

 The second important concept is a p-mode 

product of a tensor 
 

 1 2 KN N N
 and a ma-

trix


 pQ N
M . A result of this operation is the tensor 

 
    

 1 2 1 1p p KN N N Q N N
 whose elements are obtained 

as follows  

 
 

 

 


  



1 2 1 1
1 2 1 1

1 2 1 1
1

.

p p K
p p K

p

p p p K p

p

n n n qn n p n n n qn n

N

n n n n n n qn
n

t m

M

 (2) 

It can be shown that the p-mode product can be 

equivalently expressed in terms of the flattened ma-

trices T(p) and S(p). If the following is fulfilled 

 
p
M , (3) 

then it holds that 

   


p p
S MT . (4) 

2.2 Best rank tensor decomposition 

In the presented work we exploit the best rank-(R1, 

R2, …, RK) decomposition of pattern tensors. This 

decomposition can be defined as follows 

[Lathauwer_2000][Cyganek_2013]:  

Given a tensor   
 1 2 KN N N  compute an approxi-

mating tensor  having  1 1
rank R , 

 2 2
rank R , …,   K K

rank R , which is as close 

as possible to the input tensor (see Figure 1).  

 The aforementioned tensor decomposition can be 

stated as minimization of the following least-squares 

cost function  

   
2

F
E ,  (5) 

with the Frobenius norm. It can be shown that the 

approximated tensor  conveys as much of the “en-

ergy”, in the sense of the squared entries of a tensor, 

as the original tensor , given the rank constraints. 

A value of E is called the reconstruction error. 

It can be also easily observed that the assumed 

rank conditions mean that the approximation tensor 

 can be decomposed as follows 

   
1 1 2 2

,
K K

S S S  (6) 

where 
p
 denotes a p-mode product of a tensor with 

a matrix [Lathauwer_2000][Cyganek_2013].  

 

Figure 1: Visualization of the best rank-(R1, R2, R3) decomposi-

tion of a 3D tensor. 



In the above, each of the matrices 
 1 1

1

N RS , 


 2 2

2

N RS , …, and 
 K KN R

K
S  has orthonormal col-

umns (each time, number of columns for Si is given 

by Ri). The core tensor   
 1 2 KR R R  has dimensions 

R1, R2, …, RK. It can be computed from the original 

tensor as follows 

   
1 1 2 2

T T T
K K

S S S . (7) 

Summarizing, to find the best rank-(R1, R2, …, 

RK) approximation of  it is sufficient to determine 

only a set of Si in (6), and then  is computed from 

equation (7).  

Further analysis is constrained exclusively to 3D 

tensors. Figure 1 shows visualization of the best 

rank-(R1, R2, R3) decomposition of the 3D tensors. It 

can be easily observed that this decomposition can 

lead to a significant data reduction which can be as-

sessed as follows: 

  
 1 2 3 1 1 2 2 3 3

1 2 3

RR R N R N R N R
C

N N N
. (8) 

By proper choice of the ranks R1, R2, and R3 a 
trade off can be achieved between the compression 
ratio C in (8) with respect to the approximation error 
expressed in equation (5). This influences also pat-
tern recognition accuracy, as will be discussed. 

2.3 Pattern classification with the best rank tensor 
decomposition 

A best rank space described in the previous sec-

tion can be used to generate specific features of an 

image X which can be then used for pattern recogni-

tion [Wang_2008]. The features are obtained by pro-

jecting the image X of dimensions N1N2 into the 

space spanned by the two matrices S1 and S2 in ac-

cordance with (7). However, at first X needs to be 

represented in an equivalent tensor form  which is 

of dimensions N1N21. Then, the feature tensor  

of dimensions R1R21 is obtained, as follows 

  
1 1 2 2

T T
X

S S . (9) 

Tensor contains training patterns. Depending 

on the problem and available training patterns (im-

ages), two modes of operation are possible. These 

are as follows: 

1. A set of prototype patterns Pi of the same object 

is available. These are used to form the input 

tensor . 

2. If only one prototype P is available, its different 

appearances Pi can be generated by geometrical 

warping of the available pattern. This process is 

visualized in Figure 2. 

 

Figure 2: Visualization of the process of the 3D pattern tensor 

generation by geometrical warping of the prototype pattern. 

 

In either of the above cases, the patterns form a 

3D tensor which after the best-rank decomposition 

spans the space representing that class.  
The next step consists of computation of the ref-

erence feature out of the set of prototype patterns Pi  
from the tensor . This is computed as follows 

  
1 1 2 2

T T
i i

S S , (10) 

where 
i
 denotes a tensor representation of the pat-

tern Pi . However, in our proposition the pattern Pi is 
chosen from the set of available patterns which 
shows the optimal Frobenius norm, that is 

  
1 1 2 2

argmin
i

T T
i F

i
P

S S . (11) 

The above process of building the prototype pat-
tern tensor , its decomposition and computation of 
the reference features is repeated for each of the 
available classes c. Since the process is independent, 
this training stage can be easily parallelized.  

Finally, the classifier returns a class c for which 
the following is minimized 

 
 argmin

c

i
F

c
X

. (12) 

As alluded to previously, the training parameters 

are the chosen rank values of R1, R2, and R3 in (6). 

These are usually determined experimentally. 

3 COMPUTATION OF THE BEST RANK 
TENSOR DECOMPOSITION 

3.1 Alternating Least-Squares Method 

Computation of the best rank-(R1, R2, …, RK) 

decomposition of tensors, given by equations (6) and 

(7), can be obtained with help of the Alternating 

Least-Squares (ALS) method, as proposed by 

Lathauwer et al. [Lathauwer_2008]. In each step of 

this method only one of the matrices Sk is optimized, 

whereas other are kept fixed [Chen_2009]. The main 
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concept of this approach is to express the quadratic 

expression in the components of the unknown matrix 

Sk with orthogonal columns with other matrices kept 

fixed. That is, the following problem is solved 

      
2

1 1 2 2
max max

i i

T T T

i K KS S
S S S S . (13) 

Columns of Si can be obtained finding the or-
thonormal basis of the dominating subspace of the 
column space of the approximating matrix ˆ

i
S . As al-

ready mentioned, in each step only one matrix Si is 
computed, while other are kept fixed. Such proce-
dure - called the Higher-Order Orthogonal Iteration 
(HOOI) - is repeated until the stopping condition is 
fulfilled or a maximal number of iterations is 
reached [Lathauwer_2000][Cyganek_2013]. 

3.2 Software Framework 

The above HOOI procedure has been implemented 
in our software framework, details of which are de-
scribed in [Cyganek_2013]. The implementation uti-
lizes C++ classes with basic data types defined as 
template parameters. Thanks to this, the platform is 
highly flexible. For instance, the time and memory 
can be saved by using the fixed point representation 
of data instead of the floating point. In the presented 
experiments the 12.12 fixed point representation 
showed to be sufficient (each data is stored on 3 
bytes instead of 8, needed in the case of the floating 
point representation). 

The class hierarchy of our framework is shown in 
Figure 8. The Best_Rank_R_DecompFor is the main 
class for the best-rank tensor decomposition. How-
ever, it is derived from the TensorAlgebraFor class 
which implements all basic operations on tensors, 
such as the p-mode multiplications. Tensors, in turn, 
are represented by objects of the class 
TFlatTensorFor which conveys tensors in the flat-
tened form. The Best_Rank_R_DecompFor class is 
augmented with the S_Matrix_Initializer hierarchy. 
Its main role is to define the way of initial setup of 
the values of the Si matrices for the HOOI process. 
In our case these were initialized with randomly 
generated values of uniform distribution. More de-
tails on implementation, as well as code details can 
be found in [DeRecLib_2013] [Cyganek_2013] 
[Cyganek_2009]. 

4 EXPERIMENTAL RESULTS 

 Experiments were carried out with many different 
groups of images, such as road signs pictograms, 
handwritten digits, as well as medical images. The 
latter are reported in this section.  

Figure 3 depicts a maxillary radiograph (left), as 
well as the implant pattern (right).  

  

Figure 3: An example of dental implant recognition in a maxil-

lary radiograph image. 

 
The task is to identify implants in the radiograph 

images. These are detected as highly contrast areas 
which, after registration, are fed to the tensor classi-
fier described in the previous sections. Since only 
one example of the prototype image is usually avail-
able, its different appearances are generated by im-
age warping, as described. In these experiments a 
pattern was rotated in the range of 12. Additional-
ly, a Gaussian noise was also added to increase ro-
bustness of the method. Examples of deformed ver-
sions of the prototype image of an implant are 
depicted in Figure 4. These form a 3D tensor which, 
after the best-rank decomposition, is used in recogni-
tion process as already discussed. 

    

Figure 4: Examples of deformed versions of the prototype im-

age of an implant. These are formed into a 3D tensor which af-

ter the best-rank approximation is used in object recognition. 

 
Figure 5 depicts a dental implant found in the 

maxillary radiograph image.  

 

Figure 5: An example of dental implant recognition in a maxil-

lary radiograph image. 

 
 Figure 6 shows a plot of the reconstruction error 
E, expressed in equation (5), in respect to the com-
pression ratio C, given in equation in (8). 



 

Figure 6: Reconstruction error E in respect to the compression 

ratio C of the input patterns. 

 
On the other hand, Figure 7 depicts a plot show-

ing measured accuracy of the pattern recognition, al-
so in respect to the compression ratio C. As visible, 
the accuracy easily reached a level of 95-96% for 
highly reduced ranks.  

 

Figure 7: Accuracy A of pattern recognition in respect to the 

compression ratio C of the input patterns. 

 

In the presented experiments, the input images are 
of size 5656 pixels. These are fed from the detec-
tion module which returns registered areas of high 
contrast [Cyganek_2010]. Thus, considering the as-
sumed geometrical deformations, size of the tensor 

 is 565613. Then many different rank settings 
were tested to measure their influence on accuracy. 
Lowering the rank, results in lower memory re-
quirements and faster computations. However, this 
comes at the cost of a higher reconstruction error E 
and lower accuracy A. In our experiments, the high 
level of accuracy was kept up to the rank values of 
R1=R2=10 and R3=6. This corresponds to the com-
pression ratio C=0.05 (95%). However, a real com-
pression ratio expressed in data storage reduction is 
lower since the decomposed matrices Si and the core 

tensor  require storage of their integer and frac-
tional parts. In our experiments, mostly to reduce 
memory requirements, the fixed-point representation 
was used with only 24 bits (3 bytes) per data. Never-
theless, for monochrome image recognition only S1 
and S2 are necessary. Similar high accuracy of 
recognition was observed for other groups of images. 
Thus, the method is highly effective. 

Recognition is very fast since it requires computa-
tion of only (9) and (12). The reference features are 
computed off-line in accordance with (10) and (11). 

5 CONCLUSIONS 

The paper presents a framework for pattern 
recognition in digital images with help of the best 
rank-(R1, R2, …, RK) decomposition of the prototype 
pattern tensors. The tensors are formed from the pat-
terns defining a class. In the case of a single proto-
type, a tensor is proposed to be constructed from its 
geometrically deformed versions. Thus, the de-
formed model is created. Pattern recognition is ac-
complished by testing a distance of the features ob-
tained by projection of the patterns into the best rank 
tensor subspace. The method was tested on the num-
ber of image groups and showed high accuracy and 
fast response time. In the presented experiments with 
implant recognition in maxillary radiograph images, 
the reached accuracy is 96%. The presented object-
oriented software framework allows computations in 
the fixed-point data format which greatly limits 
memory consumption. It was also shown that the 
training process can be easily parallelized. The soft-
ware for tensor decomposition is available from the 
webpage of the book by Cyganek [Cyganek_2013] 
[DeRecLib_2013]. 
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Figure 8. Hierarchy of the classes for tensor best-rank decompositions. The Best_Rank_R_DecompFor class performs the best rank-
(R1, R2, …, RK)  decomposition. The second hierarchy derived from the base S_Matrix_Initializer is responsible for different ini-

tialization schemes of the S matrices in the HOOI algorithm. 

 
 
 
 


