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Image recognition with deep neural networks
in presence of noise — Dealing with and
taking advantage of distortions

Michat Koziarski* and Bogustaw Cyganek

AGH University of Science and Technology, Krakéw, Poland

Abstract. Data classification in presence of noise can lead to much worse results than expected for pure patterns. In this paper
we investigate this problem in the case of deep convolutional neural networks in order to propose solutions that can mitigate
influence of noise. The main contributions presented in this paper are experimental examination of influence of different types
of noise on the convolutional neural network, proposition of a deep neural network operating as a denoiser, investigation of a
deep network training with noise contaminated patterns, and finally an analysis of noise addition during the training process of
a deep network as a form of regularization. Our main findings are construction of the deep network based denoising filter which
outperforms state-of-the-art solutions, as well as proposition of a practical method of deep neural network training with noisy
patterns for improvement against the noisy test patterns. All results are underpinned by experiments which show high efficacy

and possibly broad applications of the proposed solutions.
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1. Introduction

Research field of computer vision changed signif-
icantly over the recent years, mostly due to the ad-
vances made in the area of deep learning [28]. In this
time, deep neural networks were successfully used in
various practical applications [35,37,38]. In particu-
lar, convolutional neural networks were able to achieve
state-of-the-art results in the task of image recogni-
tion [20,45,47], in many cases surpassing the human
capabilities. Despite the significant amount of research
done in this area, most of the work revolves around
benchmark datasets, consisting of fairly high quality
images. In real-life applications, however, we are often
faced with low quality data, distorted by different types
of noise, affected by motion blur, difficult lighting and
weather conditions, low resolution, or a combination of
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these factors, to name a few. Furthermore, their nature
is not always known a priori. Thus, in many cases re-
silience to previously unmet types of distortions in nec-
essary. The impact of image quality on performance of
computer vision algorithms is often overlooked, which
may in turn lead to unrealistic expectations in practical
applications.

In this paper we try to answer the questions on
influence of the presence of various types of noise
on the image recognition task with deep neural net-
works. We further investigate how severely can it af-
fect the classification accuracy and what are the pos-
sible solutions to eventual drop in performance. Fi-
nally, we address the question if presence of noise
can be used to our advantage. To answer these ques-
tions we performed an extensive experimental study
on one of the landmark neural architectures of recent
years, VGG model [45] (proposed by and named af-
ter Oxford Visual Geometry Group). We measured the
impact of various noise conditions, with both known
and unknown distributions, on the classification perfor-
mance. We evaluated different possibilities of dealing
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with those distortions, namely augmenting the train-
ing data versus applying fully convolutional denoising
prior to classification. Finally, we evaluated the possi-
bility of artificially inducing noise as a form of regular-
ization, in hope of observing a boost in performance.
It was shown that small doses of synthetic distortions
applied during the training procedure are equivalent to
certain forms of regularization [5,34,54,55]. However,
this further complicates the relation between noise lev-
els present in images and performance in classification
task, especially considering the prevalence of regular-
ization techniques already used in combination with
the deep learning models.

The rest of the paper is organized as follows. In Sec-
tion 2 we briefly outline related works on deep learn-
ing and noisy pattern classification. In Section 3 we
describe mathematical noise models used throughout
the experimental evaluation. Section 4 presents a pos-
sibility of taking advantage of noise in image recog-
nition tasks with deep neural architectures. In this re-
spect two strategies are considered, namely data aug-
mentation (Section 4.1) as well as prior data denoising
(Section 4.2). In Section 4.3 the problem of noise as
a form of regularization of the deep neural network is
discussed. Experimental results are presented in Sec-
tion 5. Conclusions and further research directions are
outlined in Section 6.

2. Related work

In recent years deep learning [18] received signif-
icant amount of attention from research community,
leading to numerous breakthroughs in the area of pat-
tern classification. In context of image recognition
problem, advances made in crafting neural architec-
tures were of particular interest. Increasing depth of
the networks was for a long time one of the main
challenges associated with neural models. Deeper net-
works, while offering a promise of better discrimina-
tive properties, were always difficult to train. Various
novel approaches to increasing depth of networks were
presented over the recent years [20,28,45,47]. This to-
gether with larger and larger training datasets, pro-
cessed by powerful graphical processing units (GPU),
led to ever-increasing performance on benchmark data.

Most of the research on neural architectures was
conducted in rather sterile conditions, however. Images
in commonly used benchmarks usually contain rela-
tively small amounts of distortions. On the other hand,
in practical applications noise is often ubiquitous. As-

sessing the impact of distortions on image recogni-
tion accuracy was, therefore, an important research en-
deavor. The problem was relatively a new one, though.
Only several papers examined how image quality af-
fects convolutional neural networks [15,24,27,42,51].
In this respect, various forms of degradation were con-
sidered, including noise, blur, contrast and occlusion.
Research on the impact of noise is also not limited to
the image distortions: Massouh et al. [33] measured
experimentally how presence of label noise affects the
classification accuracy of deep neural networks. Some
work has also been done in combination with other
types of classification algorithms [13,16,57]. Based on
the existing research it is clear that even relatively
small levels of distortions can significantly influence
image recognition task. Presence of noise in test data
negatively affects the classification accuracy, often-
times making the correct prediction infeasible.

Various techniques of dealing with low-quality data
in image classification have been presented in the lit-
erature [48,49]. For instance, Tan and Triggs proposed
using special feature sets in presence of difficult light-
ing conditions. Even though described method was
not relying on neural classifiers, it could be specu-
lated that learning features with similar characteris-
tics is possible for convolutional networks [48]. On
the other hand, Peng et al. [36] examined the case of
low-resolution images. They employed transfer learn-
ing to reuse knowledge gained from high-resolution
data to low-resolution case. This approach is particu-
larly useful when low-quality images are difficult to
obtain. The possibility of incorporating image quality
measures into the classification procedure was also ex-
amined in several papers [3,29].

Another approach to deal with distortions relies on
applying restoration techniques prior to classification.
Possibility of using neural networks for image restora-
tion has been extensively studied, particularly in com-
bination with noise [4,22,26] and blur [7,10]. Saatci
and Tavsanoglu [41] applied convolutional networks
for image enhancement. Eigen et al. [17] considered
distortions with characteristic spatial structure, namely
rain and dirt. Finally, Chaudhury and Roy [9] evalu-
ated the possibility of using convolutional networks in
general restoration problem [25]. Most important con-
tributions of these papers are presented therein mod-
els of the neural networks, capable of highly effective
restoration of images. Overall, neural networks achieve
state-of-the-art results in image restoration task and
display high robustness to the type of distortion. An
interesting approach to learning to deblur with con-
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volutional neural networks is proposed by Schuler et
al. [43]. In their approach a learning-based deep struc-
ture for blind image deconvolution is employed. Their
system is trained end-to-end on a set of artificially gen-
erated blurred training examples. The system then au-
tomatically learns the deconvolution kernel. Neverthe-
less, despite very good results for smaller kernels, scal-
ability of the proposed method to larger ones is still an
issue. Moreover, the mentioned method by Schuler et
al. [43] is only for image deconvolution without con-
sidering further classification step.

Closely related to the idea of using restoration as a
form of preprocessing is the notion of autoencoder [30,
32,52,53]. Autoencoders can be used to extract useful
image representations in an unsupervised manner. De-
noising autoencoders achieve that as a result of recon-
structing artificially distorted images. Because of that,
produced feature representations should, in principle,
be robust to the used type of signal corruption.

Finally, the addition of noise to training images can,
in some cases, lead to increased generalization perfor-
mance. Bishop [5] proved that adding noise is equiv-
alent to another established regularization technique,
Tikhonov regularization. Further theoretical analysis
of noise injection was later conducted by Grandvalet
et al. [19], Rifai et al. [39], as well as by Simard et
al. [44]. Neelakantan et al. [34] evaluated the possibil-
ity of noise injection at the gradient level, which was
shown to not only reduce overfitting, but also to.lower
the training loss and reduce the impact of poor initial-
ization in very deep networks.

3. Noise models

Noise is unwanted signal that affects the original
one. It comes as an effect of some physical phenom-
ena encountered in the process of signal acquisition
and transmission [6,12]. Noise is usually modeled as
a random multiplicative or additive component added
to the pure signal. Assuming that s(x) denotes a pure
signal, the two aforementioned noise models are given
respectively as follows

S(z) =n+ s(x), (D
$(z) = ns(z), 2
where $ denotes an observable signal contaminated
with noise, whereas 7 is a random variable character-

ized by its probability density function specific to the
type of noise, as will be discussed. Noise introduces

distortions which make detection and analysis of a pure
signal component difficult. Noise has also an influence
on pattern classification, since deteriorating the train-
ing and test patterns with noise also affects their statis-
tical properties. Moreover, in practice it is usually dif-
ficult to tell a type of noise which affect the input sig-
nals. However, as we show in this paper, design of clas-
sifiers that account for this phenomena can mitigate its
deteriorating influence to a high degree.

3.1. Gaussian noise

Thermal effects in electronic devices, as well as pho-
ton counting and film grain phenomena lead to a type
of noise'which is represented with the additive noise
model Eq. (1) with random variable characteristic of
the Gaussian density function. Therefore, this type is
called the Gaussian noise. The associated Gaussian
density function is given as follows

1 o?
s )

xI) = (&
p(x) e

where p and o, in this case, are noise parameters. Usu-
ally y = 0 and noise is controlled only by the parame-
ter 0. Such setting with one control parameter o is also
assumed in our paper, as will be further discussed.

3.2. Quantization noise

Quantization noise arises as a result of discretiza-
tion of a continuous signal into its discrete counter-
part. Each signal sample has assigned a finite number
of bits, which inevitably superimposes a limit on the
lowest value that can be represented with no errors.
For a sufficient number of quantization levels, this type
of noise is modelled in accordance with Eq. (1) and n
being a random variable that fulfills the following in-
equality
! <n < +1 “)
where ¢ denotes a quantization level, and characterized
by the uniform probability distribution function p, as
follows

1
) for Tmax <z < Tmin
p(x) = ZTmax — Tmin
0, otherwise

)

where T, and T, are the maximum and minimum
values of the argument z. Thus, the random variable
n takes the values & 1¢ with a uniform distribution
Eqg. (5), where ¢ is a quantization parameter set in the
experiments, as will be discussed.
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3.3. Salt and pepper noise

Salt-and-pepper noise arises as a result of transmis-
sion bit errors or an analog-to-digital converter errors.
Its name comes from a characteristic white and black
spots in an image caused by a flip of usually the most
significant bit of a pixel representation. This type of
noise can be modelled by a combination of the multi-
plicative Eq. (2) and the additive Eq. (1) noise models,
respectively, as follows [8]

8(x) = (1 —n)s(x) +np, (6)

where s(x) and §(x) denote pure and noise contami-
nated signals, respectively, ) is a random variable with
the probability p = Pr(n = 1) and £ is a random vari-
able such that Pr (8 = smax) = Pr(8 = S$min) = 0.5.
The process of generating salt and pepper noise can be
interpreted as double drawing process. At first a ran-
dom variable 7 is generated with a probability p of the
event 7 = 1. Then, if » = 1 occurred, S is drawn and
checked if it is Syax OF Smin. Thus, p is the only control
parameter for this type of noise, as will be discussed
when presenting experimental results.

3.4. Randomly selected noise models

In a practical setting it is often difficult to determine
the type of the noise affecting the signal. Images can
be influenced by a multiple sources of noise simulta=
neously, each one with its own characteristic. Further-
more, severity of noise usually also varies between the
images. To capture this additional level of uncertainty
we introduce two extended noise models, as follows.

— In the noise of random intensity the parameter as-
sociated with the noise model, specifically: o for
the Gaussian noise, g for the quantization noise
and p for the salt & pepper noise, will be sampled
randomly from a uniform distribution.

— In the noise of random type the underlying noise
model will be selected randomly, with equal prob-
abilities being assigned to picking each model.

Finally, let us notice that in practice adding noise to
the images should be careful to avoid numerical over-
runs which would result in additional noise by them-
selves. This happens for instance when using the addi-
tive noise model Eq. (1) causes pixel value overflow,
i.e. the new value exceeds a number of bits assigned
to a single pixel. In such a case, instead of adding the
Gaussian noise Eq. (1) we would generate the salt and
pepper one. Further practical ways of noise addition to
images for experimentation can be looked up in [12].

4. Dealing with and taking advantage of noise in
image recognition task

Considering the possible influence of distortions on
image recognition task with deep neural networks, we
focus on two data-centric methods of dealing with
noise: training with noise-augmented patterns and us-
ing denoising as a form of preprocessing. In the re-
mainder of this section we discuss them both in more
detail, describing possible advantages and limitations
of using them. Finally, we discuss the possibility of us-
ing noise as a regularizer, especially in context of train-
ing with the data augmentation strategy.

4.1. Augmenting training data

Conceptually simplest approach to deal with noise
in pattern recognition task is augmenting the training
data with some form of an expected noise. It is particu-
larly convenient if large quantities of images with real
distortions are available at our disposal. In practical ap-
plications it might not be the case, however. Obtain-
ing labeled data might be also expensive, especially if
it has to be distorted in a particular way. Furthermore,
characteristics of noise present in images might change
over time, additionally increasing difficulty of captur-
ing distorted data.

If the properties of expected distortions can be de-
scribed mathematically, a suitable alternative might be
augmenting data with synthetic noise. This, however,
requires knowing the type of distortion that will af-
fect the images prior to training. Augmenting data with
too high amounts of noise or wrong type of distortion
might negatively influence further classification perfor-
mance. Impact of such augmentation is also affected
by the quality of used noise model.

4.2. Prior data denoising

An alternative approach to classify noisy patterns is
to train a classification model on undistorted data, and
afterwards to apply denoising as a form of preprocess-
ing. Recent advances in neural denoising might indi-
cate that such preprocessing will be sufficient to obtain
images of necessary quality. We consider solely the de-
noising with neural networks for several reasons. First
of all, it often outperforms other state-of-the-art meth-
ods [43]. While to do so, large quantities of data are
often necessary, this issue is less severe since the data
is required for classification either way. Even more so,
images used for training denoising model do not have
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to be labeled. In that context, training denoising model
can be viewed as an unsupervised pretraining of the fi-
nal classifier, possibly done using larger distribution of
unlabeled data.

Using neural architecture to denoise images has
some additional benefits. First of all, it enables the
possibility of finetuning of the final model. Secondly,
since denoising in principle produces images of suffi-
cient quality, transfer of further layers from preexisting
models, trained on undistorted data, is possible. This is
particularly beneficial due to the long training times of
classification architectures.

4.3. Using noise as a form of regularization

Regularization is a well studied problem in context
of neural networks. Applying small doses of noise dur-
ing training procedure is, in particular, known to im-
prove generalization properties of networks [5]. How-
ever, given the abundance of other regularization tech-
niques such as weight decay, dropout [54] and adaptive
regularization [55], it is questionable whether applying
yet another form of regularization is beneficial.

Furthermore, the possible negative influence of ap-
plying noise as a form of regularization is also rele-
vant. It is of particular importance when considering
the training data augmentation strategy. If the noise
conditions during model evaluation are not certain, we
might augment data with too severe distortions. In this
context, by measuring negative impact of too severe
regularization, we examine how model would behave
when augmentation noise is not chosen correctly.

5. Experimental study

To evaluate the impact of noise on image recognition
task we performed an extensive experimental study.
We tested VGG [45] architecture under various noise
conditions, both known and unknown. As already men-
tioned, we evaluated two approaches of dealing with
noise, augmenting training data and applying denois-
ing. Finally, we measured the impact of noise in train-
ing data, and its usefulness as an additional form of
regularization. In the remainder of this section we give
a detailed description of experimental set-up, present
achieved results and discuss their implications.

5.1. Experimental set-up

All of the conducted experiments were implemented
in Python programming language and were using Ten-

sorFlow [2] library for numeric computation. Produced
code, sufficient to easily repeat all the experiments,
was made publicly available.'

Several types of synthetic noise models, already dis-
cussed in Section 3, were used with various parame-
ters. Gaussian, quantization and salt & pepper noise
models with respective parameters taking values from
the set {0.05, 0.1, 0.2, 0.5} were used to evaluate the
case with known noise conditions. The choice of pa-
rameters for noise models was dictated by the need to
cover both less severe, as well as very severe noise con-
ditions. At the same time the number of considered pa-
rameters had to be limited due to the computational
constraints. On the other hand, to evaluate the situation
in which noise conditions are unknown, we used the
same noise models with parameters sampled uniformly
from range from 0.0 to 0.5 at every iteration. Finally,
we considered the case in which the noise model itself,
as well as distortion intensity, are chosen randomly.

5.2. Dataset

ImageNet [40] dataset, consisting of color images of
varied resolution, was used throughout all the stages of
the conducted experimental study. Specifically, subset
of ImageNet images provided during the Large Scale
Visual Recognition Challenge 2011 (ILSVRC2011)
was used [1]. It consisted of 1.2 million train images,
as well as 50 thousand labeled validation images, used
to evaluate the final performance of the models. Each
of the images was assigned a single label, depicting
one of the 1000 possible object categories. ImageNet
dataset, in particular its subset provided during the
ILSVRC2011, is publicly available at [1] and can be
used to reproduce the results achieved in this paper.

5.3. Network architectures

During the classification task, the VGG network ar-
chitecture presented by Simonyan et al. was used [45].
Since achieving the highest possible accuracy was not
the main goal of the presented experimental study, to
accelerate the computation speed the simplest of the
proposed models was employed. It consisted of 8 con-
volutional layers, with pooling applied after first, sec-
ond, fourth, sixth and eighth layer. The convolutional
layers were comprised of 3 x 3 filters, with the number
of filters increasing from 64 in the first layer, to 128 in

Lhttps://github.com/michalkoziarski/dnoise.
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Fig. 1. Graphical representation of combined denoising and classification architectures. Dimension of data after passing through specific layers

indicated at the top.

the second, 256 in the third and fourth, up to 512 in the
remaining layers. After the convolutional layers, net-
work consisted of 3 fully connected layers, with 4096
neurons per first two layers and 1000 neurons in the
last layer. Rectified linear unit (ReL.U) activation func-
tion was used after all the layers except the last, after
which softmax activation function was used.

For denoising we used extension of the previously
tested architecture, presented by Koziarski and Cy-
ganek [26] and based on the work by Jain and Se-
ung [22]. It consisted of 7 convolutional layers. per
color channel. First 6 layers were comprised of 48 5 x
5 filters each, followed by the hyperbolic tangent acti-
vation function. The final layer consisted of a single 5
x 5 filter, introduced to preserve the original shape of
images after passing through the network.

Graphical representation of our complete neural ar-
chitecture, consisting of both denoising and classifica-
tion networks, is presented in Fig. 1.

In the both cases of classification and denoising net-
works, the choice of the model was dictated by the
availability of the previous experimental studies ([45]
in the case of classification, and [26] for denoising),
confirming the validity of choice of the architecture.
It allowed us to limit the tests of various model varia-
tions. Specifically, no further tests of different variants
of classification network were conducted. In the case
of the denoising model, training separate network for
each color channel turned out to be crucial to achieve
a good performance.

In the case of classification model, as far as the
resilience to the noise is considered, it is not clear
whether the trends observed for VGG architecture will

hold for different models. Having said that, results pre-
sented in this paper show similar trends to our previ-
ous work [26,27], in which impact of noise on a dif-
ferent neural architectures is measured on STL-10 [11]
and GTSRB [21] datasets. While it may suggest that
observed trends are more general, both across datasets
and neural models, further evaluation would be re-
quired to confirm this hypothesis. In this paper we lim-
ited the evaluation to a single architecture due to the
high computational overhead associated with training
of the networks.

5.4. Training procedure

In classification task, the stochastic gradient descent
method was used to minimize the cross-entropy objec-
tive function. Constant learning rate of 0.001, with mo-
mentum of 0.9, were used throughout the training. The
weight decay was set to 0.0005 and a dropout of 0.5
after all hidden, fully-connected layers were used as
a form of regularization. Choice of the hyperparame-
ters was motivated by their values reported in previous
research [45]. Random patches were extracted from
the original images. First of all, images were rescaled
so that their shorter dimension was equal to 224 pix-
els. Secondly, they were cropped to the size of 224 x
224 pixels. Cropping was performed randomly every
time the image was fetched. Training was conducted
in batch mode, with batches consisting of 50 images
each. The whole training procedure lasted 100 epochs.
After the training we observed that the classification
accuracy saturated sooner in most cases, oftentimes as
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Table 1
Average values of PSNR for different types of noise and denoising methods. Distortion level shown in respect to an original image. The best
filtering result shown in bold. The method proposed in this paper (CNN, the convolutional neural network) was compared with reference algo-
rithms. Chosen values of parameters shown in subscript, namely: window size for median filtering, os and o for bilateral filtering, and o for the
BM3D algorithm

Type of noise Distortion level Median Bilateral BM3D CNN (this paper)
Gaussian (005) 26.40 26.87(3) 31.70(().05’ 3) 31. 10(()‘05) 28.04
Gaussian (0.1) 20.60 2444, 27.50.1,3) 27.220.1) 25.99
Gaussian (02) 15.09 21.98(7) 23.08(0.21 3) 22.97(042) 2391
Gaussian (0.5) 9.18 1 8.55(9) ]7.07(0‘4’ 7) 16.86(03) 21.32
Quantization (0.05) 31.19 26.533 29.740.0s. 3) 29.440.05) 29.89
Quantization (0.1) 25.24 23.63(3) 25.53(0‘05, 3) 25.36(005) 28.71
Quantization (0.2) 19.37 19.29:3, 20.20(0.05, 3) 20.06(0.05) 26.74
Quantization (05) 12.01 12.40(3) 12.87(0'24’ 3) 12.76(0‘1) 23.61
Salt & pepper (0.05) 17.74 28.213, 25.3602.5) 25.060.1) 24.79
Salt & pepper (01) 14.73 27.32(3) 23.38(0.21 7) 23.05(042) 23.84
Salt & pepper (0.2) 11.72 24.66(3) 20.81(03, 7) 19.93(03) 22.59
Salt & pepper (05) 7.74 20.24(7) 15.36(0'5Y 7 14.89(044) 20.42
Random (Gaussian) 15.90 21.31 (7) 21 .49(0‘3, 3) 20.75(()‘3) 21.75
Random (quantization) 20.30 18.733) 19.91(0,05, 3) 19.60¢0.05) 22.32
Random (salt & pepper) 12.27 23.47(5) 20.00(0'3, 7) 19.1 4(0‘3) 20.65
Random (mixture) 16.13 20.94s, 20.06(03. 3) 19.26(03) 2045

soon as after 50 epochs. However, further training did
not lead to overfitting.

As an optimization criterion in the denoising task,
the mean squared error between the original and the ar-
tificially distorted images was chosen. The same learn-
ing rate, momentum and batch size as in the classi-
fication task were used. No weight decay was em-
ployed, however. Different choices of learning rate,
momentum and weight decay were evaluated, but con-
ducted tests indicate that neither of these parameters
has a significant impact on the denoising performance:.
Prior to denoising images were normalized to the range
0 to 1. During learning, randomly selected 64 x 64
patches were used to speed up the training procedure.
In this case training lasted 10 epochs. Post-training ob-
servation of denoising accuracy, measured as a Peak
Signal-to-Noise Ratio (PSNR) [6], showed significant
decrease in improvement speed. However, it did not
fully saturate, which may indicate the possibility of
achieving a slight improvement over the reported re-
sults. Using PSNR measure in this type of comparison
is frequent among researchers since it is defined in the
same way regardless of the image content [6,31]. We
also consider it suitable to the presented tests. How-
ever, other measures, such as the psychovisual ones,
can be also considered in future research [56].

5.5. Denoising
Experimental evaluation began with assessing the

performance of the proposed denoising strategy. It
was compared with three other denoising algorithms,

which-do not rely on neural learning. These are the me-
dian filter [31], the bilateral filter [50] and the BM3D
filtering [14]. Further information on these and other
state-of-the-art image filtering methods can be ac-
cessed e.g. in [6,31,46]. Parameters of the baseline al-
gorithms were finetuned for specific noise conditions.
For median filtering, windows of size 3 x 3,5 x 5,7 x
7,9 %x9,11 x 11 and 13 x 13 were considered. On the
other hand, for the bilateral filtering, values of its con-
trol parameters o5 € {0.05, 0.1, 0.2, 0.3, 0.4, 0.5} and
o, € {3, 5,7} were employed. Lastly, for the BM3D
method, the values o € {0.05, 0.1, 0.2, 0.3, 0.4, 0.5}
were used.

Comparison of denoising strategies was conducted
on 2000 randomly selected images from the ImageNet
dataset. Chosen number of images was limited due to
the computational constraints. Having said that, eval-
uation was first conducted on 20, later on 50, and fi-
nally on 2000 images. In all the cases trends were iden-
tical, whereas the differences between average values
of PSNR were negligible. Results are presented in Ta-
ble 1. For all the baseline methods, only the best choice
of parameters for particular noise condition was re-
ported. It is well visible that the deep network denois-
ing method, proposed and evaluated in this paper, out-
performed each of the aforementioned reference meth-
ods. However, interestingly enough, the deep architec-
ture is especially efficient for larger levels of distor-
tions. On the other hand, an exception is the case of
the mild salt & pepper noise. The last effect might be
caused by poor operation of the convolutional layers
with this way distorted signals.
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Gauss. (0.05) [27.69 dB]

Gauss. (0.10) [25.68 dB]

Gauss. (0.20) [23.81 dB] Gauss. (0.50) [21.27 dB]

Fig. 2. Sample images before (lower left half) and after denoising with our proposed method (upper right half). Gaussian, quantization and salt
& pepper noise of varying intensity was considered. Peak signal-to-noise ratio after denoising was also specified.

To assess the statistical significance of the ob-
served results we conducted the Wilcoxon signed-rank
test [23]. The proposed denoising strategy based on the
convolutional neural network achieved significantly
better performance than the bilateral filtering and the
BM3D algorithm, at the significance level of . = 0.05.
On the other hand, we were unable to reject the null hy-
pothesis when compared with the medial filter. How-
ever, analyzing the results in Table 1 we notice that
their competence regions are complementary and the
median filter performs the best when processing salt
& pepper noise, which is not a surprise. Nevertheless,
the results of the statistical analysis further validate the
choice of the convolutional network over conventional
denoising algorithms, especially when connected with
the classification process, as will be presented in the
next section.

Our proposed method achieved high robustness to
both type and intensity of noise, and relatively high
quality of denoising. Particularly good performance
was observed when dealing with quantization noise, as
well as the most severe distortions of other types. Es-
pecially the latter property is very encouraging.

Sample images which were denoised using our pro-
posed approach are presented in Fig. 2.

5.6. Classification in presence of noise

Performance of the discussed neural network was
evaluated under varying noise conditions, present in ei-
ther the training data, the test data, or both. The met-
ric used to measure the performance of the model was
the classification accuracy: proportion of test images
for which the ground truth label and the prediction of
the model matched. Evaluation began by measuring
the accuracy of the network without any distortions ap-
plied (baseline case, referred to as C2C). Afterwards,
an impact of the noise in the test data, not accounted
for during the training procedure was measured (C2N).
Relationship of the final classification accuracy in re-
spect to different types and levels of noise is presented
in Fig. 3. Even relatively small amounts of distortions
significantly influenced performance of the network.
Presence of noise with higher intensity, when not ac-
counted for, made the network unable to properly rec-
ognize presented objects.
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to fit the network.
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To reduce the severe impact of distortions on clas-
sification accuracy, the two already mentioned strate-
gies of dealing with noise were evaluated. In the first
one, i.e. training data augmentation, images were dis-
torted during the training procedure with the same type
of noise that was later present during evaluation. This
case was denoted as N2N. In the second strategy, i.e.
image denoising, classification network was trained on
undistorted data. Second, smaller network was how-
ever trained explicitly to denoise images prior to clas-
sification. This case was denoted by C2D.

Results of this part of experimental analysis were
presented in Fig. 4. Importantly, both strategies of deal-
ing with distortions can be successfully applied in the
case of unknown noise conditions. Compared to the
case in which distortions are not accounted for, both
strategies led to an improvement in accuracy. Statis-
tical significance of that improvement was evaluated
with the Wilcoxon signed-rank test. At the significance
level of o = 0.05 both strategies proved to be signifi-
cantly better than in the case when distortions are not

accounted for. Furthermore, data augmentation strat-
egy proved to be significantly better than applying de-
noising prior to the classification.

Based on the achieved results, data augmentation
strategy allows us to achieve higher performance.
However, it should be stated that better classification
accuracy comes at price of potentially longer training
time. When using the denoising strategy, transfer of
weights from previously trained model is easier, since
availability of models trained to recognize undistorted
data is higher. Additionally, training data augmentation
requires either being able to artificially distort the im-
ages, or obtaining high amounts of noisy labeled data.
This issue is less severe when using the denoising strat-
egy, since images used for training in that case do not
need to be labeled.

5.7. Noise as a form of regularization and applying
improper strategy of dealing with noise

In the final stage of conducted experimental study
we considered the case, in which strategy of dealing
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with noise is employed even though no distortions are
present during evaluation. First of all, this served the
purpose of testing the possibility of using noise as an-
other form of regularization. Secondly, it allowed us to
assess the negative impact of choosing improper noise
model. Both the training data augmentation (N2C) and
denoising (D2C) were considered, with the former cor-
responding also to using noise as a regularizer.

Results of this part of experimental study are pre-
sented in Fig. 5. In no case augmenting training data
led to improved performance compared to the baseline
case. Other applied forms of regularization, namely
dropout and weight decay, were sufficient to-assure
good generalization capabilities of the model. It is pos-
sible that augmenting training data could be used in-
stead of them. However, applying it on top.of them led
to a decreased performance, likely due to the overreg-
ularization.

Both strategies led to significant drop in perfor-
mance in case of most severe distortions, when noise
was not present during evaluation. This issue can be
partially mitigated by training the model on noise with
random intensity, in which case performance decrease
was less severe. Despite lower accuracy gain in C2D
case, accuracy drop in D2C case was comparable to
N2C, oftentimes being even less severe. We specu-
late that improving the quality of denoising algorithm
could escalate this trend even further, leading to de-
noising approach being the safer of the options.

Finally, we focused on the case in which only some
portions of the images were distorted, which is likely
to happen in the practical setting. We tried to estimate
the probability of distortion sufficient to achieve higher

expected accuracy than in the standard case, in which
presence of noise is not accounted for.

Let Ay be the classification accuracy when using
training data augmentation, A the accuracy when
noise is not accounted for, Aoy the accuracy on dis-
torted images when using training data augmentation,
Apnoc the accuracy on undistorted images in the same
case, Acan the accuracy on distorted images without
applying strategy of dealing with noise, and Agoc the
accuracy on clean images in the same case. Given the
probability of image being distorted p, expected values
of Ay and A¢ can be defined as F[Ay] and E[A¢],
respectively.

E[AN]
E[Ac]

)
®

=p X Anan + (1 —p) x Anac

=px Acan + (1 —p) X Acac
Of particular interest is the case, in which employing
data augmentation strategy leads to improved perfor-
mance. In such a case the following holds

E[AN] = E[A(] )
This can be reformulated to emphasize the probability
of distortion in the input dataset which makes that the
proposed data augmentation method leads to better ac-
curacy of the trained network. Inserting Eqs (7) and (8)
into Eq. (9) and solving for p yields

Acoc — Anac
~ Acoc — Anac + Anan — Acan

(10)

Analogous calculation can be performed for the case
in which denoising is used.
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Fig. 6. Probability of observing distorted image sufficient to justify either training data augmentation (N2N) or applying denoising (C2D). Higher
probabilities further increase the gain in accuracy compared to traditional training approach. No value was specified for quantization noise with
small intensity, since applying denoising decreased performance in those cases.

Results of the conducted estimation were presented
in Fig. 6. In the case of denoising, no probability was
specified for quantization noise with intensity of 0.05
and 0.1. This was due to denoising leading to slightly
decreased performance compared to the baseline case.
For the remaining cases, probability of distortion suffi-
cient to justify applying strategy of dealing with noise
was always smaller for data augmentation. That was
especially the case for the random noise types, likely to
be most prevalent in practical settings. Probability of
distortion of random type sufficient to justify training
data augmentation was close to 10%. That is, if propor-
tion of images being distorted is greater than that value,
expected accuracy will be higher when using data aug-
mentation than when not accounting for noise. Accu-
racy gain will further increase as the proportion of dis-
torted images goes up.

6. Conclusions

In this paper we performed a thorough experimen-
tal analysis of impact of noise on classification with
deep neural networks. We examined the classification
performance under various noise settings, with both
known and unknown noise models. We evaluated two
possible strategies of dealing with noise, that is, train-
ing data augmentation and denoising prior to classifi-
cation. We examined the possibility of using a convo-
lutional neural network as a separate denoising algo-
rithm. Finally, we measured the impact of employing
these strategies when no noise is present, which can
also correspond to using noise as a form of regulariza-
tion.

Main findings of this paper are the following:

The proposed denoising neural network outper-
forms all tested reference methods (median filter-
ing, bilateral filtering and BM3D) in combination
with quantization noise and severe noise condi-
tions of other types, as well as Gaussian noise of
random severity. At the same type it offers good
performance in the remaining cases, depending
on the type and severity of noise outperforming
some of the reference methods;

We experimentally confirmed findings from pre-
vious papers, according to which there is a rela-
tion between noise severity and deterioration of
classification accuracy, up to the point at which
correct classification becomes completely infeasi-
ble;

We confirmed that using noise as a form of reg-
ularization on top of other regularization tech-
niques, namely weight decay and dropout, does
not improve the classification accuracy;

Finally, we evaluated two methods of dealing with
noise in images: training data augmentation and
denoising prior to classification. Results of our
experimental evaluation indicate that both tech-
niques, depending on a type and severity of noise,
can lead to significant improvement over the case
in which noise is not accounted for. The training
data augmentation proved to be preferable in re-
gard to the classification accuracy. However, it re-
quires large quantities of labeled, noisy data and
requires long training of classification network.
Using denoising is, therefore, a less expensive
choice, albeit leading to worse performance.
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Two main directions of further research include em-
ploying better denoising strategies and testing the pos-
sibility of finetuning the final architecture in the case of
denoising. Based on the results presented in this paper,
we speculate that it will be necessary to significantly
improve the quality of denoising to achieve higher ac-
curacy than in the case of data augmentation. However,
training data augmentation is associated with higher
cost of training and necessity of having large quantities
of labeled, noisy data. Because of that, in practical ap-
plications denoising might be more feasible, even de-
spite the lower performance.
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