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Abstract. The paper presents an efficient method for real-time im-
age analysis for manoeuvring of the underwater robot. Image analysis
is done after computing the structural tensor components which unveil
rich texture and texture-less areas. To allow a power efficient underwa-
ter operation in real-time the method is implemented on the Jetson TK1
self-standing graphics card using the CUDA compute architecture. The
laboratory experimental results show that the system is capable of pro-
cessing about 40 Full HD images per second while allowing orientation
toward texture specific regions for obstacle avoidance.
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1 Introduction

Robot manoeuvring and more specifically, obstacle avoidance, is one of the most
fundamental functions that must be implemented first for any self-standing ex-
ploratory machine to operate properly. Given the operating conditions, solution
providing this functionality must perform efficiently both in terms of power- and
computational throughput efficiency. Thus, no conventional central processing
unit (CPU) may be used. What is more, as will be later shown, mobile counter-
parts of CPUs proof insufficient for more complex image processing operations
like this one. This necessitates utilisation of hardware accelerated mobile plat-
form. For this purpose, NVIDIA Jetson TK1 board was chosen as it provides
sufficient computational power, at the same time, retaining low energy consump-
tion figures. Advantageous features of Jetson come from the presence of the first
mobile, CUDA capable Tegra K1 graphics processing unit (GPU) on-board.

Video camera based system for underwater manoeuvring is given as a so-
lution to the problem of growing need for autonomous inspections of maritime
facilities. Amongst others, appearance of this phenomenon was described in [6].
It is important to underline that usage of standard camera, instead of sonar
system, constitutes much cheaper approach that additionally allows to process
data of much higher spatial resolution. On the other hand, requiring sufficient
water transparency.
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In order to identify rich texture and texture-less regions, structural tensor
(ST) calculus is used. Procedure is based on assumption that in underwater
environment any textured area represents potential obstacle. Using ST of the
input image, it is possible to define highly coherent patches providing information
about the presence of nearby objects [4].

Solution based on GPU was chosen due to its remarkable performance char-
acteristics and its potential applications for execution time reduction. Latter of
those was proven to be true by many scientific publications. For example, work
of Wetzl et al. [11] shows GPU accelerated super-resolution (SR). Utilisation of
hardware acceleration allowed authors to use their solution in interactive appli-
cations like image guided surgery. Similar approach was proposed in [9], which
is another solution to SR problem based on bilateral total variation filtration.
Apart from super resolving low resolution images, GPU may be used to enhance
object detection algorithms, like the one presented by Chikkerur [2]. In this
application, it allowed to achieve up to 10 fold performance boost.

Selection of NVIDIA Jetson TK1 as the main processing platform for self-
standing application is natural due to its low power consumption. When mea-
sured under normal workloads, it oscillates around 4 W. For more computation-
ally demanding operations, it reaches its maximum at 11.5 W.

Combining NVIDIA Jetson TK1 properties, allowing power efficient real-time
image processing, and capability of ST algorithm to extract potential obstacles
in underwater environs, it was decided to design, develop and test GPU-based so-
lution for real-time image content assessment for underwater robot manoeuvring
based on structural tensor analysis.

Reminder of this document consists of 4 sections. Section 2 provides more
details on image content analysis based on structural tensor calculus. Section 3
includes overview of system architecture used and section 4 presents experimen-
tal results achieved. Section 5 concludes the paper giving both qualitative and
quantitative analysis of the work done.

2 Image Analysis with the Structural Tensor

Most general execution flow of an algorithm used to perform image analysis
with the structural tensor may be found in Fig. 1. Input gray-scale image is first
used to calculate 3 components of its structural tensor. Those are later used to
find corresponding coherence image. Then, coherence image is summed in square
blocks of the given size and resultant lower resolution frame becomes an input
for thresholding operation. At last, binary image is generated with white pixels
denoting rich texture regions that represent potential obstacles in underwater
environment.

2.1 Computing the Structural Tensor

A structural tensor T can be computed in each local and compact neighbourhood
R(x0) around a point x0 of a 2D image I, as follows [1][7][3]

T (x0) = BR(x0)

(
GGT

)
, (1)
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Fig. 1: Diagram of execution flow of image analysis algorithm
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where BR(x0) denotes an averaging operator in a region R, with the centre at
the point x0, and G is a gradient vector at each point x of R, that is, x∈ R(x0).
The gradient G at a point x of I, is defined as follows

G (x) =

[
∂̂
∂̂x

I (x)
∂̂
∂̂y

I (x)

]
=

[
Ix (x)
Iy (x)

]
, (2)

where Ix(x) and Iy(x) denote discrete spatial derivatives of I at the point x,
in the horizontal (x ) and vertical (y) directions, respectively. In the presented
system GR(x0) is a simplest discrete binomial filter [3].

It can be easily noticed that T(x0) constitutes a symmetric positive 2D
matrix with elements describing averaged values of the gradient components in
a certain neighbourhood around a point x0. Thus, the structural tensor T brings
information on intensity changes not only at a point x0 but, more interestingly,
also in its nearest neighbourhood.

It is worth noticing, that when T is computed at each point x of I, then each
T(x) conveys information on overlapping regions around the point x. Hence, it
contains information on image texture and local curvature.

Inserting (2) into (1), the following is obtained

T = BR

([
Ix
Iy

] [
Ix Iy

])
= BR

([
IxIx IxIy
IyIx IyIy

])
=

[
Txx Txy

Tyx Tyy

]
. (3)

To simplify the equations, in the aforementioned derivations, the point x was
omitted since averaging by the filter BR is over a set of points in R, as already
described.

Concluding, the structural tensor T is built from four components: Txx, Tyy,
Txy and Tyx, each of those being averaged multiplication of partial derivatives
of input image’s intensity signal with respect to horizontal and vertical spatial
coordinate.

2.2 Texture Analysis for Robot Manoeuvring

In order to practically verify the concept of robot manoeuvring based on texture
analysis, consideration done in this subsection will be accompanied by the pre-
sentation of execution steps outcomes for real underwater image acquired (see
Fig. 2).

As it was already shown, first step is calculation of structural tensor of the
input image. Result of performing this operation may be found in Fig. 3. It
should be noted that rich texture regions can be roughly estimated this early
in the processing procedure, using simple visual inspection. 3 components of ST
are now used to calculate coherence parameter for each pixel of the input image.
Formula used to do it is given in equation 4.

coherence =
(Txx − Tyy)

2 + (2Txy)
2

(Txx + Tyy)2
(4)
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Fig. 2: Input gray-scale image captured in Zakrzówek lake at depth of 15 meters

(a) Txx (b) Tyy (c) Txy

Fig. 3: Structural tensor components calculated
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Calculated values are now summed in square blocks of arbitrary size. For images
shown in this paper, block size of 32 was chosen, as it provides most satisfac-
tory end results. As a last step, block-summed coherence image is filtered with
thresholding filter, which sets to maximum all the pixels being larger than the
middle point between largest and smallest value of the block. This operation
may be expressed by the following equation:

b(x, y) =

{
1 , when Cblock(x, y) >

max(Cblock)−min(Cblock)
2

0 , otherwise,
(5)

where b(x, y) represents pixel in output binary image at horizontal coordinate x
and vertical coordinate y, and Cblock represents block-summed coherence image.
Final binary image juxtaposed with block-summed coherence frame may be seen
in Fig. 4.

(a) Summed in blocks (b) After thresholding

Fig. 4: Coherence image summed in blocks and after thresholding

Willing to further proof proper operation of the procedure proposed, second
underwater input image and its final binary image generated is given in Fig. 5.

As it can be judged by visual inspection, solution given shows strong poten-
tial for application in underwater robot manoeuvring. Resultant binary images
yield good approximation of obstacles appearing on the path of the exploratory
machine and as such, may be used to avoid unwanted collisions.

3 System Architecture

Proposed image content analysis for underwater robot manoeuvring was imple-
mented as a software application. Its general operation flow was given in Fig. 1.
Most of the components were implemented on CPU and hardware acceleration
was utilised only for computationally intensive structural tensor computation.
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(a) Input image (b) Binary map

Fig. 5: Second input image from Zakrzówek lake and resultant binary map

As for any GPU accelerated image processing task, CUDA threads were
mapped onto input image’s pixels. Architecture of this mapping may be found
in Fig. 6. It should be pointed out that each block of threads is dedicated for a
single image row. Number of 384 threads per block was chosen due to its best
performance characteristics for tested use-cases. In case of images wider than 384
pixels, single thread from a given block is used to serve pixels at rows indexes
being multiplication of its original position. However, not every thread must
process equal number of pixels and hence, images of all possible widths may be
used.
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Fig. 6: Mapping of CUDA threads over input image’s pixels (tn represents n-th
thread and n_rows means number of input image’s rows)

In addition to proper CUDA threads utilisation, texture memory of GPU was
used to assure best possible computational throughput. Its presence is justified
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as almost any image processing operation shows strong spatial locality and this
type of memory is optimised just for those kinds of tasks.

4 Experimental Results

As execution time constitutes the crucial factor in real-time applications, it was
the main scope of the experimental tests conducted. More specifically, execu-
tion time of the most computationally intensive step of the algorithm proposed
was measured. In this case, it was the structural tensor computation that was
consuming major part of processing resources.

For better visualisation of GPU predominance over standard CPU imple-
mentations, tests were done on 3 platforms, namely: Jetosn’s Tegra K1 GPU,
Jetson’s ARM Cortex A-15 mobile CPU and standard Intel Xeon X5650 CPU.
Comparison with Cortex A-15 is justified as it posses mobile properties neces-
sary for self-standing applications. On the other hand, Xeon X5650 is given to
show how mobile GPU is capable of outperforming more standard processing
platforms, when used in image processing tasks.

In order to verify what is the influence of input image size, measurements
were performed for 3 standard resolutions: VGA (640x480), HD (1280x720) and
Full HD (1920x1080). Additionally, results were averaged over 5 iterations to
assure measurements stability.

Figure 7 shows execution times achieved. Detailed information about the
results may also be found in Table 1. It is readily visible that Tegra K1 GPU
outperforms both CPUs. What is more, its superiority becomes more relevant
for higher resolutions. At Full HD, GPU executes almost 20 times faster, as
compared to ARM Cortex A-15, and more than 11 times for Xeon X5650. On
top of that, Tegra K1 is capable of processing up to 40 Full HD frames per second,
being the figure sufficient to treat this application the real-time solution.

Table 1: ST computation frames per second throughput comparison for selected
input image resolutions (MP stands for megapixel meaning 1 million pixels);
additionally compared with average power consumption

Image resolution
Frames per second

Tegra K1 GPU Xeon X5650 ARM Cortex A-15

VGA (0.31 MP) 65 27 16

HD (0.92 MP) 44 7 5

Full HD (2.07 MP) 39 3 2

Avg. power cons. [W] 5 [8] 95 [5] 0.6 [10]
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Fig. 7: Comparison of ST computation execution time when ran on Tegra K1
GPU, ARM Cortex-A15 mobile CPU or Xeon X5650 standard CPU
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It is worth mentioning that good performance scaling versus input image size
for GPU, comes from its massively parallel architecture. It provides sufficient
number of processing resources dedicated for each pixel, even for resolutions as
high as 2 MP. Following this consideration, it can be assumed that there is some
theoretical boundary for input image size, which makes GPU execution time
rise faster than for 3 presented cases. Nevertheless, good performance figures for
resolutions up to 2 MP proofs to be sufficient for most practical applications.

5 Conclusions

In this paper, usability of GPU-based platform, combined with structural ten-
sor calculus, was investigated as the mean to perform real-time image content
analysis for underwater robot manoeuvring. Given the laboratory execution time
results, it was proven that NVIDIA Jetson TK1, with Tegra K1 GPU on-board,
does constitute efficient platform for real-time image processing. Additionally,
taking into account its mobile properties, it was shown to be a good solution for
computer vision provision in self-standing exploratory machines. On top of that,
structural tensor calculus was presented as a tool for extraction of information
about nearby obstacles in underwater environs.

It is important to point out that lower power consumption figures of on-board
computer vision provider means not only better utilisation of resources, but also
possibility to use the for other application-critical tasks.

Having verified Jetson TK1 serviceableness for real-time image analysis and
given structural tensor calculus functionality for obstacle avoidance, it is con-
cluded that solution proposed, may be used in potential submarine exploratory
application. It is thus planned to practically verify this assumption.
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