Exercise 3.1.

Consider a local concentration of 0,7 [mol/dm®] which drops by 15% over a distance of 1[cm].
Assuming that diffusion coefficient is 7-10° [cm?/s] (typical value for fluids), calculate atomic and

molar fluxes.
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Exercise 3.2. Nernst-Planck equation for diffusion flux has a following form:
J*T = Bie;F,

Using Nernst-Einstein relation express diffusion flux in a form analogues to Fick’s law (one
dimensional case) for:

a) Ideal solution (activity f=1)
b) Non-ideal solution (activity fi#1)

Assume, that the only force is the gradient of chemical potential, which potential could be expressed
as:

wi = pf +kTIn fin;
a) ideal solution
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Exercise 3.3. Calculate the flux, knowing that potentials are following functions of space (2D: x, y):
chem

u = 2x3 + sinyx

mech

3
u = 5xy2 + cos 2xy
petec = 20%%
Solution:
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Exercise 3.4. Consider a diffusion in a binary A-B system (n+ngz=1). Knowing, that the Gibbs-Duhem relation is
fulfilled :
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a) write both fluxes as a functions of conjugate forces only (J; = J;(—Vu;))

b) wind the value of diffusion coefficients knowing, that the Fick's 1st law has a form J; = —D;Vn; and chemical
potential is given by:

w =pd +kTlnn;
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Exercise 3.5. A common device used to measure temperature is the thermocouple. Wires of metals A
and B are connected with their common junction at the temperature T+AT and the opposite ends are
connected to the terminals of a potentiometer maintained at temperature T. The potentiometer
measures voltage across terminals under conditions where no electric current is flowing. This voltage
is then a measure of AT. Explain this effect (known as Seebeck effect) using Onsager’s fluxes. Hint:
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no electric current means j=0:



Since the values of L coefficients are not equal for different materials, the potential generated by the
difference of the temperatures will not be the same for A and B - a difference of a potential will be
generated.



