
3. Constitutive relations for diffusion flux 

3.1.Fluxes 

In most transport phenomena we use a flux concept as a measure of transport. For example if we are 

talking about heat transport, we will use the Fourier’s law: 

        (3.1) 

where:  Q  – heat flux  
 

    

   k – thermal conductivity  
 

  
  

    T – temperature gradient  
 

 
  

Similarly, for transport of electric charge, we can use Ohm’s law: 

        (3.2) 

where:   j – electric current  
 

    

   σ – electrical conductivity  
 

  
  

    φ –electric potential gradient  
 

 
  

There are some obvious analogies, the most notable is that fluxes are proportional to the negative 

gradients of physical values. It is quite logical: heat will be transported from hot areas to cold ones, 

the bigger difference of electric potential, the bigger the current will be etc. This general rule will also 

be true for mass transport. 

It is time to introduce a diffusion concept. Formally speaking, diffusion is a irreversible process, in 

which energy is dissipated and the entropy grows. However it is much easier to understand it, as a 

mass transport phenomena that results in mass mixing/transport without requiring bulk motion.   

In the first paper we already mentioned mass flux. The most common mass flux is a diffusion flux, 

which is a result of presence of gradient of chemical potential. Chemical potential is a state function 

which can be described as a form of potential energy. It’s numerical value is equal to the value of 

increase of functions U, F, H, G if one mol of the i-th component is added (when amounts of other 

components are constant):  

     
  

   
 
         

  
  

   
 
        

  
  

   
 
        

  
  

   
 
        

 (3.3) 

We should mention here, that flux equations are constitutive equations – it means that in most cases 

they are not derived from the most basic thermodynamic principals, but they do describe what is the 

response of the system to a given stimuli.  

 

 



3.2. Constitutive equations for diffusion flux 

Now we will write the most popular diffusion flux equation – Fick’s first law: 

   
    

        (3.4) 

where:    
    – diffusion flux of the i-th component  

   

   
  

   Di – diffusion coefficient of the i-th component  
  

 
  

    ci – concentration gradient of the i-th component  
   

    

We can see, that form of equation (3.4) is analogues to equation (3.1) and (3.2). We mentioned, that 

diffusion flux should be proportional to the chemical gradient potential, while in Fick’s law we can 

see gradient of concentration – that is why for calculations we often use another, more accurate 

expression called Nernst-Planck equation:  

   
    

           (3.5) 

where:  Bi  – atom mobility for i-th component 

         – forces acting on atoms of i-th component  

            (3.6) 

Mobility Bi and diffusion coefficient Di are correlated by Nernst-Einstein relation: 

    
  
  

 (3.7) 

One may ask: “what if for example the ions are transported, and electrical field is present?”, or:”does 

the pressure influence mass transport?”. That is why we will introduce the general form of Nernst-

Planck equation: 

   
    

           

   

 (3.8) 

where:           sum of all forces acting on the atoms: 

             

   

     
       

       
              

    
 (3.9) 

where:     
    – chemical potential of the i-th component 

     
    – mechanical potential of the i-th component 

     
     – electrical potential of the i-th component 

     
    

 - diffusion potential of the i-th component 

 

 



The last diffusion flux equation presented here, will be the one postulated by Lars Onsager. In 1931 

he presented theory of irreversible thermodynamics. He used following assumptions: 

 All transport fluxes (charge, mass, heat etc.) are linearly correlated with all thermodynamic 

forces present in the system. For “n” transport processes: 
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(3.10) 

      thermodynamic force 

 Lij – kinetic response coefficient/phenomenological coefficient/transport coefficient 

 In a more general way, we can write equation (3.10) as: 

              

 

   

 (3.11) 

The general meaning of this assumption, is that every transport process affects all the others 

processes. We have to remember, that transport coefficients are not dependent on forces. 

 Onsager matrix of transport coefficients consists of two types of elements: diagonal and off-

diagonal. Diagonal terms Lii connects each generalized force with its conjugate flux e.g. heat 

flux with thermal gradient, flux of electrons with electrical potential gradient etc. Off-

diagonal terms determines the influence of each force on the non-conjugate fluxes, e.g. how 

transport of electrons influence heat flux (Peltier effect). For all off-diagonal coefficients 

following relation, known as Onsager’s reciprocity theorem, is true (assuming that magnetic 

field is not present): 

         (3.12) 

 The last of Onsager’s assumption, is that each of the thermodynamic forces acting with its 

conjugate flux response, dissipates free energy and produces entropy. Production of entropy 

is characteristic for irreversible processes, the rate of its production can be described as: 

                

 

 (3.13) 

 Thermodynamic equilibrium is reached, when: 

      (3.14) 

 

 

 

 



Example 3.1. 

Write an Onsager matrix for a one dimensional system, in which heat, mass and charge are 

transported. 

Solution 

Looking at equations (2.1), (2.2) and (2.4) we can write equations for fluxes of mass, charge and heat: 

 

              
  

  
 

               
  

  
 

              
  

  
 

 

Now, we can describe forces in our system: 

 

                 
 

 

  

  
 

                
 

  

 

 
 

                   
 

 

  

  
 

 

 

Forces are defined in such way, that transport coefficients have the same units. This is necessary due 

to the Onsager’s reciprocity theorem.  In the first equation, instead of concentration, we can use 

chemical potential. Relation between those two is (for ideal solutions): 

      
          

where:    - molar fraction of i-th component, and        

Now we can write our fluxes in form similar to (2.12): 

 

     
 

  

 

 
    

 

 

  

  
    

 

 

  

  
 

     
 

  

 

 
    

 

 

  

  
    

 

 

  

  
 

     
 

  

 

 
    

 

 

  

  
    

 

 

  

  
 

 

 

Onsager matrix looks as follows: 

 
 
 
 
 
   

         
         
         

  

 

 
 
 

 

  

 

 

 
 

 

  

  

 
 

 

  

   

 
 
 

 

 

 

 



 

Example 3.2. 

Write an Onsager matrix for diffusion fluxes for a binary A-B alloy, where acting forces are gradients 

of molar fraction. 

Solution 

In this case, our forces are gradients of chemical potential of each component (notice analogy to 

Nernst-Planck flux). Our fluxes are: 

  
  
  
   

      
      

  
    
    

   

Chemical potentials of our components: 

 
     

         

     
         

 

After inserting (1.23) to (1.22): 

  
  
  
   

          
          

  
      
      

   

What can be transformed into: 

  
  
  
  

 

 
 

     
  

     
  

     
  

     
   

 
 
 
    
    

   

 

 


