Exercise 0.1. Equation of state for a fluid composed of particles with non-zero volume (so not ideal gas) is called van der Waals equation, and has the following form:

$$
p=\frac{R T}{V-b}-\frac{a}{V^{2}}
$$

Where:
a, b - constants characteristic for given gas
T- temperature
V - gas volume
p-pressure

Find how the pressure of the gas changes if:
a) Temperature changes and volume stays constant
b) Volume changes and temperature stays constant

Solution

a)

$$
\frac{\partial p}{\partial T}=\frac{T}{V-b}
$$

b)

$$
\frac{\partial p}{\partial V}=\frac{-R T}{(V-b)^{2}}+\frac{a}{V^{3}}
$$

Exercise 0.2. As a result of an experiment, following relationships were found:

$$
\begin{gathered}
\frac{\partial p}{\partial V}=-n \cdot R \cdot T \cdot f(V) \\
\frac{\partial p}{\partial T}=\frac{n \cdot R}{V}-2 \cdot n \cdot R \cdot T \cdot a
\end{gathered}
$$

Where:
n - number of moles
a - known constant
$f(V)$ - unknown function of volume
Find an equation of state for given gas (equation for pressure). Hint: Use Schwarz theorem to obtain $f(V)$, then integrate one of the given equations and use the second one to calculate integration constant.

Solution

$$
\begin{gathered}
\frac{\partial^{2} p}{\partial V \partial T}=-n \cdot R \cdot f(V) \\
\frac{\partial^{2} p}{\partial T \partial V}=-\frac{n \cdot R}{V^{2}} \\
\frac{\partial^{2} p}{\partial T \partial V}=\frac{\partial^{2} p}{\partial V \partial T} \Rightarrow-n \cdot R \cdot f(V)=-\frac{n \cdot R}{V^{2}} \Rightarrow f(V)=\frac{1}{V^{2}} \\
\frac{\partial p}{\partial V}=\frac{-n \cdot R \cdot T}{V^{2}} \Rightarrow \quad p=\int \frac{-n \cdot R \cdot T}{V^{2}} d V=\frac{n \cdot R \cdot T}{V}+f(T) \\
\frac{\partial p}{\partial T}=\frac{n \cdot R}{V}+\frac{d}{d T} f(T)=\frac{n \cdot R}{V}-2 \cdot n \cdot R \cdot T \cdot a \Rightarrow \frac{d}{d T} f(T)=-2 \cdot n \cdot R \cdot T \cdot a \\
f(T)=\int-2 \cdot n \cdot R \cdot T \cdot a d T=-n \cdot R \cdot T^{2}+\text { Const }
\end{gathered}
$$

Finally:

$$
p=\frac{n \cdot R \cdot T}{V}-n \cdot R \cdot T^{2}+\text { Const }
$$

Exercise 0.3. The concentration at any point in space is given by:

$$
c(x, y, z)=A(x y+y z+z x)
$$

Where $A=$ constant
a) Find the direction in which concentration changes most rapidly with distance from the point $(1,1,1)$. Determine the maximum rate of change at that point.
b) Calculate cosines of direction

Solution

a)

$$
\begin{gathered}
\nabla c=A[(y+z) \vec{\imath}+(x+z) \vec{\jmath}+(y+x) \vec{k}] \\
\nabla c(1,1,1)=2 A(\vec{\imath}+\vec{\jmath}+\vec{k})
\end{gathered}
$$

Rate:

$$
\text { rate }=|\nabla c(1,1,1)|=2 A \sqrt{1^{2}+1^{2}+1^{2}}=2 A \sqrt{3}
$$

b)

Direction cosines:

$$
\begin{gathered}
\cos \alpha_{i}=\frac{\vec{v} \cdot \overrightarrow{e_{x}}}{|\vec{v}|} \\
\cos \alpha=\cos \beta=\cos \gamma=\frac{2 A}{2 A \sqrt{1^{2}+1^{2}+1^{2}}}=\frac{1}{\sqrt{3}}
\end{gathered}
$$

Exercise 0.4. Calculate gradient of the function:

$$
f(x, y, x)=x^{2}-y z+x z^{2}
$$

In the points $(1,1,1)$ and $(3,2,1)$.

Solution

$$
\begin{gathered}
\nabla f=\left(2 x+z^{2},-z, 2 z-y\right) \\
\nabla f(1,1,1)=(3,-1,1) \\
\nabla f(3,2,1)=(7,-2,0)
\end{gathered}
$$

Exercise 0.5. Electrical potential is given by the function:

$$
\phi(x, y, z)=\frac{\mu x}{4 \pi \varepsilon_{0}\left(x^{2}+y^{2}+z^{2}\right)}
$$

Where:

$$
\begin{aligned}
& \varepsilon_{0}-\text { electric constant } \\
& \mu-\text { electric dipole moment }
\end{aligned}
$$

Calculate electric field.

Solution

$$
\begin{gathered}
\vec{E}=-\nabla \phi \\
\frac{\partial \phi}{\partial x}=\frac{\mu}{4 \pi \varepsilon_{0}} \frac{\partial}{\partial x}\left(\frac{x}{x^{2}+y^{2}+z^{2}}\right)=\frac{\mu}{4 \pi \varepsilon_{0}} \frac{x^{2}+y^{2}+z^{2}-2 x^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{2}} \\
\frac{\partial \phi}{\partial y}=\frac{\mu}{4 \pi \varepsilon_{0}} \frac{\partial}{\partial y}\left(\frac{x}{x^{2}+y^{2}+z^{2}}\right)=\frac{\mu}{4 \pi \varepsilon_{0}} \frac{-2 y x}{\left(x^{2}+y^{2}+z^{2}\right)^{2}} \\
\frac{\partial \phi}{\partial z}=\frac{\mu}{4 \pi \varepsilon_{0}} \frac{\partial}{\partial z}\left(\frac{x}{x^{2}+y^{2}+z^{2}}\right)=\frac{\mu}{4 \pi \varepsilon_{0}} \frac{-2 z x}{\left(x^{2}+y^{2}+z^{2}\right)^{2}}
\end{gathered}
$$

$$
\vec{E}=\frac{\mu}{4 \pi \varepsilon_{0}}\left(\frac{-y^{2}-z^{2}+x^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{2}}, \frac{2 y x}{\left(x^{2}+y^{2}+z^{2}\right)^{2}}, \frac{2 z x}{\left(x^{2}+y^{2}+z^{2}\right)^{2}}\right)
$$

Exercise 0.6. Calculate divergence of the electric field from the previous exercise

Solution

$$
\begin{gathered}
\frac{\partial E_{x}}{\partial x}=\frac{\mu}{4 \pi \varepsilon_{0}} \frac{\partial}{\partial x}\left(\frac{-y^{2}-z^{2}+x^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{2}}\right)=\frac{\mu}{4 \pi \varepsilon_{0}} \frac{2 x\left(x^{2}+y^{2}+z^{2}\right)-\left(-y^{2}-z^{2}+x^{2}\right) 4 x}{\left(x^{2}+y^{2}+z^{2}\right)^{3}} \\
=\frac{\mu}{4 \pi \varepsilon_{0}} \frac{-2 x^{3}+6 x y^{2}+6 x z^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{3}} \\
\frac{\partial E_{y}}{\partial y}=\frac{\mu}{4 \pi \varepsilon_{0}} \frac{\partial}{\partial y}\left(\frac{2 y x}{\left(x^{2}+y^{2}+z^{2}\right)^{2}}\right)=\frac{\mu}{4 \pi \varepsilon_{0}} \frac{2 x\left(x^{2}+y^{2}+z^{2}\right)-8 y^{2} x}{\left(x^{2}+y^{2}+z^{2}\right)^{3}}=\frac{\mu}{4 \pi \varepsilon_{0}} \frac{2 x^{3}+2 x z^{2}-6 y^{2} x}{\left(x^{2}+y^{2}+z^{2}\right)^{3}} \\
\frac{\partial E_{z}}{\partial z}=\frac{\mu}{4 \pi \varepsilon_{0}} \frac{\partial}{\partial z}\left(\frac{2 z x}{\left(x^{2}+y^{2}+z^{2}\right)^{2}}\right)=\frac{\mu}{4 \pi \varepsilon_{0}} \frac{2 x\left(x^{2}+y^{2}+z^{2}\right)-8 z^{2} x}{\left(x^{2}+y^{2}+z^{2}\right)^{3}}=\frac{\mu}{4 \pi \varepsilon_{0}} \frac{2 x^{3}+2 x y^{2}-6 z^{2} x}{\left(x^{2}+y^{2}+z^{2}\right)^{3}} \\
\operatorname{div} \vec{E}=\frac{\mu}{4 \pi \varepsilon_{0}} \frac{2 x^{3}+2 x z^{2}-6 y^{2} x+2 x^{3}+2 x y^{2}-6 z^{2} x-2 x^{3}+6 x y^{2}+6 x z^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{3}} \\
=\frac{\mu}{4 \pi \varepsilon_{0}} \frac{2 x z^{2}+2 x^{3}+2 x y^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{3}}=\frac{2 x}{\left(x^{2}+y^{2}+z^{2}\right)^{2}}
\end{gathered}
$$

Exercise 0.7. Calculate curl of a following vector field:

$$
\vec{F}(x, y, z)=x^{2} y z \vec{\imath}+x z^{2} \vec{\jmath}+x^{2} y^{3} z \vec{k}
$$

Solution

$$
\begin{gathered}
\operatorname{rot} \vec{F}=\nabla \times \vec{F}=\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x^{2} y z & x y z & x^{2} y^{3} z
\end{array}\right| \\
=\left(\frac{\partial x^{2} y^{3} z}{\partial y}-\frac{\partial x y z}{\partial z}\right) \vec{\imath}+\left(\frac{\partial x^{2} y z}{\partial z}-\frac{\partial x^{2} y^{3} z}{\partial x}\right) \vec{\jmath}+\left(\frac{\partial x y z}{\partial x}-\frac{\partial x^{2} y z}{\partial y}\right) \vec{k} \\
=\left(3 y^{2} x^{2} z-2 x y\right) \vec{\imath}+\left(x^{2} y-2 x y^{3} z\right) \vec{\jmath}+\left(y z-x^{2} z\right) \vec{k}
\end{gathered}
$$

