Exercise 0.1. Equation of state for a fluid composed of particles with non-zero volume (so not ideal gas) is called van der Waals equation, and has the following form:

$$
p=\frac{R T}{V-b}-\frac{a}{V^{2}}
$$

Where:
a, b - constants characteristic for given gas
T-temperature
V-gas volume
p-pressure

Find how the pressure of the gas changes if:
a) Temperature changes and volume stays constant
b) Volume changes and temperature stays constant

Exercise 0.2. As a result of an experiment, following relationships were found:

$$
\begin{gathered}
\frac{\partial p}{\partial V}=-n \cdot R \cdot T \cdot f(V) \\
\frac{\partial p}{\partial T}=\frac{n \cdot R}{V}-2 \cdot n \cdot R \cdot T \cdot a
\end{gathered}
$$

Where:
n - number of moles
a - known constant
$f(V)$ - unknown function of volume
Find an equation of state for given gas (equation for pressure). Hint: Use Schwarz theorem to obtain $f(V)$, then integrate one of the given equations and use the second one to calculate integration constant.

Exercise 0.3. The concentration at any point in space is given by:

$$
c(x, y, z)=A(x y+y z+z x)
$$

Where A=constant
a) Find the direction in which concentration changes most rapidly with distance from the point $(1,1,1)$. Determine the maximum rate of change at that point.
b) Calculate cosines of direction

Exercise 0.4. Calculate gradient of the function:

$$
f(x, y, x)=x^{2}-y z+x z^{2}
$$

in the points (1,1,1) and (3,2,1).

Exercise 0.5. Electrical potential is given by the function:

$$
\phi(x, y, z)=\frac{\mu x}{4 \pi \varepsilon_{0}\left(x^{2}+y^{2}+z^{2}\right)}
$$

Where:

$$
\varepsilon_{0}-\text { electric constant }
$$

μ - electric dipole moment
Calculate electric field.

Exercise 0.6. Calculate divergence of the electric field from the previous exercise.

Exercise 0.7. Calculate curl of a following vector field:

$$
\vec{F}(x, y, z)=x^{2} y z \vec{\imath}+x z^{2} \vec{\jmath}+x^{2} y^{3} z \vec{k}
$$

