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Linear Irreversible Thermodynamics (LIT), coupling between forces and 
fluxes. 
 

The first law of thermodynamics is a consequence of the existence of a conserved internal 
energy1 and is well understood. Contrary, the origins of the entropy are not well known and 
it’s existence as a state function is explained as a consequence of the second law of 
thermodynamics.2 To consider the irreversible processes, LIT, one has to introduce also the 
fundamental concept of local equilibrium [2]. In the following we will derive basic relations 
of LIT. 

The foundation of the classical thermodynamics form the concepts of the internal energy 
conservation and of the entropy. They are combined in the fundamental canonical equation of 
thermodynamics (CET): 
 .                  (1) ( 1, , ,...,= Ω rU U S m m )
where U, S, Ω and m1,…, mr are the overall internal energy, entropy and mass of the 
components. 
 
1. INTERNAL ENERGY. 

We begin with derivation of the Gibbs relations. To compute the changes of the internal 
energy of the mixture we differentiate the CET, Eq. (1), and the differential form of the Gibbs 
equation and definitions of pressure, temperature and chemical potential follow: 
 2 2d d d dch

i ii
U T S p m kgm sµ ⎡= − Ω+ ⎣ ⎤⎦∑ ,            (2) 

where the term in the brackets shows the dimension of the equation. Note, that above equation 
does not imply that system is closed, i.e., the energy, volume and the mass of components 
may depend on time. Chemical potential, ch

iµ , depends upon the energetics of the chemical 
interactions that occur when a i-component (particle or atom) is added to the system and can 
be expressed as a general function of the components mass or molar fraction: 

 ( )0 ln= +ch
i i i iRT Nµ µ γ ,                 (3) 

       (0 ln= +ch m m
i i i i )RT Nµ µ γ   (4) 

where = ∑i i i
N n ni  and = ∑m

i i i
N m mi  are the molar and mass fractions respectively. The 

activity coefficients iγ  and m
iγ  generally depend on respective fractions but, according to 

Raoult's law, are approximately equal one for pure substances: 1= =m M
i iN N . 

One can integrate Eq. (2) and obtain the integral form of Gibbs relation: 
 2 2ch

i ii
U TS p m kg m sµ ⎡= − Ω+ ⎣∑ ⎤⎦

                                                

.             (5) 
Above equations are often sufficient in a case of equilibrium. The kinetic of the arbitrary 
processes implies the changes at every point of the system (i.e., in its every elementary 
volume). Thus, all variables depend on the time and position and one has to reformulate Eqs. 
(2) – (5). The all extensive variables (U,S,Ω,mi) must now be expressed by their volume 

 
1The numerical values of a system's energy are always specified with respect to a reference 
energy. 
2Despite numerous attempts, not much progress has been made in this area since Boltzmann. 
Arguments explaining the origins of entropy concept are provided by statistical mechanics, 
where the entropy is related to the number of microscopic states available at a fixed energy. A 
state-counting methods are known to compute entropy for a systems at equilibrium. However, 
no such method is generally available for the irreversible case discussed here. 



densities (per unit volume) or by density per mass unit. The first form is helpful in description 
and understanding of the fluxes, the density per mass unit is useful in identification and 
computing of the forces and volume effects. 
Gibbs relation expressed as the energy per mass unit. By replacing in Eq. (5): U = mu,  S = 

ms, Ω = Ωmm, where , the differential form of the Gibbs relation expressed as 

energy per mass unit becomes

ii
m =∑ m

3: 

 d d d d= − Ω +∑m ch
i ii

u T s p Nµ m , (6) 

        = − Ω +∑m ch
i ii

u Ts p Nµ m

ch

, (7) 

where , , andΩm
iu s µ  are expressed as energy per mass unit. 

We consider the multicomponent systems and it is convenient to express characteristic 
volume (volume per mass unit, Ωm, or molar volume, ΩM ) by Euler relations [2,3], for 
example: 
 .             (8) ( ) ( )1 ,..., ; , ,Ω = Ω∑m m m m m

r ii
N N p T p T Ni

m

u

The Euler relation, Eq. (8), allows to write integral form of the Gibbs relations in the form: 
                (9) = − Ω +∑ ∑m m ch m

i i i ii i
u Ts p N Nµ

or introducing the mechano chemical potential also: 
  where   = + = − Ω∑ m ch

i i i i ii
u Ts N pµ µ µ .            (10) 

The differential form of the Gibbs relation, Eq. (6), is expressed now by the following 

equivalent relations: 

              (11) ( )d d d d= − Ω +∑ ∑m m ch m
i i i ii i

u T s p N Nµ

or  
 .              (12) d d d d= − Ω +∑ ∑m m m

i i i ii i
u T s p N Nµ

Gibbs relation expressed by energy density (per volume unit). By multiplying the Eq. (6) 

by the overall density of mass, ρ, we obtain the densities of internal energy, v =u ρ , entropy, 
v =s sρ , and mass, : = m

i iNρ ρ

 d d d d= − Ω +∑m ch
ii

u T s p Nρ ρ ρ µ ρ m
i

                                                

. (13) 

 
3It is easy to show that Eq. (2) becomes: ( ) ( ) ( ) (d d d d= − Ω + )∑m ch

i ii
mu T ms p m mNµ m . 

By differentiation and dividing by overall mass we get: 

( ) dd d d d= − Ω + − − + Ω −∑ ∑m ch m m ch m
i i i ii i

mu T s p N u Ts p N
m

µ µ  and 

( ) 2

dd d d d= − Ω + − − + Ω−∑ ∑m ch m ch
i i i ii

mu T s p N U TS p m
m

µ
i
µ

m

. From integral form of the 

Gibbs relation, Eq. (4), the term in brackets equals zero and consequently we get: 

d d d d= − Ω +∑m ch
i ii

u T s p Nµ . 



Using identity ( )(d d= + )dxy x y y x  and subsequent rearranging results in: 

 ( ) ( )v vd d d d d= − Ω + + − + Ω −∑ ∑m ch m ch m
i i i ii

u T s p u Ts p N
i

ρ µ ρ µ ρ , (14) 

 ( )v vd d d d= − Ω +∑m ch
i ii

u T s p ρ µ ρ  (15) 

which using the integral Gibbs and the Euler (Ωmρ = 1) relations becomes: 
 v vd d d= +∑ ch

ii
u T s iµ ρ  (16) 

or introducing Eq. (8) also 
 v vd d d d= − Ω +∑ ∑m

i i ii i
u T s p iρ µ ρ . (17) 

Thus, from Eqs. (7) and (10) the integral forms of Gibbs relation are given by: 
 v v ,= − +∑ ch

i ii
u Ts p µ ρ  (18) 

 v v      .= +∑ i ii
u Ts µ ρ  (19) 

Summary: 
2

2 2 1 2
2 3
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2. ENTROPY AND ENTROPY PRODUCTION 

The entropy production (2nd law) must be always positive in an isolated system and leads 
to a inevitable coupling of the driving forces and corresponding fluxes that are present in a 
nonequilibrium system. In classical thermodynamics, the value of a system's entropy can be 
calculated by devising a reversible path from a reference state to the actual system's state4 and 
integrating  along that path. For a nonequilibrium system, a reversible path is 
generally unavailable. 

d /= revS Q T

 To obtain a local quantification of entropy in a nonequilibrium material, we consider a 
continuous system that has gradients in temperature, chemical potential, and other intensive 
thermodynamic quantities. Fluxes of heat, mass, and other extensive quantities will result and 
proceed till the system approaches equilibrium. Assume that the system volume, , can be 
divided into the finite number of sub-volumes in which the temperature, pressure, chemical 
potential, and other thermodynamic potentials can be reasonably accurate expressed by their 
average values. The local equilibrium assumption implies that the thermodynamic state of 
each cell is specified (thermalization occurs) and the Gibbs-Duheme relation holds (there is a 
balance of the local values of thermodynamic potentials). If local equilibrium holds (in such 
non-equilibrium system) for each sub-space, then the differential form of Gibbs's relation can 
be used to calculate changes in the local equilibrium states as a result of evolution of the 
spatial distribution of thermodynamic potentials. Especially in a case of solids it is convenient 
to generalize the work term in the differential form of Gibbs equation

( )Ω t

5, Eq. (15) and/or (17): 

 
4Entropy can not be measured directly. 
5To simplify the mathematics, from now on we pay no attention here to the volume effects 
caused by the pressure, the electric field, the surface tension etc. Such simplification is 



 v v dd d d−= +∑ ch
ii iu T s w µ ρ , (20) 

dw is internal energy density change due to the work (other than chemical) in the elementary 
volume, i.e., dw is the work density. 
The work density can include all types of (nonchemical) work likely for the system such as: 

- the elastic work density caused by small-strain deformation:  

(where σ  and ε  are the stress and strain tensors), which can be further separated 
into hydrostatic and deviatoric terms: 

d dσ ε= −∑ ∑ kl klk l
w

kl kl

d d dP σ ε= Ω−∑ ∑ % %kl klk l
w , where  and ε  

are the deviatoric stress and strain tensors, respectively. The  term represents a 
work of expansion/compression; 

σ% % kl

dP Ω

- the electrostatic potential work, d d= −iw iqϕ , where ϕ  is the electric potential 
=i i iq Fz Miρ  is the charge density,  denote the Faraday constant and 

the effective charge and the molar mass of i-component; 
,  and iF z Mi

A- the interfacial work, d dw γ= − , in systems containing extensible interfaces (where γ  
is the interfacial energy density and A is the interfacial area); 

- the magnetization work, d dbw H= − ⋅
rr

 ( where H
r

 is the magnetic field and  is the 
total magnetic moment density, including the permeability of vacuum) and  

b
r

- the electric polarization work, dw E d p= − ⋅
r r  (where E

r
 is the electric field given by 

grad= −
r
E ϕ  and pr  is the total polarization density, including the contribution from 
the vacuum).  

If the system can perform other types of work, one must introduce the necessary terms in Eq. 
(20). The generalized form of Gibbs relation is now: 
 v vd d d= +∑ j jj

u T s ψ ξ ,                 (21) 

where jψ  is a j-th generalized intensive quantity and jξ  its conjugate extensive quantity 
density6. The jψ  may be scalar, vector, or, generally, tensor quantities; however, each product 
in Eq. (22) must be a scalar. 

When electro-mechano-chemical processes in multicomponent ionic solid are concerned, 
the sum on r.h.s. of Eq. (21) reads 

1
1 1 1

1

d d d d ... d d ... dP σ ε= − Ω+ + + + + + +∑ ∑ ∑ % % ch chr
j j kl kl r rj k l

r

Fz Fz
M M rψ ξ ϕ ρ ϕ ρ µ ρ µ ρ . (22) 

By introducing the electrochemical potential, = +ch
i i iFz Mµ µ ϕ i , Eq. (22) becomes: 

 
d d d

               d d d

P σ ε

P σ ε −

⎛ ⎞
= − Ω+ + +⎜ ⎟

⎝
= − Ω+ +

∑ ∑ ∑ ∑

∑ ∑ ∑

% %

% %

ch i
j j kl kl ij k l i

i

e ch
kl kl i ik l i

Fz
M

d
⎠

iψ ξ µ

µ ρ

ϕ ρ

                                                                                                                                                        

 (23) 

 The differential terms in (21) are the first-order approximations of the increase of the 
quantities at a point (in an elementary volume). Such changes may as well represent a 
quantity changes in time, t, at a given point and may also follow certain trajectory in space. 
Thus from (21) it follows for example: 

 

d
allowed in the condensed phases and when density of respective energy field is low when 
compared with chemical term, for example the Ω∑ m

i ii
p ρ  term in Eq. (17). 

6The generalized intensive and extensive quantities may be regarded as generalized potentials 
and displacements, respectively. 



 v vgrad grad grad ,= +∑ jj
u T s jψ ξ  (24) 

 
v v

,
∂∂ ∂

= +
∂ ∂ ∂∑ j

jj

u sT
t t t

ξ
ψ  (25) 

 
v v DD D ,

D D D
= +∑ j

jj

u sT
t tυ υ t υ

ξ
ψ  (26) 

where D grad
D

∂
= + ⋅
∂

y y y
t tυ

υ , denotes the Lagrange derivative7 of quantity y. 

The change in the overall molar entropy in the system, S, can be calculated by summing the 
entropies in each sub-space, sv, i.e., by integrating over the entire system volume.8  
 Equation (21) was derived from the canonical equation of thermodynamics. As s, u, and 
the jξ  are state variables, the Gibbs relation holds if all quantities refer to a sub-volume 
under the local equilibrium assumption. When sv is considered as the dependent variable, 
from the Gibbs relation we get how sv varies with changes in the independent variables, u and 

jξ : 

 v v1 1d d d= − ∑ j jj
s u

T T
ψ ξ . (27) 

 In equilibrium thermodynamics and when internal energy is fixed, the entropy 
maximization determines equilibrium. Entropy increase plays a central role in LIT where 
open systems and multivalued fields are often analyzed, e.g., electro-mechano-chemistry. 
Since energy, heat, and mass may flow during processes, they cannot be treated as isolated 
systems, and application of the second law must be generalized. Namely, must take account of 
the production and transport of entropy, e.g., by means of the components diffusion. 

We now will consider entropy as a flowing quantity in a system (like energy, mass and 
charge). Mass, charge, and energy are conserved quantities and, if they are not formed by 
reactions, the basic form of the continuity equation holds: ( )div 0∂ ∂ + =i i itρ ρυ . 

Entropy is not conserved as it can be created or destroyed locally (in the chemical 
reactions, by diffusion, etc). Entropy flux, sJ , and the consequences of entropy production 
are developed in the next section. 
 
2.1. Entropy Production 
The local rate of entropy creation per unit volume is denoted by sA . The total rate of entropy 
production in a volume  equals ( )Ω t

( )
d

Ω∫
s

t
A x , for example in an isolated (closed) system the 

overall produced entropy is given by: 
( ) ( )

vd d
d Ω Ω

=∫ ∫ s

t t
s x A x

t
d . However, in open system or 

when we consider sub-space where transport processes occur, the entropy balance depends 
upon how much entropy is produced within it and upon how much entropy flows through its 
boundaries. By 2nd law of thermodynamics the overall entropy of the mass contained by ( )tΩ  
is affected by the heat flow and the local entropy sources: 

                                                 
7When velocity of the point equals material drift velocity, D grad

D
∂

= + ⋅
∂drift

drifti i
it tυ

ρ ρ υ ρ , the 

Lagrange derivative is called material (or substantial) derivative. 
8Note that sv is the entropy of a sub-space (per elementary volume), S is the entropy of the 
entire system, and s is the entropy per mass unit. 



  
( ) ( )

d 1d div
d Ω Ω

⎛= −⎜
⎝ ⎠∫ ∫ s

Qt t
s x A J x

t T
ρ d⎞⎟ , (28) 

where   denotes the heat flux, which is given by the proper constitutive formulae, qJ v =s sρ  
is the entropy density and sA  a sum of all local sources of entropy (due to friction, diffusion, 
etc.). Applying the continuity equation (Liouville theorem) Eq. (28) becomes: 

 ( )
( ) ( )

v
v 1div d div d

Ω Ω

⎛ ⎞∂ ⎛+ = −⎜ ⎟ ⎜∂ ⎝ ⎠⎝ ⎠
∫ ∫m s

Qt t

s s x A J
t T

υ ⎞
⎟ x  (29) 

or 

  ( )
( ) ( )

1div d div d
Ω Ω

∂⎛ ⎞ ⎛+ = −⎜ ⎟ ⎜∂⎝ ⎠ ⎝∫ ∫m s

t t

s s x A J
t T
ρ ρυ ⎞

⎟
⎠

q x . (30) 

Integrals in (29) and (30) can be omitted and the local entropy production rate at the fixed 
position equals [2]: 

 ( )
v

v 1div div∂
+ = −

∂
m s

Q
s s A
t T

υ J  (31) 

  ( ) 1div div∂
+ = −

∂
m s

Q
s s A
t T

Jρ ρυ . (32) 

Including the heat flux into the entropy flow term results in: 

 
v

v 1div grad
⎛ ⎞∂

+ + = ⋅ +⎜ ⎟∂ ⎝ ⎠
Q m

Q

Js s J
t T T

υ sA , (33) 

  1div grad
⎛ ⎞∂

+ + = ⋅ +⎜ ⎟∂ ⎝ ⎠
Q m

Q

Js s J
t T T
ρ ρυ sA . (34) 

Using now the mass continuity, the equation (34) can be written as: 

 ( ) 2

1grad div div grad∂ ∂⎛ ⎞+ ⋅ + + + = − ⋅⎜ ⎟∂ ∂⎝ ⎠
Qm m s

Q

Js s s A J T
t t T T

ρρ ρυ ρυ  (35) 

and entropy production rate at the centre of mass position9 equals: 

 1div grad
⎛ ⎞ ⎛ ⎞+ = + ⋅⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠m

Q s
Q

JDs A J
Dt Tυ

ρ
T

.  (36) 

In Eqs. (33), (34) and (36) we have shown that rate of entropy production does not depend on 
the frame of reference. 
 In order to quantify the local entropy production, As, in Eq. (36), we will now assume 
purely diffusional mass and energy transport10 and use the differential form of the Gibbs 
relation. From Eq. (21), the time derivative of entropy density in a cell is 

 
v v1 1 ∂∂ ∂
= −

∂ ∂ ∑ j
jj

s u
t T t T t∂

ξ
ψ .                (37) 

 Using conservation principles (continuity equations) in Eq. (37),11

                                                 
9The point moving with the velocity of the local mass centre, mυ . 
10We neglect the termal expansion, stresses and Kirkendall effect due to not balanced mass 
fluxes. 
11 Here, all the extensive densities are treated as conserved quantities. This is not the general 
case. For example, polarization and magnetization density are not conserved. It can be shown 
that for nonconserved quantities, additional terms will appear on the right-hand side of Eq. 
(42). 



 
v 1 div div∂
= − +

∂ ∑ ju
jj

s J
t T T

J
ψ

.               (38) 

Because for a scalar a and a vector B  we have the following identity: 
                 (39) ( )div grad div= ⋅ +aB B a a B
and the Eq. (38) can be written 

 
v 1div grad grad

⎛ ⎞∂
+ − = ⋅ − ⋅⎜ ⎟∂ ⎝ ⎠

∑
u

j u
j j

s J J J J
t T T T

j
j T

ψ ψ
.         (40) 

Comparison terms in Eqs. (33) and (40) allows identifying the entropy flux and entropy 
production: 

 (1
= −∑s u

j jj
J J J

T
ψ ) ,                  (41) 

 1grad grad= ⋅ − ⋅∑ js u
jj

A J J
T T

ψ
.               (42) 

The entropy flux is related to the sum of all potentials multiplying their conjugate fluxes. The 
local entropy production is due to the heat flow and is produced by all fluxes, i.e., the every 
process of diffusive mass transport results in energy dissipation (heat is produced locally). 
Internal energy and heat fluxes. Equation (42) can have more suitable form by introducing 
the flux of heat, JQ. From the generalized form of the Gibbs relation, Eq. (21), we have 
 v vd d d= +∑ j jj

u Q ψ ξ ,                  (43) 

where dQ is the amount of heat transferred to an elementary volume and we have assumed the 
local equilibrium, . v vd d=Q T s
The time derivative of internal energy density in an unit volume is 

 
v v

v vd d d
∂∂ ∂

= + ⇒ = +
∂ ∂ ∂∑ j

j j jj

u Qu Q
t t ∑ j t

ξ
ψ ξ ψ .         (44) 

Using conservation principles (continuity equations) in Eq. (44) we get 
 .                (45) div div div= +∑u

Q jj
J J ψ jJ

j

Using the identity (39), Eq. (45) becomes 
 ( )div div grad= + − ⋅∑ ∑u

Q j j jj j
J J J Jψ ψ .           (46) 

The terms on r.h.s. denote the overall internal energy flux and work by the generalized forces. 
Thus, we may conclude that the overall internal energy flux when the local equilibrium 
condition holds is given by: 
         = +∑u

Q j
J J Jψ j j .           (47) 

Combining Eqs. (42) and (47):  
( )1grad grad ,

,

−⎧ = ⋅ − ⋅⎪
⎨

= +⎪⎩

∑
∑

s u
j jj

u
Q j jj

A J T J T

J J J

ψ

ψ
 results in 

 1 1grad grad= ⋅ − ⋅∑s
Q jj

A J J
T T jψ . (48) 

 
2.2 Conjugated Forces and Fluxes 
Multiplying Eq. (48) by T gives 

 grad grad= − ⋅ − ⋅∑Qs
jj

J
TA T J

T jψ .              (49) 

 Every term on the right-hand side of Eq. (49) is the scalar product of a flux and a gradient 
of its conjugate force. Furthermore, each term has the same units as energy dissipation 



density, J m-3 s-l, and is a flux multiplied by a thermodynamic potential gradient. Each term 
that multiplies a flux in Eq. (49) is therefore a force for that flux. The paired forces and fluxes 
in the entropy production rate can be identified in Eq. (49) and are termed conjugate forces 
and fluxes. Basic examples are listed in Table 1 for heat, component i, and electric charge. 
These are Fourier's law of heat flow, a Nernst-Planck diffusion flux for mass diffusion at 
constant temperature12, and Ohm's law for the electric current density at constant temperature. 
The mobility, Bi, is defined as the velocity of component i induced by a unit force, K is the 
thermal conductivity; Bi  the i-component mobility and  kq  the electrical conductivity. 
 
Table 1: Selected conjugate forces, fluxes, and empirical diffusion constitutive relations 
(force-flux relations) for systems with unconstrained components, i. 
 

Extensive Quantity Flux Conjugate Force     Constitutive flux equation 
Heat QJ       1 grad− T

T
 Furier’s:               grad= −QJ K T

Component i d
iJ         grad− ch

iµ  Nernst-Planck: grad= −d c
i i iJ B c h

iµ
Charge qJ  grad grad− = − Vϕ Ohm’s:            grad= −q qJ k ϕ  

 
These forces and fluxes have been defined as an unconstrained extensive quantities (i.e., the 
differential extensive quantities in Eq. (22) can vary independently). However, many systems 
have constraints relating changes in their extensive quantities, and these constrained cases are 
not analyzed here. Besides, we often assume; for simplicity, that the material is isotropic and 
that forces and fluxes are parallel. This assumption is not valid for anisotropic materials.  
 
2.3. The Consequences of the Basic Postulate of Irreversible Thermodynamics. 
The basic postulate of irreversible thermodynamics is that, near equilibrium; the local entropy 
production is nonnegative: 

 div 0∂
≡ + ≥
∂

s sA J
t

s

T

.                   (50) 

Using the empirical laws displayed in Table 1, the entropy production is easy to identify for 
an elementary process. For instance, if only heat flow is occurring, then, using Eq. (49) and 
Fourier's heat-flux law,  
 ,                    (51) grad= −QJ K
results in 

 
2grad

=s K T
TA

T
,                   (52) 

which predicts (because of Eq. (50)) that the thermal conductivity will always be positive. 
 If mass diffusion is the only operating process, 
 

2
grad=∑s

i i ii
TA B c µ ch

                                                

,                 (53) 
implying that each mobility must be always positive. 
The local entropy production in a case of heat flow and pure diffusion of mass only. 
From differential form of Gibbs equation we have: 

 

J D c

12Under special circumstances, the Nernst-Planck flux reduces to the classical 1st Fick’s law: 
i , where  is the mass diffusivity. grad= −d

i i iD



v v ∂∂ ∂
= −

∂ ∂ ∂∑ ch i
ii

s uT
t t t

ρµ . 

Introducing the mass continuity and rearranging 
v 1 div div

⎛ ⎞∂
= − + ⎜ ⎟∂ ⎝ ⎠

∑
ch

u di
ii

s J J
t T T

µ , 

v 1div div grad grad
⎛ ⎞∂

= − + + ⋅ − ⋅⎜ ⎟∂ ⎝ ⎠
∑ ∑

ch chu
d u di i
i ii i

s J J J J
t T T T T

µ µ , 

v 1div grad grad
⎛ ⎞⎛ ⎞∂

+ − = ⋅ − ⋅⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎝ ⎠
∑ ∑

ch chu
d u di i
i ii i

s J J J J
t T T T T

µ µ , 

and by comparing with Eq. (33): 

 1grad grad= ⋅ − ⋅∑
ch

s u d i
ii

A J J
T T

µ . (54) 

The energy flux, Eq. (47), in the discussed case equals: 
         = +∑u

Q ii
J J Jµ ch d

i            (55) 
Combining relations (54) and (55) results in: 

        1 1grad grad= ⋅ − ⋅∑s d
Q ii

A J J
T T

ch
iµ        (56) 

or  

        grad grad= − ⋅ − ⋅∑Qs d
ii

J
TA T J

T
ch
iµ .       (57) 

 
3 LINEAR IRREVERSIBLE THERMODYNAMICS (LIT) 
 

In many materials, a gradient in temperature will produce not only a flux of heat but also a 
gradient in electric potential. This coupled phenomenon is called the thermoelectric effect. 
Coupling from the thermoelectric effect works both ways: if heat can flow, the gradient in 
electrical potential will result in a heat flux. That a coupling between different kinds of forces 
and fluxes exists is not surprising; flows of mass (atoms), electricity (electrons), and heat 
(phonons) all involve particles possessing momentum, and interactions may therefore be 
expected as momentum is transferred between them. A formulation of these coupling effects 
can be obtained by generalization of the previous empirical force-flux equations. 
 
3.1 General Coupling between Forces and Fluxes 
In general, the fluxes may be expected to be a function of all the driving forces acting in the 
system, Fj; for instance, the heat flux JQ can be a function of other forces in addition to its 
conjugate force FQ; that is, 

( )1, , ,...,=Q Q Q q rJ J F F F F . 
Assuming that the system is near equilibrium and the driving forces are small, each of the 
fluxes can be expanded in a Taylor series near the equilibrium point 

. To first order: 1 ... 0= = = = =Q q rF F F F
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or in abbreviated form, 
 ,          (59) where , , ,1,...,=∑J L F Q qα αβ ββ

α β

and  

 JL
F
α

αβ
β

∂
=
∂

                     (60) 

is evaluated at equilibrium (  for all 0Fβ = β ).13 In this approximation, the fluxes vary 
linearly with the forces.  
 In Eqs. (58) and (60), the diagonal terms, Lαα , are called direct coefficients; they couple 
each flux to its conjugate driving force. The off-diagonal terms are called coupling 
coefficients and are responsible for the coupling effects ( also called cross effects) identified 
above. 
 Combining Eqs. (49) and (59) results in a relation for the entropy production that applies 
near equilibrium: 
 =∑ ∑sTA L F Fαβ α ββ α

.                  (61) 

 The connection between the direct coefficients in Eq. (59) and the empirical force-flux 
laws can be illustrated for heat flow. If a bar of pure material that is an electrical insulator has 
a constant thermal gradient imposed along it, and no other fields are present and no fluxes but 
heat exist, then according to Eq. (59) and Table 2.1, 

 1 grad⎛= −⎜
⎝ ⎠

Q QQJ L T
T

⎞
⎟ .                  (62) 

Comparison with Eq. (51) shows that the thermal conductivity K is related to the direct 
coefficient LQQ by 

 QQL
K

T
=                       (63) 

 If the material is also electronically conducting, the general force-flux relation-ships are 
 ,                   (64) Q QQ Q QqJ L F L F= + q

q

                                                

 .                   (65) q qQ Q qqJ L F L F= +
If a constant thermal gradient is imposed and no electrically conductive contacts are made at 
the ends of the specimen, the heat flow is in a steady state and the charge-density current must 
vanish. Hence Jq = 0 and a force 

 
13 Note that the fluxes and forces are written as scalars, consistent with the assumption that the 

material is isotropic. Otherwise, terms like 
∂

=
∂

Q
Q

Q

J
J

F QF  must be written as rank-two 

tensors multiplying vectors, and the equations that result can be written as linear relations. 



 qQ
q

qq

L
F

L
= QF                      (66) 

will arise. The existence of the force Fq indicates the presence of a gradient in the electrical 
potential, , along the bar. Therefore, using Eqs. (66) and (64), ∇Φ

 grad grad .
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In such a material under these conditions, Fourier's law again pertains, but the thermal 
conductivity K depends on the direct coefficient LQQ, as in Eq. (63), as well as on the direct 
and coupling coefficients associated with electrical charge flow. In general, the empirical 
conductivity associated with a particular flux depends on the constraints applied to other 
possible fluxes. 
 
3.2 Force-Flux Relations when Extensive Quantities are Constrained 
In many cases, changes in one extensive quantity are coupled to changes in others. This 
occurs in the important case of substitutional components in a crystal devoid of sources or 
sinks for atoms, e.g., dislocations, pores, etc. We do consider here the components that are 
constrained to lie on a fixed network of sites (i.e., the crystal structure), where each site is 
always occupied by one of the components of the system. Whenever one component leaves a 
site, it must be replaced. This is called a network constraint (i.e., lattice sites conservation). 
For example, in the case of substitutional diffusion by a vacancy-atom exchange mechanism, 
the vacancies are one of the components of the system; every time a vacancy leaves a site, it 
is replaced by an atom. As a result of this replacement constraint, the fluxes ,of components 
are not independent of one another. 
 This type of constraint will be nonexistent in amorphous materials because the 
components can be added/removed anywhere in the material without exchanging with any 
other components. The dNi will also be independent for interstitial solutes in crystalline 
materials that lie in the interstices between larger substitutional atoms, as, for example, carbon 
atoms in body-centered cubic (b.c.c.) Fe. In such a system; carbon atoms can be added or 
removed independently in a dilute solution. 
 When a network constraint is present, 
                      (68) d =∑ ii

N

Solving Eq. (68) for  and putting the result into Eq. (20) yields d rN

                (69) ( )
1

1

d d d d
−

=

= + − −∑
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ch ch
i r
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T s u w cµ µ

Starting with Eq. (69) instead of Eq. (20) and repeating the procedure that led to Eq. (49), the 
conjugate force for the diffusion of i-component in a network-constrained crystal takes the 
new form 
 (grad= − −ch ch

i iF µ µ .                  (70) 
The conjugate force for the diffusion of a network-constrained i-component depends now 
upon the gradient of the difference between the chemical potential of i-component and r-
component rather than on the chemical potential gradient of i-component alone. If in the case 
of substitutional diffusion by the vacancy exchange mechanism, the vacancies are taken as the 
component Nr, the driving force for i-component depends upon the gradient of the difference 
between the chemical potential of i-component and that of the vacancies, The difference 
arises because, during migration, a site's state changes from occupancy by an atom of type i to 
occupancy by a vacancy. This result has been derived and extended by Larche and Cahn, who 



investigated coherent thermomechanical equilibrium in multicomponent systems with elastic 
stress fields [4]. 
 In the development above, the choice of the Nr-th component in a system under network 
constraint is arbitrary. However, the flux of each component in Eq. (59) must be independent 
of this choice [2,4]. This independence imposes conditions on the Lαβ  coefficients. To 
demonstrate, consider a three-component system at constant temperature in the absence of an 
electric field, where components A, B, and C correspond to i = 1, 2, and 3, respectively. If 
component C is the Nr-th component, Eqs. (59) and (70) yield 
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On the other hand, if  B is the Nr-th component, 
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Because  must be the same as  and the gradient terms are not necessarily zero, Eqs. (71) 
and (72) imply that 

iJ ′iJ

                    (73) 
0,
0,
0,

+ + =
+ + =
+ + =

AA AB AC

BA BB BC

CA CB CC

L L L
L L L
L L L

or generally, 
 . (74) 0=∑ ijj

L

If the lattice network defines the coordinate system in which the fluxes are measured and 
lattice sites are conserved, the network constraint requires that 
                       (75) 0=∑ ii

J
and this imposes the further condition on the Lij that 
 .                     (76) 0=∑ iji

L
In other words, the sum of the entries in any row or column of the matrix Lij is zero. 
 The conjugate forces and fluxes that are obtained when the only constraint is a network 
constraint are listed in Table 2 However, there are many cases where further constraints 
between the extensive quantities exist. For example, suppose that component 1 is a 
nonuniformly distributed ionic specie that has no network constraint. Each ion will experience 
an electrostatic force due to the local electric field, as well as a force due to the gradient in its 
chemical potential. This may be demonstrated in a formal manner by using Eq. (22), noting 

that  in this case is not independent of 1dq 1dρ  but, instead, 1
1 1

1
d d= Fzq M ρ , where  is the 

electrical charge per mol assuming that all electric current is carried by ion showing -
effective charge. Thus  and 

1Fz

1z

1dq 1dρ  can be combined as in Eq. (22) into a single term 

1
1

1
d⎛ +⎜

⎝ ⎠
ch Fz

M 1
⎞⎟µ ϕ ρ ,  and when this term is carried through the process leading to Eq. (49), 

the ion flux, , is found to be conjugate to an ionic force 1J
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1 1

1

grad
⎛ ⎞

= − +⎜
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ch FzF
M ⎟µ ϕ .                 (77) 

The potential that appears in the total force expression is the sum of the chemical potential 
and the electrical potential of the charged ion and is generally called the electrochemical 
potential. The other must be added to the chemical potential force if, for example, the particle 
possessed a magnetic moment and a magnetic field were present, etc. 
 
Table 2: Conjugate Forces and Fluxes for Systems with Network-Constrained r-Components 
 

Quantity Flux Conjugate Force 
Heat QJ  1 grad− T

T
 

Component i iJ  ( )grad− −ch ch
i rµ µ

Charge qJ  grad− ϕ  
 
3.3. The Diffusion Potential 
Any potential that accounts for the storage of energy due to the addition of a component 
determines the driving force for the diffusion of that component. The sum of all such 
supplemental potentials, including the chemical potential, gives the total conjugate force for a 
diffusing component and is called the diffusion potential for that component and is 
represented by the symbol iµ .14 The conjugate force for the flux of i-component will always 
have the form 
 grad= −iF iµ ,                    (78) 
For the case of electrochemical, mechano-chemical and electro-mechano-chemical potential 
expressed as energy per mol we have respectively, 
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where ΩM
i  is the partial molar volume. 

When we express the diffusion potential as energy per mass unit the diffusion velocities due 
the potentials shown in Eq. (79) are given by: 
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where Bi [s] is the mobility that can be visualized as an average time during which the i-
component will reach its diffusion velocity. 

                                                 
14The potential iµ  is an aggregate of all reversible work terms that can be transported with the 
species i. Using Lagrange multipliers, Cahn and Larche derive a potential that is a sum of the 
diffusant's elastic energy and its chemical potential, i.e., Cahn and Larche invent the term 
diffusion potential to describe this sum. 



 It is easy to show that in a case of ideal solid solution ( )0 ln   and  = + =i i iRT N c constµ µ  
and when diffusion potential is chemical potential only (effects of pressure and electrical field 
are negligible) from Eq. (79) and previous relations the diffusion flux is given by: 
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which upon substituting becomes: 
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and finally: 
 . (83) grad grad= − =d

i i i iJ B RT c D
Equation (83) is called 1st Fick’s law where we have shown also that diffusivity and mobility 
of the component are related by the Nernst-Einstein relation. This relation, when mobility is 
expressed per atom, is usually used in the form: 
 =i iD B kT . (84) 
 
3.4 Onsager's Symmetry Principle 
Three postulates were utilized to derive the relations between forces and fluxes: 

1. The rate of entropy change and the local rate of entropy production can be inferred by 
invoking equilibrium thermodynamic variations and the assumption of local 
equilibrium. 

2. The entropy production is nonnegative. 
3. Each flux depends linearly on all the driving forces. 

Above postulates do not follow from statements of the 1st and 2nd laws of thermodynamics. 
 Onsager's principle supplements these postulates and follows from the statistical theory of 
reversible fluctuations [5] .Onsager's principle states that when the forces and fluxes are 
chosen so that they are conjugate, the coupling coefficients are symmetric: 
 L Lαβ βα= ,                     (85) 
which simplifies the coupled force-flux equations and has led to experimentally verifiable 
predictions [6] and guarantees that all the eigenvalues of Eq. (59) will be real numbers. Also, 
the quadratic form in Eq. (61) together with Eq. (50) implies that the kinetic matrix ( )Lαβ  will 
be positive definite - all the eigenvalues are nonnegative.15 Equation (85) can be rewritten 

 
JJ
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This equation shows that the change in flux of some quantity caused by changing the direct 
driving force for another is equal to the change in flux of the second quantity caused by 
changing the driving force for the first. These equations resemble the Maxwell relations from 
thermodynamics. 
                                                 
15Positive definite means that the matrix when left- and right-multiplied by an arbitrary vector 
will yield a nonnegative scalar. If the matrix multiplied by a vector composed of forces is 
proportional to a flux, it implies that the flux always has a positive projection on the force 
vector. Technically, one should say that Lαβ  is nonnegative definite but the meaning is clear. 



 The statistical-mechanics derivation of Onsager's symmetry principle is based on 
microscopic reversibility for systems near equilibrium. That is, the time average of a 
correlation between a driving force of type α  and the fluctuations of quantity β  is identical 
with respect to switching α  and β  [6] . 
 A demonstration of the role of microscopic reversibility in the symmetry of the coupling 
coefficients can be obtained for a system consisting of three isomers, A, B, and C [7, 8]. Each 
isomer can be converted into either of the other two, without any change in composition. 
Assuming a closed system containing these molecules at constant temperature and pressure, 
the rate of conversion of one type into another is proportional to its number, with the constant 
of proportionality being a rate constant, K (Fig. 2.1) .The rates at which the numbers of A, B, 
and C change are then 
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At equilibrium, the time derivatives in Eq. (87) vanish. Solving for equilibrium in a closed 
system ( ) yields .+ + = =tot

A B CN N N N const

 , ,
tot tottot

eq eq eq
A B C

K N K NK NN N N
K K K K K K K K K

βα γ

α β γ α β γ α β γ

= = =
+ + + + + +

,     (88) 

where 
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For the system near equilibrium, let  be the difference between the number of A and its 
equilibrium value, . Introducing this relationship and similar ones for B and C 
into Eq. (87), 
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with similar expressions for B and C . 
 If Henry's law is obeyed, the activity coefficient is constant and expanding the chemical 
potential (Eq. (3)) near equilibrium (small ) yields / eq
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Substituting Eq. (91) into Eq. (90) and carrying out similar procedures for B and C, 

 

( )

( )

( )

d ,
d

d ,
d

d .
d

− −

− −

− −

+
= − ∆ + ∆ + ∆

+
= ∆ − ∆ + ∆

+
= ∆ + ∆ − ∆

eq eqeq
AC AB A ch eq ch eq ch eqCA CA BA B

A B

eq eqeq
BC BA Bch eq ch eq ch eqCB CB AB A

A B

eqeq eq
CA CB Cch eq ch eq ch eqC AC A BC B

A B

K K N K NY K N
t kT kT kT

K K N K NY K N
t kT kT kT

K K NY K N K N
t kT kT kT

µ µ µ

µ µ

µ µ

−

−

−

C

C

C

µ

µ

     (92) 



These constitute a set of linear relationships between the potential differences −−ch ch eq
i iµ µ , 

which drive the Yi  toward equilibrium and their corresponding rates, dYi/dt. In terms of the 
Onsager coefficients, they have the form 
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When microscopic reversibility is present in a complex system composed of many particles, 
every elementary process in a forward direction is balanced by one in the reverse direction. 
The balance of forward and backward rates is characteristic of the equilibrium state, and 
detailed balance exists throughout the system. Microscopic reversibility therefore requires that 
the forward and backward reaction fluxes be equal, so that 
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          (94) 

Comparison of Eq. (93) with Eqs. (92) and (94) shows that Lij = Lji and therefore 
demonstrates the role of microscopic reversibility in the symmetry of the Onsager 
coefficients. 
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