Exercise 4.1.

For following oxides, write down the defect formation processes (Schottky, Anti-Schottky, Frenkel, Antti-Frenkel) and suitable reaction constant for each:

- Cu₂O
- Cr₂O₃
- TiO₂
- V₂O₅

Exercise 4.2.

For Cu₂O, knowing that the main type of defects are Frenkel defects and knowing values of K_s, K'_s, K'_f, find concentration of interstitial copper ions.

Exercise 4.3.

Find all defect concentrations ($[V_{Ti}^{4'}]$, $[V_O^{\bullet\bullet}]$, $[Ti_i^{4\bullet\bullet}]$, $[O_i'']$) for TiO₂. Assume that dominating type of defects are Schottky defects. K_F , K'_S , K'_F are known.

Exercise 4.4.

For given oxides, write defect formation processes (and reaction constants) assuming nonstochiometry of compounds. For every oxide take under consideration all possible cases:

- Excess of a metal (Me_{n+y}X_m)
- \circ Shortage of an oxidant (Me_nX_{m-v})
- Shortage of a metal (Me_{n-y}X_m)
- \circ Excess of an oxidant (Me_nX_{m+y})

Oxides:

- Cr₂O₃
- ZrO₂
- Cu₂O

Exercise 4.5.

Knowing that ZnO usually has an excess of a metal, $Zn_{1+\gamma}O$, find concentrations of every type of defects ($[V_O^{\bullet\bullet}]$, $[e^-]$, $[Zn_i^{2\bullet}]$, $[h^\bullet]$, $[O_O'']$, $[V_{Zn}^{2\prime}]$) as a functions of oxygen pressure. All reaction constantans (K_1 , K_2 , K_3 , K_4 , K_F , K_F , K_S , K_S , K_S) are known, where:

$$K_e = [h^{\bullet}][e^{-}]$$

Exercise 4.6.

Knowing that ZrO_2 usually has shortage of oxygen: $ZrO_{2-\gamma}$, find concentrations of every type of defects ($[V_O^{\bullet\bullet}]$, $[e^-]$, $[Zr_i^{4\bullet}]$, $[h^{\bullet}]$, $[O_O'']$, $[V_{Zr}^{4\prime}]$) as a functions of oxygen pressure. All reaction constantans (K_1 , K_2 , K_3 , K_4 , K_F , K_F , K_S , K_S , K_S) are known, where:

$$K_e = [h^{\bullet}][e^{-}]$$