Rys historyczny

Charles Coulomb – pierwszy przyjął możliwość występowania zjawiska piezoelektrycznego.

W 1880 r. *Jacques i Pierre Curie* zaobserwowali zjawisko generowania ładunku elektrycznego pod wpływem przyłożonej siły na płytce wyciętej z monokryształu kwarcu.

W 1881 r. *Gabriel Lippmann* pierwszy zasugerował prawdopodobieństwo istnienia odwrotnego zjawiska piezoelektrycznego.

Około 1952 r. opracowano w Tokyo Institute of Technology cyrkonian-tytanian ołowiu (PZT).

W 1969 r. odkryto właściwości piezoelektryczne w polimerze piezoelektrycznym poli(fluorek winylidenu) (PVDF).

W 1999 r. opracowano w NASA kompozyt piezoelektryczny Macro Fiber Composite (MFC).

Prosty efekt piezoelektryczny

Jest to polaryzowanie się kryształu w określonym kierunku, wywołane odkształceniem mechanicznym.

Rys.1. Ideowy schemat efektu piezoelektrycznego

Odwrotny efekt piezoelektryczny

Jest to zjawisko powstawania odkształceń kryształu pod wpływem zewnętrznego pola elektrycznego.

Rys.2. Ideowy schemat odwrotnego efektu piezoelektrycznego

Przetwarzanie energii w materiałach piezoelektrycznych

Przetwarzanie energii w materiałach piezoelektrycznych zachodzi w dwóch kierunkach:

1) konwersja energii elektrycznej na energię mechaniczną.

Ta konwersja jest wykorzystywana w aktuatorach piezoelektrycznych.

2) konwersja energii mechanicznej drgań na energię elektryczną.

Ta konwersja jest wykorzystywana w przetwornikach pomiarowych oraz w układach do pozyskiwania energii (energy harvesting).

Rys. 3. Przepływ energii w układzie mechanicznym zawierającym piezoelektryk

Główne grupy materiałów piezoelektrycznych

Można wyróżnić cztery grupy materiałów o właściwościach piezoelektrycznych:

- **monokryształy**, np. *kwarc*,
- **materiały ceramiczne**, np. *cyrkonian-tytanian ołowiu (PZT)*,
- **polimery piezoelektryczne**, np. *poli(fluorek winylidenu) (PVDF)*,
- **kompozyty piezoelektryczne**, np. *Macro Fiber Composite (MFC).*

Monokryształy

Obecnie znanych jest ponad dwadzieścia monokryształów, które wykazują właściwości piezoelektryczne. Wśród monokryształów można wyróżnić:

kwarc, tuliman, sól Rochelle'a.

Kwarc jest to pierwszy materiał piezoelektryczny, który znalazł praktyczne zastosowanie. W 1917 r. Langevin zastosował przetwornik kwarcowy do pobudzania fal akustycznych w wodzie.

Kwarc, który jest stosowany jako materiał piezoelektryczny, jest jedną z odmian dwutlenku krzemu SiO₂. Kryształy kwarcu, które nadają się do zastosowań technicznych, występują w przyrodzie w stanie naturalnym.

Obok naturalnie występujących monokryształów, kilka lat temu opracowano sztuczne monokryształy, które charakteryzują się bardzo wysoką efektywnością przetwarzania energii. Wśród sztucznych monokryształów można wyróżnić:

```
PZN-PT (Pb(Zn_{1/3}Nb_{2/3})O<sub>3</sub>-PbTiO<sub>3</sub>),
PMN-PT ((Mg_{1/3}Nb_{2/3})O_3-PbTiO_3).
```

Materiały ceramiczne

Ceramika piezoelektryczna jest uzyskiwana przez spiekanie tlenków metali z grupy tytanowców: tytanu (Ti) i cyrkonu (Zr) z tlenkami baru, ołowiu, litu oraz specjalnych domieszek. Wśród ceramik piezoelektrycznych można wyróżnić:

cyrkonian-tytanian ołowiu (PZT), tytanian baru (BaTiO₃), tytanian ołowiu (PbTiO₃), niobian ołowiu i magnezu (PMN).

PZT jest to roztwór stały tytanianu i cyrkonianu ołowiu o ogólnym wzorze: (x)PbTiO₃-(1-x)PbZrO₃. Właściwościami piezoelektrycznymi ceramik PZT można sterować poprzez zmiany zawartości procentowej poszczególnych związków tworzących roztwór, tj. x=(0-1). Umożliwia to produkcję PZT o różnych zestawach stałych materiałowych.

PZT jest materiałem kruchym.

Wybrane zastosowania PZT:

- elementy aktuatorów piezoelektrycznych,
- elementy układów do pozyskiwania energii.

Rys.4. Przykład zastosowania ceramiki PZT: układ do pozyskiwania energii z drgań

Materiały polimerowe

Wśród najbardziej znanych można wyróżnić: poli(fluorek winylidenu) (PVDF) oraz jego kopolimery, np. z trifluoroetylenem (TrFE) lub tetrafluoroetylenem (TeFE).

PVDF jest to częściowo krystaliczny polimer, budową zbliżony do polietylenu, lecz zawierającym w co drugim atomie węgla łańcucha głównego dwa silnie elektroujemne atomy fluoru.

PVDF jest elastyczny i może być stosunkowo łatwo kształtowany.

Wybrane zastosowania PVDF:

- czujniki, np. detektory emisji akustycznej,
- elementy układów do pozyskiwania energii,
- elementy mikro urządzeń, np. zaworów.

Rys.5. Przykład zastosowania PVDF: czujnik

Materiały kompozytowe

Kompozytami nazywane są materiały dwu- lub wielofazowe, w których poszczególne fazy są wybrane i połączone w taki sposób, aby materiał kompozytowy miał żądane własności fizyczne, nie występujące w materiałach jednofazowych. Podstawowym sposobem wytwarzania kompozytów jest łączenie piezoelektrycznej ceramiki z polimerem, który nie posiada własności piezoelektrycznych. Właściwości nowego materiału zależą zarówno od zastosowanych składników jak i od wzajemnego przestrzennego usytuowania komponentów w otrzymanym materiale.

Macro Fiber Composite (MFC) firmy

Smart Materials Corp. składa się z: - włókien piezoceramicznych o przekroju prostokątnym, które oddzielone są warstwami z polimeru (na rys. 6 grubość tej warstwy oznaczono jako t_{pf})

- elektrod (na rys. 6 grubość tej warstwy oznaczono jako t_e)

 folii poliamidowej (na rys. 6 grubość tej warstwy oznaczono jako t_k).

Rys.6. Schemat budowy kompozyt MFC typ P2

Proste i odwrotne zjawiska piezoelektryczne można opisać przy pomocy równań konstytutywnych:

$$\mathbf{S}_{ij} = \mathbf{S}_{ijkl}^{(E)} \mathbf{T}_{kl} + \mathbf{d}_{kij} \mathbf{E}_{k}$$
$$\mathbf{D}_{i} = \mathbf{d}_{ikl} \mathbf{T}_{kl} + \mathbf{\varepsilon}_{ik}^{(T)} \mathbf{E}_{k}$$

gdzie:

S - tensor stanu odkształcenia

- T tensor stanu naprężenia
- D wektor przesunięcia ładunku
- E wektor natężenia pola elektrycznego
- s tensor podatności przy stałym polu elektrycznym
- d tensor sprzężenia elektromechanicznego
- ε tensor przenikalności dielektrycznej piezoelektryka przy stałym naprężeniu

Równania konstytutywne w zapisie macierzowym:

 $\mathbf{S}_{p} = \mathbf{S}_{pq}^{(E)}\mathbf{T}_{q} + \mathbf{d}_{pk}\mathbf{E}_{k}$ $\mathbf{D}_{i} = \mathbf{d}_{iq}\mathbf{T}_{q} + \mathbf{\varepsilon}_{ik}^{(T)}\mathbf{E}_{k}$

Równania konstytutywne w pełnej formie:

$$\begin{bmatrix} \mathbf{S}_{1} \\ \mathbf{S}_{2} \\ \mathbf{S}_{3} \\ \mathbf{S}_{4} \\ \mathbf{S}_{5} \\ \mathbf{S}_{6} \end{bmatrix} = \begin{bmatrix} \mathbf{s}_{11}^{(E)} & \mathbf{s}_{12}^{(E)} & \mathbf{s}_{13}^{(E)} & \mathbf{s}_{14}^{(E)} & \mathbf{s}_{15}^{(E)} & \mathbf{s}_{16}^{(E)} \\ \mathbf{s}_{21}^{(E)} & \mathbf{s}_{22}^{(E)} & \mathbf{s}_{23}^{(E)} & \mathbf{s}_{24}^{(E)} & \mathbf{s}_{25}^{(E)} & \mathbf{s}_{26}^{(E)} \\ \mathbf{s}_{31}^{(E)} & \mathbf{s}_{32}^{(E)} & \mathbf{s}_{33}^{(E)} & \mathbf{s}_{34}^{(E)} & \mathbf{s}_{35}^{(E)} & \mathbf{s}_{35}^{(E)} \\ \mathbf{s}_{41}^{(E)} & \mathbf{s}_{42}^{(E)} & \mathbf{s}_{43}^{(E)} & \mathbf{s}_{44}^{(E)} & \mathbf{s}_{45}^{(E)} & \mathbf{s}_{46}^{(E)} \\ \mathbf{s}_{51}^{(E)} & \mathbf{s}_{52}^{(E)} & \mathbf{s}_{53}^{(E)} & \mathbf{s}_{54}^{(E)} & \mathbf{s}_{55}^{(E)} & \mathbf{s}_{56}^{(E)} \\ \mathbf{s}_{61}^{(E)} & \mathbf{s}_{62}^{(E)} & \mathbf{s}_{63}^{(E)} & \mathbf{s}_{64}^{(E)} & \mathbf{s}_{65}^{(E)} & \mathbf{s}_{66}^{(E)} \\ \mathbf{s}_{61}^{(E)} & \mathbf{s}_{62}^{(E)} & \mathbf{s}_{63}^{(E)} & \mathbf{s}_{64}^{(E)} & \mathbf{s}_{65}^{(E)} & \mathbf{s}_{66}^{(E)} \\ \mathbf{s}_{61}^{(E)} & \mathbf{s}_{62}^{(E)} & \mathbf{s}_{63}^{(E)} & \mathbf{s}_{64}^{(E)} & \mathbf{s}_{65}^{(E)} & \mathbf{s}_{66}^{(E)} \\ \mathbf{s}_{61}^{(E)} & \mathbf{s}_{62}^{(E)} & \mathbf{s}_{63}^{(E)} & \mathbf{s}_{64}^{(E)} & \mathbf{s}_{65}^{(E)} & \mathbf{s}_{66}^{(E)} \\ \mathbf{s}_{61}^{(E)} & \mathbf{s}_{62}^{(E)} & \mathbf{s}_{63}^{(E)} & \mathbf{s}_{64}^{(E)} & \mathbf{s}_{65}^{(E)} & \mathbf{s}_{66}^{(E)} \\ \mathbf{s}_{61}^{(E)} & \mathbf{s}_{62}^{(E)} & \mathbf{s}_{63}^{(E)} & \mathbf{s}_{64}^{(E)} & \mathbf{s}_{65}^{(E)} & \mathbf{s}_{66}^{(E)} \\ \mathbf{s}_{11}^{(E)} & \mathbf{s}_{10}^{(E)} & \mathbf{s}_{10}^{(E)} \\ \mathbf{s}_{11}^{(E)} & \mathbf{s}_{10}^{(E)} & \mathbf{s}_{13}^{(E)} \\ \mathbf{s}_{11}^{(E)} & \mathbf{s}_{10}^{(E)} & \mathbf{s}_{10}^{(E)} \\ \mathbf{s}_{11}^{(E)} & \mathbf{s}_{10}^{(E)} & \mathbf{s}_{13}^{(E)} \\ \mathbf{s}_{11}^{(E)} & \mathbf{s}_{10}^{(E)} & \mathbf{s}_{10}^{(E)} \\ \mathbf{s}_{11}^{(E)} & \mathbf{s}_{10}^{(E)} & \mathbf{s}_{13}^{(E)} \\ \mathbf{s}_{11}^{(E)} & \mathbf{s}_{10}^{(E)} & \mathbf{s}_{10}^{(E)} \\ \mathbf{s}_{11}^{(E)} & \mathbf{s}_{10}^$$

(2)

(3)

Wyróżnia się również formę zapisu w postaci macierzy Van-Dyke'a:

$$\begin{bmatrix} S_1 \\ S_2 \\ S_3 \\ S_4 \\ S_5 \\ S_6 \\ D_1 \\ D_2 \\ D_3 \end{bmatrix} = \begin{bmatrix} s_{11}^{(E)} & s_{12}^{(E)} & s_{13}^{(E)} & s_{14}^{(E)} & s_{15}^{(E)} & s_{16}^{(E)} & d_{11} & d_{12} & d_{13} \\ s_{21}^{(E)} & s_{22}^{(E)} & s_{23}^{(E)} & s_{24}^{(E)} & s_{25}^{(E)} & s_{26}^{(E)} & d_{21} & d_{22} & d_{23} \\ s_{31}^{(E)} & s_{32}^{(E)} & s_{33}^{(E)} & s_{34}^{(E)} & s_{35}^{(E)} & s_{36}^{(E)} & d_{31} & d_{32} & d_{33} \\ s_{41}^{(E)} & s_{42}^{(E)} & s_{43}^{(E)} & s_{44}^{(E)} & s_{45}^{(E)} & s_{46}^{(E)} & d_{41} & d_{42} & d_{43} \\ s_{51}^{(E)} & s_{52}^{(E)} & s_{53}^{(E)} & s_{54}^{(E)} & s_{55}^{(E)} & s_{56}^{(E)} & d_{51} & d_{52} & d_{53} \\ s_{61}^{(E)} & s_{62}^{(E)} & s_{63}^{(E)} & s_{64}^{(E)} & s_{65}^{(E)} & s_{66}^{(E)} & d_{61} & d_{62} & d_{63} \\ d_{11} & d_{12} & d_{13} & d_{14} & d_{15} & d_{16} \varepsilon_{11}^{(\sigma)} & \varepsilon_{12}^{(\sigma)} & \varepsilon_{13}^{(\sigma)} \\ d_{21} & d_{22} & d_{23} & d_{24} & d_{25} & d_{26} \varepsilon_{21}^{(\sigma)} & \varepsilon_{22}^{(\sigma)} & \varepsilon_{23}^{(\sigma)} \\ d_{31} & d_{32} & d_{33} & d_{34} & d_{35} & d_{36} \varepsilon_{31}^{(\sigma)} & \varepsilon_{32}^{(\sigma)} & \varepsilon_{33}^{(\sigma)} \end{bmatrix} \begin{bmatrix} T_1 \\ T_2 \\ T_3 \\ T_4 \\ T_5 \\ T_6 \\ E_1 \\ E_2 \\ E_3 \end{bmatrix}$$

Przykłady macierzy Van-Dyke'a dla ceramik piezoelektrycznych:

układ regularny

Równania w notacji macierzowej można zapisać w dwóch równoważnych postaciach:

(5)

(6)

$$\mathbf{S}_{p} = \mathbf{s}_{pq}^{(E)} \mathbf{T}_{q} + \mathbf{d}_{pk} \mathbf{E}_{k}$$
$$\mathbf{D}_{i} = \mathbf{d}_{iq} \mathbf{T}_{q} + \mathbf{\varepsilon}_{ik}^{(T)} \mathbf{E}_{k}$$

$$\mathbf{T}_{p} = \mathbf{c}_{pq}^{(E)}\mathbf{S}_{q} + \mathbf{e}_{pk}\mathbf{E}_{k}$$
$$\mathbf{D}_{i} = \mathbf{e}_{iq}\mathbf{S}_{q} + \mathbf{\varepsilon}_{ik}^{(S)}\mathbf{E}_{k}$$

gdzie:

 $\mathbf{s}^{(\mathrm{E})}$ macierz podatności (6×6)

- d macierz sprzężenia elektromechanicznego (3×6)
- $\mathbf{\epsilon}^{(T)}$ macierz przenikalności elektrycznej (3×3)
- $\mathbf{c}^{\mathrm{(E)}}$ macierz stałych elastyczności (6×6)
- e macierz stałych piezoelektrycznych (3×6)

(7)

Równania konstytutywne dla elementu piezoelektrycznego, który jest ściskany lub rozciągany tylko w kierunku osi 3 (z), przyjmują postać:

$$T_{3} = c_{33}^{(E)}S_{3} + e_{33}E_{3}$$
$$D_{3} = e_{33}S_{3} + \epsilon_{33}^{(S)}E_{3}$$

Rys.7. Schemat ideowy struktury mechanicznej zawierającej element piezoelektryczny

W celu uzyskania równań wiążących zmienne mechaniczne ze zmiennymi elektrycznymi należy uwzględnić następujące związki:

$$E = \frac{V_{p}}{L} \qquad S = \frac{\Delta L}{L} \qquad I_{p} = A \frac{dD}{dt} \qquad F_{p} = AT \qquad (8)$$

gdzie:

V_p – napięcie przykładane do piezoelektryka,

I_p – natężenie prądu na piezoelektryku,

F_p – siła generowana przez piezoelektryk,

L – grubość płytki piezoelektryka,

ΔL – zmiana grubości płytki piezoelektrycznej,

A – pole przekroju płytki piezoelektryka.

Równania wiążące zmienne mechaniczne ze zmiennymi elektrycznymi:

$$F_{p} = k_{p} \Delta L + \alpha V_{p}$$
$$I_{p} = \alpha \frac{d\Delta L}{dt} + C_{0} \frac{dV_{p}}{dt}$$

(9)

W równaniach (9) wprowadzono nowe parametry:

współczynnik siły generowanej przez piezoelektryk:

$$\alpha = \frac{e_{33}A}{L} \qquad [N/V]$$

pojemność piezoelektryka:

_

$$C_0 = \frac{\varepsilon_{33}^{(S)}A}{L} \qquad [C/V]$$

Sztywności piezoelektryka:

$$k_p = \frac{c_{33}^{(E)}A}{L} \qquad [N/m]$$

(11)

(12)

Wartości stałych materiałowych: przykład

Przykład.

Ceramika piezoelektryczna PZT-5A

Stała materiałowa	Wartość	Jednostka	Stała materiałowa	Wartość	Jednostka	Stała materiałowa	Wartość	Jednostka
C ^(E)	12.1	10^{12}Nm^{-2}	S ^(E)	16.4	10 ⁻¹² m ² N ⁻¹	e ₁₅	12.3	Cm ^{−2}
C ^(E) ₁₂	7.54	10^{12}Nm^{-2}	S ^(E) ₁₂	-5.74	10 ⁻¹² m ² N ⁻¹	e ₃₁	-5.4	Cm ^{−2}
C ^(E) ₁₃	7.52	10^{12}Nm^{-2}	S ^(E) ₁₃	-7.22	10 ⁻¹² m ² N ⁻¹	е	15.8	Cm ^{−2}
C ^(E) ₃₃	11.1	10^{12}Nm^{-2}	S ^(E) 33	18.8	10 ⁻¹² m ² N ⁻¹			
C ^(E) ₄₄	2.11	10^{12}Nm^{-2}	S ^(E) 844	47.5	$10^{-12} \text{ m}^2 \text{N}^{-1}$			
C ^(E) ₆₆	2.26	10^{12}Nm^{-2}	S ^(E) ₆₆	44.3	10 ⁻¹² m ² N ⁻¹			
C ^(D) ₁₁	12.6	10^{12}Nm^{-2}	S ^(D) ₁₁	14.4	10 ⁻¹² m ² N ⁻¹	d ₁₅	584	10 ⁻¹² CN ⁻¹
C ^(D) ₁₂	8.09	10^{12}Nm^{-2}	S ^(D) ₁₂	-7.71	10 ⁻¹² m ² N ⁻¹	d ₃₁	-171	10 ⁻¹² CN ⁻¹
C ^(D) ₁₃	6.52	10^{12}Nm^{-2}	S ^(D) ₁₃	-2.98	$10^{-12} \text{ m}^2 \text{N}^{-1}$	d ₃₃	374	10 ⁻¹² CN ⁻¹
C ^(D) ₃₃	14.7	10^{12}Nm^{-2}	S ^(D) ₃₃	9.46	10 ⁻¹² m ² N ⁻¹			
C ^(D) ₄₄	3.97	10^{12}Nm^{-2}	S ^(D) ₄₄	25.2	$10^{-12} \text{ m}^2 \text{N}^{-1}$			
C ^(D) ₆₆	2.26	10 ¹² Nm ⁻²	S ^(D)	44.3	$10^{-12} \text{ m}^2 \text{N}^{-1}$			

Współczynnik sprzężenia elektromechanicznego

Efektywność konwersji energii w materiale piezoelektrycznym przedstawia współczynnik sprzężenia elektromechanicznego.

Rys.8. Obciążenie materiału piezoelektrycznego:

a) kierunek działania sił zewnętrznych równoległy do kierunku polaryzacji
 b) kierunek działania sił zewnętrznych prostopadły do kierunku polaryzacji
 Współczynnik sprzężenia elektromechanicznego dla przypadku z rys. 8 a)

$$=\frac{d_{33}^2}{s_{33}^{(E)}\varepsilon_{33}^{(T)}}$$
(13)

Współczynnik sprzężenia elektromechanicznego dla przypadku z rys. 8 b)

 k_{33}^2

$$k_{31}^2 = \frac{d_{31}^2}{s_{11}^{(E)} \varepsilon_{33}^{(T)}} \tag{14}$$

Współczynnik sprzężenia elektromechanicznego

Matarial piazoolaktruozpy	Stała materiałowa lub współczynnik					
Material piezoelekti yczny	d ₃₃ [C/N]	d ₃₁ [C/N]	k ₃₃ [-]	k ₃₁ [-]		
CERAMIKA: PZT-5H2	593*10 ⁻¹²	-274*10 ⁻¹²	0,75	0,39		
CERAMIKA: PZT-5A4	460*10 ⁻¹²	-195*10 ⁻¹²	0,72	0,37		
CERAMIKA: PZT-PIC255	400*10 ⁻¹²	-180*10 ⁻¹²	0,69	0,35		
CERAMIKA: PZT-APC 841	300*10⁻¹²	-109*10 ⁻¹²	0,68	0,33		
CERAMIKA: PZT-APC 850	400*10 ⁻¹²	-175*10 ⁻¹²	0,72	0,36		
CERAMIKA: PZT-PPK11	680*10 ⁻¹²	-350*10 ⁻¹²	0,74	0,41		
POLIMER: PVDF	-33*10 ⁻¹²	23*10 ⁻¹²	0,15	0,12		
MONOKKRYSZTAŁ SZTUCZNY: PZN-8%PT	2900 *10 ⁻¹²	-1450*10 ⁻¹²	0,94	0,6		
MONOKKRYSZTAŁ SZTUCZNY: PMN-33%PT	2820*10 ⁻¹²	-1334*10 ⁻¹²	0,92	0,6		