An Introduction to MCNP

Presented by:

S.A.H. Feghhi
Outline

- MCNP: The Basics
 - What is it?
 - What does it do?
- History
- How does MCNP work?
 - Radiation Transport
 - Monte Carlo method
 - User input to the code
MCNP: What is it?

- MCNP: A General Monte Carlo Code for N-Particle Transport
- A general-purpose, continuous-energy, generalized-geometry, time-dependant, coupled Monte Carlo transport code
- MCNP contains approximately 50,000 lines of source coding.
MCNP: What does it do?

- MCNP solves particle transport problems
- Can be used in a number of different modes:
 - neutron transport only
 - photon transport only
 - electron transport only
 - neutron and photon transport
 - photon and electron transport
 - neutron, photon and electron transport
MCNP: What does it do?

- Uses a continuous energy scheme, rather than energy groups.
 - Neutron energy range: 10^{-11} MeV to 20 MeV
 - Photon and electron energy range from 1 keV to 1 GeV
- Has generalized 3-D geometry capabilities with elaborate plotter capabilities
- Has elaborate tally capabilities (answers can be expressed in flux, energy deposition, dose, etc.)
MCNP: What does it do?

- Can perform criticality calculations
- Has extensive cross section libraries
- Can be run interactively or in batch mode
- Used primarily for shielding calculations and interaction rate calculations.
History

- The use of the Monte Carlo method as a radiation transport research tool springs form work done at Los Alamos National Laboratory during WWII.
- Credit for the so-called invention of Monte Carlo as a mathematical discipline is generally given to Fermi, von Neumann, and Ulam.
History

- 1947: Fermi invents a mechanical device called FERMIAC to trace neutron movement through fissionable material by the Monte Carlo method.
- Early 1950’s: Ulam leads a group of scientists in creating the Monte Carlo neutron transport code, called MCS.
- 1965: Features are added to MCS to produce the Monte Carlo neutron code MCN.
History

The photon codes MCG and MCP are added to the LANL family of Monte Carlo codes
- MCG dealt with photon transport at high energies.
- MCP handled photon transport down to 1 keV.

1973: MCN and MCG are merged to form MCNG, the predecessor of MCNP

June 1977: MCNP results from the culmination of all the above codes.
History

- Since the first version of MCNP, the Radiation Transport Group (Group X-6) at LANL has maintained it.
- Group X-6 improves MCNP and releases a new version about every 18 months.
- The most recent version is MCNP5.
- Latest our available version is MCNP4C.
Monte Carlo Method

- Numbers between 0 and 1 are selected randomly to determine what (if any) and where interaction takes place, based on the rules (physics) and probabilities (transport data) governing the processes and materials involved.
Monte Carlo Method

- In this particular case, a neutron collision occurs at event 1.
- The neutron is scattered in the direction shown, which is selected randomly from the physical scattering distribution.
- A photon is also produced and is temporarily stored, or banked, for later analysis.
Monte Carlo Method

- At event 2, fission occurs, resulting in the termination of the incoming neutron and the birth of two outgoing neutrons and one photon.
- One neutron and the photon are banked for later analysis.
Monte Carlo Method

- The banked neutron is now retrieved and, by random sampling, leaks out of the slab at event 4.
- The first fission neutron is captured at event 3 and terminated.
Monte Carlo Method

- The fission-produced photon has a collision at event 5 and leaks out at event 6.
- The remaining photon, created at event 1 is now followed with a capture at event 7.
- Note that MCNP retrieves banked particles such that the last particle stored in the bank is the first particle taken out.
Monte Carlo Method

- The neutron history is now complete.
- As more and more such histories are followed, the neutron and photon distributions become better known.
- The quantities of interest are tallied, along with estimates of the statistical precision of the results.
The user creates an input file that is read by MCNP.

This file contains information about the problem in areas such as:
- geometry specification
- material descriptions
- location and characteristics of the source
- type of answers or “tallies” desired
User Input to the Code

- The format of the input deck is very specific.
- Three major sections:
 - **Cell cards** - used to define the shape and material content of physical space.
 - **Surface cards** - defines the boundaries in space used to “create” cells (spheres, cylinders, planes)
 - **Data cards** - defines sources, materials, tallies and other information needed for problem solving.
User Input to the Code

- Specific unit expressions:
 - Length (cm)
 - Energy (MeV)
 - Time (shakes, 10^-8 s)
 - Mass density (g cm^-3)
 - Atom density ($10^{-24} \text{ cm}^{-3} = \#/\text{(cm-barn)}$)
 - Cross section (barns)
User Input to the Code

- Input decks are required to be both line and column specific.
 - Input is limited to columns 1 to 80
 - Certain entries can appear only in a certain range of columns within a specified line
 - Blank lines are required in certain places, and not allowed in other
 - Spaces only may fall between entries, no tabbing
Input Structure in MCNP
Outlooks:

- Geometry Definition
- Format of Input File
- Running MCNP
- Geometry Plotting
- Material Specification
The meaning of Cell:

- Each finite medium that is filled by a determined material is called a “cell”
- A media with zero importance can be infinite
- Any cell is defined with surrounding surfaces
Cell Cards:

Form: j m d geom params

j = cell number and must begin in the first five columns (1< j <99999)
m = 0 if the cell is a void.(1 < m < 99999)
= material number if the cell is not a void. This indicates that the
cell is to contain material m, which is specified on the Mm card.
d = absent if the cell is a void.
= cell material density. A positive entry is interpreted as the
atomic density in units of \(10^{-24} \text{ atoms/ cm}^3\)
A negative entry is interpreted as the mass density in units of
\(g/ \text{ cm}^3\).
Cell Cards :

Form: j m d geom params

geom = specification of the geometry of the cell. It consists of signed surface numbers and Boolean operators that specify how the regions bounded by the surfaces are to be combined.

params = optional specification of cell parameters by entries in the **keyword** = value form.
Geometry definition:

- The cells are defined by the intersections, unions, and complements of the regions bounded by the surfaces

1. **Cells** Defined by Intersections of Regions of Space
2. **Cells** Defined by Unions of Regions of Space
3. **Cells** Defined by Complement operator
Cells defined by intersections

1 0 1 –2 –3 6
2 0 1 –6 –4 5

Cell 3 cannot be specified with the intersection operator.
Cells defined by unions
Cells defined by unions

10 1 -2 (-3 : -4) 5
20 -5 : -1 : 2 : 3 4
Cells defined by complement operator

1 0 -1
2 0 1 -2
3 0 2 3 -4 5 -6 7 -8
4 0 -3:4:-5:6:-7:8 or
4 0 #(3 -4 5 -6 7 -8) or
4 0 #1 #2 #3
Cells defined by complement operator

cell 1: (Cylinder)
1 0 1 -2 -3

cell 2: (inside sphere and outside of cylinder)
2 0 -4 #1
2 0 -4 (-1:2:3)
2 0 -4 #(1 -2 -3)

cell 3: (outside sphere)
3 0 4
3 0 #1 #2
4 0 #3 #2 #1
Cell Definition Examples

Figure 4-1a.

Figure 4.1b

Figure 4.1c

Figure 4.1d
Cell Definition Examples

Figure 4.1e -3:2

Figure 4.1f -1:(2 -3)

Cell 3: 2 -3 :–1: 4:5

Figure 4-1g.
Cell 1 is everything interior to the surfaces 1 and 2:

\[
\begin{array}{ccc}
1 & 0 & -1 \\
2 & 0 & 1
\end{array}
:
\begin{array}{c}
-2 \\
2
\end{array}
\]
Cell Definition Examples

Figure 4-3.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
<th>-1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>(-3</td>
<td>1</td>
<td>2):(-1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cell Definition Examples

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>-2</th>
<th>-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4-4.
This is three concentric spheres with a box cut out of cell 3. Surface 8 is the front of the box and 9 is the back of the box. The cell cards are

\[
\begin{array}{ccc}
1 & 0 & -1 \\
2 & 0 & -2 & 1 \\
3 & 0 & -3 & 2 & (-4:5:-6:7:8:-9) & \text{\$ These parentheses are required.} \\
4 & 0 & 3 \\
5 & 0 & 4 & -5 & 6 & -7 & -8 & 9
\end{array}
\]

Cell 3 is everything inside surface 3 intersected with everything outside surface 2 but not in cell 5. Therefore, cell 3 could be written as

\[
\begin{array}{ccc}
3 & 0 & -3 & 2 & \#(4-5-6-7-8-9) \\
or & 3 & 0 & -3 & 2 & \#5 \\
or & 3 & 0 & -3 & 2 & (-4:5:-6:7:8:-9)
\end{array}
\]
Figure 4-7.

\[
\begin{array}{cccccccc}
1 & 0 & -2 & -3 & 4 & 1 & 5 & -6 \\
2 & 0 & -7 & -8 & 9 & 10 & 11 & -12 \\
(2 : 3 : -4 : -1 : -5 : 6) \\
3 & 0 & -13 & -14 & 15 & 16 & 17 & -18 \\
(7 : 8 : -9 : -10 : -11 : 12) \\
4 & 0 & 13 & 14 & -15 & -16 & -17 & 18 \\
\end{array}
\]
Surface Cards:

Form: $j \ a \ list$

$j =$ surface number: $1 < = j < = 99999$, with asterisk (*) for a reflecting surface or plus (+) for a white boundary.

$a =$ equation mnemonic from Table 3.1

list = one to ten entries, as required.
<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Type</th>
<th>Description</th>
<th>Equation</th>
<th>Card Entries</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Plane</td>
<td>General</td>
<td>$Ax + By + Cz - D = 0$</td>
<td>ABCD</td>
</tr>
<tr>
<td>PX</td>
<td>Plane</td>
<td>Normal to X-axis</td>
<td>$x - D = 0$</td>
<td>D</td>
</tr>
<tr>
<td>PY</td>
<td>Plane</td>
<td>Normal to Y-axis</td>
<td>$y - D = 0$</td>
<td>D</td>
</tr>
<tr>
<td>PZ</td>
<td>Plane</td>
<td>Normal to Z-axis</td>
<td>$z - D = 0$</td>
<td>D</td>
</tr>
<tr>
<td>SO</td>
<td>Sphere</td>
<td>Centered at Origin</td>
<td>$x^2 + y^2 + z^2 - R^2 = 0$</td>
<td>R</td>
</tr>
<tr>
<td>S</td>
<td>Sphere</td>
<td>General</td>
<td>$(x - \bar{x})^2 + (y - \bar{y})^2 + (z - \bar{z})^2 - R^2 = 0$</td>
<td>$\bar{x} R$</td>
</tr>
<tr>
<td>SX</td>
<td>Sphere</td>
<td>Centered on X-axis</td>
<td>$(x - \bar{x})^2 + y^2 + z^2 - R^2 = 0$</td>
<td>$\bar{y} R$</td>
</tr>
<tr>
<td>SY</td>
<td>Sphere</td>
<td>Centered on Y-axis</td>
<td>$(x - \bar{x})^2 + (y - \bar{y})^2 + z^2 - R^2 = 0$</td>
<td>$\bar{z} R$</td>
</tr>
<tr>
<td>SZ</td>
<td>Sphere</td>
<td>Centered on Z-axis</td>
<td>$x^2 + (y - \bar{y})^2 + (z - \bar{z})^2 - R^2 = 0$</td>
<td>R</td>
</tr>
<tr>
<td>C/X</td>
<td>Cylinder</td>
<td>Parallel to X-axis</td>
<td>$(y - \bar{y})^2 + (z - \bar{z})^2 - R^2 = 0$</td>
<td>$\bar{y} R$</td>
</tr>
<tr>
<td>C/Y</td>
<td>Cylinder</td>
<td>Parallel to Y-axis</td>
<td>$(x - \bar{x})^2 + (z - \bar{z})^2 - R^2 = 0$</td>
<td>$\bar{x} R$</td>
</tr>
<tr>
<td>C/Z</td>
<td>Cylinder</td>
<td>Parallel to Z-axis</td>
<td>$(x - \bar{x})^2 + (y - \bar{y})^2 - R^2 = 0$</td>
<td>$\bar{y} R$</td>
</tr>
<tr>
<td>CX</td>
<td>Cylinder</td>
<td>On X-axis</td>
<td>$y^2 + z^2 - R^2 = 0$</td>
<td>R</td>
</tr>
<tr>
<td>CY</td>
<td>Cylinder</td>
<td>On Y-axis</td>
<td>$x^2 + z^2 - R^2 = 0$</td>
<td>R</td>
</tr>
<tr>
<td>CZ</td>
<td>Cylinder</td>
<td>On Z-axis</td>
<td>$x^2 + y^2 - R^2 = 0$</td>
<td>R</td>
</tr>
</tbody>
</table>
MCNP Surface Cards

<table>
<thead>
<tr>
<th>K/X</th>
<th>Cone</th>
<th>Parallel to X-axis</th>
<th>((y - \bar{y})^2 + (z - \bar{z})^2 - t(x - \bar{x}) = 0)</th>
<th>(x \ y \ z \ t^2 \pm 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K/Y</td>
<td>Cone</td>
<td>Parallel to Y-axis</td>
<td>((x - \bar{x})^2 + (z - \bar{z})^2 - t(y - \bar{y}) = 0)</td>
<td>(\bar{x} \ y \ z \ t^2 \pm 1)</td>
</tr>
<tr>
<td>K/Z</td>
<td>Cone</td>
<td>Parallel to Z-axis</td>
<td>((x - \bar{x})^2 + (y - \bar{y})^2 - t(z - \bar{z}) = 0)</td>
<td>(\bar{x} \ y \ z \ t^2 \pm 1)</td>
</tr>
<tr>
<td>KX</td>
<td>Cone</td>
<td>On X-axis</td>
<td>(\sqrt{x^2 + z^2} - t(x - \bar{x}) = 0)</td>
<td>(x \ t^2 \pm 1)</td>
</tr>
<tr>
<td>KY</td>
<td>Cone</td>
<td>On Y-axis</td>
<td>(\sqrt{x^2 + z^2} - t(y - \bar{y}) = 0)</td>
<td>(y \ t^2 \pm 1)</td>
</tr>
<tr>
<td>KZ</td>
<td>Cone</td>
<td>On Z-axis</td>
<td>(\sqrt{x^2 + y^2} - t(z - \bar{z}) = 0)</td>
<td>(z \ t^2 \pm 1)</td>
</tr>
</tbody>
</table>

SQ	Ellipsoid	Axis not parallel to X-, Y-, or Z-axis	\(A(x - \bar{x})^2 + B(y - \bar{y})^2 + C(z - \bar{z})^2 + 2D(x - \bar{x}) + 2E(y - \bar{y}) \)	ABCDE
	Hyperboloid		+ 2F(z - \bar{z}) + G = 0	F G \bar{y} \bar{y} \bar{z}
	Paraboloid			

GQ	Cylinder	Axes not parallel to X-, Y-, or Z-axis	\(Ax^2 + By^2 + Cz^2 + Dxy + Eyz + Fzx + Gz + Hy + Jz + K = 0\)	ABCDE
	Cone			F G H J K
	Ellipsoid			
	Hyperboloid			
	Paraboloid			

TX	Elliptical or circular torus. Axis is Parallel to X-, Y-, or Z-axis	\((x - \bar{x})^2/B^2 + (\sqrt{(y - \bar{y})^2 + (z - \bar{z})^2 - A})^2/C^2 - 1 = 0\)	ABC
TY	Elliptical or circular torus. Axis is Parallel to X-, Y-, or Z-axis	\((y - \bar{y})^2/B^2 + (\sqrt{(x - \bar{x})^2 + (z - \bar{z})^2 - A})^2/C^2 - 1 = 0\)	ABC
TZ	Elliptical or circular torus. Axis is Parallel to X-, Y-, or Z-axis	\((z - \bar{z})^2/B^2 + (\sqrt{(x - \bar{x})^2 + (y - \bar{y})^2 - A})^2/(C^2 - 1) = 0\)	ABC
Special Surfaces:

1. Reflecting Surfaces
2. White Boundaries
3. Periodic Boundaries
Reflecting Surfaces:

A surface can be designated a reflecting surface by preceding its number on the surface card with an asterisk. Any particle hitting a reflecting surface is specularly (mirror) reflected. Reflecting planes are valuable because they can simplify a geometry setup (and also tracking) in a problem.
White Boundaries:

A surface can be designated a white boundary surface by preceding its number on the surface card with a plus. A particle hitting a white boundary is reflected with a cosine distribution, $p(\mu) = \mu$, relative to the surface normal; that is, $\mu^2 = \xi$, where ξ is a random number.
Periodic Boundary Conditions:

Periodic boundary conditions can be applied to pairs of planes to simulate an infinite lattice. Although the same effect can be achieved with an infinite lattice, the periodic boundary is easier to use, simplifies comparison with other codes having periodic boundaries, and can save considerable computation time.
Format of Input File

Message Block
Blank Line Delimiter
Title Card
Cell Cards #1

...................
Cell Cards #N
Blank Line Delimiter
Surface Cards #1

...................
Surface Cards #N
Blank Line Delimiter
Data Cards #1

...................
Blank Line Terminator
Anything Else
Main Data Cards

- Problem mode
 - mode n mode p mode e
 - mode n p mode p e mode n p e

- Cell importance
 - imp:n imp:p imp:e

- Source
 - sdef pos=x y z erg=E

- Tally (particle current)
 - F1:n S1 S2 …

- Material Specification
 - Mn ZAID1 f1 …

- Problem cutoff
 - NPS n
Message Block (optional)
Blank Line Delimiter
Title Card
Cell Cards #1
Cell Cards #2
Cell Cards #3
Cell Cards #4
Blank Line Delimiter
C description (optional)
C description (optional)
Surface Cards #1
Surface Cards #2
Surface Cards #3
Surface Cards #4
Surface Cards #5
Surface Cards #6
C description (optional)
Surface Cards #7
Surface Cards #8
Blank Line Delimiter

Message: Sample Problem Input Deck

Cell cards for sample problem
1 1 -0.0014 -7
2 2 -7.86 -8
3 3 -1.60 1 -2 -3 4 -5 6 7 8
4 0 -1:2:3:-4:5:-6

C end of cell cards for sample problem
C Beginning of surfaces for cube
1 PZ -5
2 PZ 5
3 PY 5
4 PY -5
5 PX 5
6 PX -5

C End of cube surfaces
7 S 0 -4 -2.5 .5 $ oxygen sphere
8 S 0 4 4.5 $ iron sphere
Input File Example:

<table>
<thead>
<tr>
<th>Data Card #1</th>
<th>IMP:N 1 1 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Card #2</td>
<td>SDEF POS=0 -4 -2.5</td>
</tr>
<tr>
<td>Data Card #3</td>
<td>F2:N 8 $ flux across surface 8</td>
</tr>
<tr>
<td>Data Card #4</td>
<td>F4:N 2 $ track length in cell 2</td>
</tr>
<tr>
<td>Data Card #5</td>
<td>E0 1 12I 14</td>
</tr>
<tr>
<td>Data Card #6</td>
<td>M1 8016 1 $ oxygen 16</td>
</tr>
<tr>
<td>Data Card #7</td>
<td>M2 26000 1 $ natural iron</td>
</tr>
<tr>
<td>Data Card #8</td>
<td>M3 6000 1 $ carbon</td>
</tr>
<tr>
<td>Data Card #9</td>
<td>NPS 100000</td>
</tr>
</tbody>
</table>

Blank Line Delimiter

Anything Else

End of Input deck
Running MCNP

Execution Line:

```
Mcnp inp=mcin outp=mcout runtpe=mcruntp
```

```
mcnp i=mcin o=mcout r=mcruntp
```

<table>
<thead>
<tr>
<th>Default File Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INP</td>
<td>Problem input specification</td>
</tr>
<tr>
<td>OUTP</td>
<td>ASCII output file</td>
</tr>
<tr>
<td>RUNTPE</td>
<td>Binary start-restart data</td>
</tr>
<tr>
<td>XSDIR</td>
<td>Cross-section directory</td>
</tr>
</tbody>
</table>
Execution Options

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Module</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>IMCN</td>
<td>Process problem input file</td>
</tr>
<tr>
<td>p</td>
<td>PLOT</td>
<td>Plot geometry</td>
</tr>
<tr>
<td>x</td>
<td>XACT</td>
<td>Process cross sections</td>
</tr>
<tr>
<td>r</td>
<td>MCRUN</td>
<td>Particle transport</td>
</tr>
<tr>
<td>z</td>
<td>MCPLT</td>
<td>Plot tally results or cross section data</td>
</tr>
</tbody>
</table>

- IMCN: Process problem input file
- PLOT: Plot geometry
- XACT: Process cross sections
- MCRUN: Particle transport
- MCPLT: Plot tally results or cross section data
Execution Interrupts

(ctrl c)<cr> (default)
MCNP status

(ctrl c)s
MCNP status

(ctrl c)m
Make interactive plots of tallies

(ctrl c)q
Terminate MCNP normally after current history

(ctrl c)k
Kill MCNP immediately
Geometry Plotting

- To look at the geometry with the PLOT module using an interactive graphics terminal, type in:

 \texttt{MCNP ip i = inpfile}

- After the plot prompt \textit{plot} > appears, geometry plotting commands can be used.
Geometry Plotting Commands

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>px = a</td>
<td>intersection of the surfaces of the problem by the plane X=a,</td>
</tr>
<tr>
<td>py = b</td>
<td>Y=b and Z=c</td>
</tr>
<tr>
<td>pz = c</td>
<td>length of window around origin</td>
</tr>
<tr>
<td>ex = d</td>
<td>Put labels of size S on the surfaces and labels of size C in the cells. Default values S=1, C=0.</td>
</tr>
<tr>
<td>la = S C</td>
<td>end of geometry plotting</td>
</tr>
</tbody>
</table>

end
Geometry Plotting Commands

Cylinder in Cube

```
1 1 -1.0 1 -2 -3
2 2 -1.0 #1 4 -5 6 -7 8 -9
3 0 #1 #2

1 px -30
2 px 30
3 cx 20
4 px -40
5 px 40
6 py -40
7 py 40
8 pz -40
9 pz 40
```

```
Mcnp ip I=test.I
plot> px = 0
plot> py=0
plot> pz=35

imp:n 1 1 0
m1 1001 1
m2 1002 1
```
Cylinder in cube

probid = 11/20/04 06:57:55
basis:
{ 0, 0, 0; 1.00000; 1.00000}
origin:
{ 0.00; 0.00; 0.00}
extent = { 100.00; 100.00}
11/20/04 06:56:29
Cylider in Cube

probid = 11/20/04 06:17:55
basis:
{ 1.000000; 0.000000; 0.000000}
origin:
{0.00; 0.00; 0.00}
extent = {100.00, 100.00}.

provid = 11/20/04 06:57:55
basis:
{ 0.000000; 0.000000; 0.000000}
origin:
{ 0.00; 0.00; 15.00}
extent = { 100.00; 100.00}
Material Specification:

- Mm $ZAI D_1$ fraction$_1$ $ZAI D_2$ fraction$_2$ …

 m = corresponds to the material number on the cell cards

 $ZAI D_i$ = either a full $ZZZAAA.nnX$ or partial $ZZZAAA$

 element or nuclide identifier for constituent i, where

 ZZZ is the atomic number, AAA is the atomic mass,

 nn is the library identifier, and X is the class of data

 fraction$_i$ = atomic fraction (or weight fraction if entered as a negative number)

 of constituent i in the material.
Material Specification:

<table>
<thead>
<tr>
<th>Material</th>
<th>Mass Number</th>
<th>天然数</th>
<th>92235</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-1</td>
<td>1001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-2</td>
<td>1002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li-6</td>
<td>3006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li-7</td>
<td>3007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Be-9</td>
<td>4009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O-16</td>
<td>8016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na-23</td>
<td>11023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al-27</td>
<td>13027</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si-28</td>
<td>14028</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe-55</td>
<td>26055</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb-207</td>
<td>82207</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe-nat</td>
<td>26000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb-nat</td>
<td>82000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U-235</td>
<td>92235</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U-238</td>
<td>92238</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-nat</td>
<td>5000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si-nat</td>
<td>14000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe-nat</td>
<td>26000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb-nat</td>
<td>82000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Class of Data:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZZZAAA.nnC</td>
<td>continuous-energy neutron</td>
</tr>
<tr>
<td>ZZZAAA.nnD</td>
<td>discrete-reaction neutron</td>
</tr>
<tr>
<td>ZZZAAA.nnY</td>
<td>dosimetry</td>
</tr>
<tr>
<td>XXXXX.nnT</td>
<td>thermal $S(\alpha,\beta)$</td>
</tr>
<tr>
<td>ZZZ000.nnP</td>
<td>continuous-energy photon</td>
</tr>
<tr>
<td>ZZZ000.nnM</td>
<td>neutron multigroup</td>
</tr>
<tr>
<td>ZZZ000.nnG</td>
<td>photon multigroup</td>
</tr>
<tr>
<td>ZZZ000.nnE</td>
<td>continuous-energy electron</td>
</tr>
</tbody>
</table>

Examples: 1001.35c 1001.50c 1001.60c
1001 2 8016 1 NLIB=60c
Thermal $S(\langle,\rangle\text{®})$ Cross section Libraries:

- $\text{MTm} \ X1 \ X2 \ ...$
- $Xi = S(\alpha,\beta)$ identifier corresponding to a particular component on the Mm card. *(most significant below 2 eV)*

Examples:
- m1 1001 2 8016 1
 - mt1 lwtr.01t
 - m2 1001 2 6000 1
 - mt2 poly.01t
 - m3 6012 1
 - mt3 grph.04t

See Appendix G for details