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Abstract. Co-evolutionary techniques for evolutionary algorithme aimed at
overcoming their limited adaptive capabilities and allaw the application of
such algorithms to problems for which it isfiditult or even impossible to formu-
late explicit fitness function. In this paper the ideaofevolutionary multi-agent
system with host-parasite mechanism for multi-objectp@nmazationis intro-
duced. In presented system the Pareto frontier is locatetthdyopulation of
agents as a result of co-evolutionary interactions betvepecies. Also, results
from runs of presented system against test functions asepted.

1 Introduction

Evolutionary algorithms (EAgre techniques for finding suboptimal solutions of global
optimization and adaptation problems, which are based alogies to biological evo-
lutionary processes. Evolutionary algorithms, howeviéerosuter from premature loss
of population diversity. This results in premature conegrce and may lead to locating
local optimum instead of a global one. In the case of multdai@roblem landscapes
EA without any special mechanisms will inevitably locatesineof attraction of single
optimum. The loss of diversity also limits the adaptive ddjitées of EAs in dynamic
environments.

In co-evolutionary algorithmshe fitness of each individual depends not only on
the quality of solution to the given problem but also (or §glen other individuals’
fithess. This makes such techniques applicable in the cdsexevhe fithess function
formulation is dificult (or even impossible). Co-evolutionary techniquesg, aimed
at improving adaptive capabilities and introducing opedes evolution into EAs by
maintaining population diversity [8].

High quality approximation oPareto frontiershould fulfill at least three distin-
guishing features: first of all it of course should be “locitas close to the ideal Pareto
frontier as possible what is very natural and common coowlitor both single- and
multi- objective optimization, secondly it should include many alternatives as pos-
sible and, at last, all proposed non-dominated alternatbeuld be evenly distributed
over the whole ideal Pareto set.

In consequence, in the case of multi-objective optimizatmyemature loss of pop-
ulation diversity can result not only in lack of drifting the ideal Pareto frontier but
also in obtaining approximation of Pareto set that is fodusm®und its selected area(s)



— what of course is very undesirable assuming that preferbased multi-objective
optimization is not considered in this place.

Evolutionary multi-agent systems (EMA&)ve proved their grate usefulness for
solving a lot of diferent discrete, continuous, combinatorial and non-coatbimal
multi-objective optimization problems [12, 11]. Co-evtiunary mechanisms are aimed
at maintaining population diversity and improving adagtbapabilities of EMAS sys-
tems — especially in dynamic environments. This paper thtoes the idea ofo-
evolutionary multi-agent system with host-parasite magra for multi-objective opti-
mization The process of locating Pareto frontier in such system geseas a result
of co-evolutionary interactions between species of agertie results from runs of
co-evolutionary multi-agent system for multi-objectiv@ionization against commonly
used test functions are also presented and the comparisassical multi-objective
evolutionary algorithms is made.

2 Evolutionary and Co-Evolutionary Multi-Objective
Optimization

During most real-life decision processes a lot dfatient (often contradictory) factors
have to be considered, and the decision maker has to deahwidmbiguous situation:
the solutions which optimize one criterion may prove ffisiently good considering
the others. From the mathematical point of view such muifective (or multi-criteria)
problem can be formulated as follows [13].

Let the problem variables be represented by a real-valugtdne

X =[x1,%2,...,xn]" € RN (1)

whereN gives number of the variables. Then a subset 8f dRall possible (feasible)
decision alternatives (options) can be defined by a system of

— inequalities (constraintsii(x) > 0 andk=1,2,...,K,
— equalities (boundsh(x) =0,1=1,2,...,L

and denoted byD. The alternatives are evaluated by a systenMdiunctions (objec-
tives) denoted here by vectbr= [f1, fo,..., fu]":

fn: RN> IR, m=12...,M 2)

The key issue of optimality in the Pareto sense isuleak domination relation
Alternative 2 is dominated by (which is often denoted by? > x2) if and only if
(assuming maximization of all objectives):

vm 0@ < () andam  £,0) < fin(X°) (3)

A solution in the Pareto sense of the multi-objective optamtion problem means de-
termination of all non-dominated (in the sense of the defateoveweak domination
relation) alternatives from the s&d, which is sometimes calledRareto-optimal set



The Pareto-optimal set consists of globally optimal soluti however there may
also exist locally optimal solutions, which constituteddlg non-dominated setdcal
Pareto-optimal s§t[2]. The setPiocal C D is local Pareto-optimal set if [13]:

V3@ € Piocar : AX° € D such that® > x@ A ||x° x| < e A[[FOO) - FO@)|| <6 (4)

where|||| is a distance metric and> 0,6 > 0.
The setP C D is global Pareto-optimal set if [13]:

Vx@ e : AxP e D such than® > x@ (5)

These locally or globally non-dominated solutions creatdHe criteria space) so-
called local ¥ 0cal) Or global (PF) Pareto frontiers that can be defined as follows:

PF local = {y =F(x) e IRM | xe PIocal} (6a)

PF ={y=F()eR" | xep)| (6b)

Multi-objective problems with one global and many local &®arfrontiers are called
multi-modal multi-objective probleng].

For the last 20 years a variety of evolutionary multi-cidgemptimization techniques
have been proposed. In the Deb’s typology of evolutionaritimbjective algorithms
(EMOAS) firstly the elitist and non-elitist ones are distighed [3]. The main dier-
ence between these two groups of techniques consists imingithe so-called elite-
preserving operators that give the best individuals (the ef population) the opportu-
nity to be directly carried over to the next generation rdtgss of the actual selection
mechanism used. Deb'’s typology includes also so-caitetstrained EMOAs-i.e. al-
gorithms and techniques that enable handling constraimsected with problem that
is being solved.

Laumanns, Rudolph and Schwefel proposed co-evolutiongoyithm with predator-
prey model and spatial graph-like structure for multi-ahijee optimization [6]. Deb in-
troduced modified algorithm in which predators eliminateglys not only on the basis
of one criteria but on the basis of the weighted sum of alediat[3]. Li proposed other
modifications to this algorithm [7]. The mainftérence was that not only predators
were allowed to migrate within the graph but also preys caolaldt.

Co-evolution is the biological mechanism responsible fardlversity and sym-
patric speciation. However it was not widely used as a meshaaf maintaining useful
genetic diversity of population for evolutionary algorih. It seems that co-evolution
should introduce open-ended evolution, improve adaptpabilities of EA (especially
in dynamic environments) and allow speciation (the fororatf species located within
different areas of Pareto frontier or within local and globakRafrontiers in case of
multi-modal multi-objective problems) but this is still @apen issue and the subject of
ongoing research.



3 Co-Evolutionary Multi-Agent System for Multi-Objective
Optimization

The main idea oto-evolutionary multi-agent system (CoEMAS}he realization of
species and sexes co-evolutionnmulti-agent system (MA$3]. COEMAS model, as
opposed to the basavolutionary multi-agent system (EMASpdel [1], allows for the
existence of several species and sexes which can interdiotach other and co-evolve.
CoEMAS is especially suited for modelingfdirent co-evolutionary interactions, such
as resource competition, predator-prey and host-paresi/olution, sexual prefer-
ences, etc. Systems based on COEMAS model can be appliegkdorple, to multi-
modal function optimization and multi-objective optimiizan because such systems
maintain population diversity and easily adapt to changimgronment.

3.1 Co-evolutionary Multi-Agent System with Host-Parasie Model

The essence of host-parasite approach consists in comnotutiemary process (co-
evolution) of two populations: population tbsts— representing problem solutions
and population oparasites— representing tests that should be passekdsgs Hosts’
fithess value is proportional to the number of tests that efichem passed whereas
parasites’fitness function value depends on numbehos$tsthat do not pass test rep-
resented by giveparasite Of course each population can be characterized by its own:
size, selection type, type of representation, geneticaipes, probabilities of crossover
and mutation etc. So, in another words, these are co-eyphuhsimultaneously inde-
pendent populations.

Presentedo-evolutionary multi-agent system for multi-objectiyimization with
host-parasite mechanisimas been developed usidggWorld platform — a kind of
Java-based infrastructure supplying basic mechanisnisasicommunication, paral-
lelization etc. required during implementation systemsoading to bothEMASand
CoEMASmModel.

Realization of presented system required implementatidwo kinds of agents:
host-agentgrepresenting solutions of problem that is being solved)marasite-agents
(representing "tests” fdnost-agentsr rather for solutions representedigst-agents
The behavior ohost-agents similar to the behavior of "standard” agents charactieris
for EMAS-basedystems. Sdhost-agentlives” in a place, it can move between places,
and in every step it consumes resources needed for itsdtfeitg. The fitness value is
not directly assigned to thlkeost-agentout it depends indirectly on interactions with
population ofparasiteshost-agentsepresenting worse solutions are more likely to be
infectedby parasite-agenis Eachparasite-agentsimilarly to thehost-agentconsumes
resources needed for living in the system in every step dfilsition, but these agents do
not receive resources from the environment, as it takee ptathe case dfiost-agents
but it takes resources from infecthdst

The most distinguishing feature pérasite-agents its possibility to infectindhost-
agents In every step eacparasite-agenthat does not infect anost-agentries to
infect non-infectedhost To infect ahost-agentheparasite-agenperforms specific test
consisting in comparing objectives values representedsbyanotype with objectives



Table 1. Comparison of proposed COEMAS approach with selectedicll$SMOA's according
to theCoverage of two setmetrics

Coverage of two set®(A, B)

| [SPEA [VEGA [NPGA [COEMAS |
SPEA 7 0.08 0.00 0.04

VEGA 0.92 7 0.30 0.32

NPGA 1.00 0.62 7 0.40
CoEMAS _ |0.96 0.70 0.58 7

values ofhost-agenthat is being infected. The probability of infection is heghor
lower depending on performed test.

Both host-agentsindparasite-agentsan reproduce if they posses enough amount
of resourcesHost'sreproduction consists in creating one descendant from éady-
for-reproduction individuals using crossover operatat tren mutation operator is ap-
plied to created descendant. Parental individuals sureipeoduction process but they
loss some of their resources in aid of theisprings Parasite’sreproduction consists in
creating two descendants from one parental individuabusiatation operator. Parental
parasite-agentransfers half of its life-energy to each of its descendantsthen dies.

At last, mentioned above test that is being performegéasasite-agenbn host-
agentbefore infection consists in comparing — in the sense of dativn relation (see
eg. (3)) — solutions represented by assaulfiggasite-agentind host-agentshat is
being assaulted. The more solution representdtbisy-agents dominated byarasite-
agentthe higher is the probability of infection.

3.2 Simulation Experiments — Preliminary Qualitative Resuts

After implementation some experiments have been perforimetdbecause of space
limitations only some qualitative conclusions (not quiative results) will be here pre-
sented. Namely, proposew-evolutionary multi-agent system for multi-objectiye o
timization with host-parasite mechanidmas been tested using, inter aliinh and
slightly modifiedSchgfer test functions that are defined as follows:

fa(xy) = X2 +y?
F1(Binh) = { f2(x.y) = (x=5)2+ (Y= 5)
where —-5<x,y<10

f1(X) = X2
Fo(Modified Schaf fer=1{ fo(x) = (x—2)2
where —32<x<32

Additionally, on the samdagWorld platform there have been implemented also
some "classical” evolutionary algorithms for multi-obfige optimization i.e.Vector
Evaluated Genetic Algorithm (VEGJ9), 10],Niched-Pareto Genetic Algorithm (NPGA)
[5] and Strength Pareto Evolutionary Algorithm (SPHAR].



Table 2. Comparison of proposed COEMAS approach with selectedicl$SMOA's according
to theCoverage dference of two setsietrics

Coverage diference of two setg (A, B)

| [SPEA [VEGA [NPGA [COEMAS |
SPEA 7 8 0 6

VEGA 116 7 3 13

NPGA 154 42 7 25

CoEMAS _ |197 27 7 7

Table 3. Comparison of proposed COEMAS approach with selectedicl$SMOA's according
to another four metrics

Size of dominatedAverage distancéDistribution ( M») [Spread (Mz)
space {) to the model
Pareto set M;)
SPEA 39521 0.8 0.21 10.2
VEGA 39405 2.3 0.11 10.3
NPGA 39368 3.2 0.18 10.1
CoEMAS (39324 3.7 0.15 9.9

To compare proposed approach with implemented classigalitims also some
metrics have been used. Obtained values of these metrigsresented in Table 1,
Table 2 and Table 3.

Assuming the following meaning of used below symbd@Ps—Pareto set defined
in eq. (5),A, B < D—two sets of decision vectors,> 0—appropriately chosen neigh-

borhood parameter arjid—the given distance metric, then the measures presented in
these tables are defined as follows [13]:

— 8(A, B)—the coverage of two sets maps the ordered @giB) to the interval [01]
in the following way:

beB|3da e A :a>bj
B (7)

— &(A, B)—the coverage dlierence of two setgp(denotes value of theize of domi-
nated spaceneasure):

S(AB) = I

§(A.B)=p(A+B)-p(B) (8
— Mj;—the average distance to the Pareto-optimafset
1 .
M1(P)=— > min{||p—X| | xeP 9
1(P) lplp; lp—xI | xeP) (9)

— My—the distribution in combination with the number of non-doated solutions
found:

1
MZ(’D):MF,ZP'”EP' Ip=rli> ol (10)



— Ms—the spread of nhon-dominated solutions over thefset

N
Ma(P) = szax{llpi =rill [ p.r e P} (11)

i=1

Basing on defined above test functions and measures, sonpacatiue studies of
proposed co-evolutionary agent-based system and medtaly@ve very well known,
and commonly used algorithms (iI¥EGA NPGAandSPEA could be performed and
conclusions from such experiments can be formulated am/sl|

— Within the group of implemented algorithn$?EAhas turned out to be definitely
the best one;

— NPGAnhas turned out to be slightly worse th8REAIf the distance to the model
Pareto frontier has been considered, and they have beesivatgr if distribution
non-dominated individuals over the whole Pareto frontas been considered;

— VEGAbased solutions have been almost as close to the modebRayetier as
they have been in case 8PEA— however these solutions have been focused
around some parts of Pareto set — what confirms the tenderndy@#ffor prefer-
ring chosen objective(s);

— proposedCoEMASsystem withhost-parasitanechanism has turned out to be com-
parable to thelassical algorithmsccording almost all considered metrics except
for Average distance to the model Pareto (&ste. Table 3);

It has to be mentioned here that preliminary experiments baen performed using
very simple test functions and some potential advantagpsopfosed co-evolutionary
system could not be here observed — but of course furtherriempets especially
with very difficult multi-dimensional and dynamic testing problems wél donducted
and proposed approach should turn out especially usefasa of multi-modal multi-
objective problems such as Zitzlet’stest function [13].

4 Concluding Remarks

Evolutionary algorithms often s$ier from premature loss of population diversity what
limits their adaptive capabilities and possible applmatio hard problems like multi-
modal and multi-objective optimization. To avoid such gesbs niching and co-evo-
lutionary techniques for evolutionary algorithms are megd and applied. However,
co-evolutionary techniques are rather rarely used as mészha of maintaining useful
population diversity.

The model ofco-evolutionary multi-agent systeatlows co-evolution of several
species and sexes. This results in maintaining populati@ngity and improves adap-
tive capabilities of systems based GaEMASmModel. In this paper theo-evolutionary
multi-agent system with host-parasite mechanism for robl@ctive optimizatiomas
been presented. The system was run against commonly usqadbems and com-
pared to classical VEGA, SPEA, and NPGA algorithms. Presentsults show that
SPEA is the best of all compared algorithms. Proposed CoEMAIS host-parasite



mechanism was comparable to the other classical algorjtertept foraverage dis-
tance to the model Pareto setetric. This fact results from the tendency to maintain
high population diversity what could be very useful in theeaf hard dynamic and
multi-modal multi-objective problems.

Future work will include more detailed comparison to othkssical algorithms
with the use of hard multi-dimensional, dynamic, and moitidal multi-objective test
problems. Also the application of other co-evolutionarycimnisms like sexual selec-
tion and predator-prey are included in future plans.
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