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Abstract

We provide results on the computational complexity of goodness of fit measures (i.e.
Afriat’s efficiency index, Varian’s efficiency vector-index and the Houtman-Maks
index) associated with several revealed preference axioms (i.e. WARP, SARP,
GARP and HARP). Our NP-Hardness results are obtained by reductions from the
independent set problem. We also show that this reduction can be used to prove
that no constant factor approximations algorithm exists for the Houtman-Maks
index (unless P = NP). Finally, we give an exact polynomial time algorithm for
finding Afriat’s efficiency index.
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1 Introduction

Utility maximization is a core hypothesis in neoclassical microeconomics, and testing the
empirical validity of this assumption has attracted considerable attention in the literature.
Such tests based on revealed preference theory have become increasingly popular. An attrac-
tive feature of these tests is that they are intrinsically nonparametric: they check consistency
with the utility maximization hypothesis without requiring a (typically nonverifiable) func-
tional specification of the utility function; and so they maximally avoid the risk of erroneous
conclusions due to a misspecified functional form. The empirical requirements for utility
maximization are summarized in terms of revealed preference axioms, which can be directly
applied to consumption data (prices and quantities) without requiring auxiliary assump-
tions. For example, a key result of revealed preference theory is that consumption can be
represented as maximizing a (well-behaved) utility function if and only if it satisfies the
Generalized Axiom of Revealed Preference (GARP) [26]. Three other axioms that are most
frequently considered in the applied literature are the Weak, Strong and Homothetic Axioms
of Revealed Preference (WARP, SARP and HARP; see Section 2 for exact definitions).

However, a frequently cited weakness of the basic revealed preference tests is that they
are ‘sharp’ tests: they only tell us whether or not observed behavior is exactly consistent
with the revealed preference axiom that is being tested. When consumption data do not pass
the test, there is no indication concerning the severity or the amount of violations. To deal
with this, a number of measures have been proposed in the literature to express how close a
data set is to satisfying rationality. In what follows, we will call these measures “goodness
of fit” measures; they tell us how well a revealed preference axiom fits the data at hand.
Probably the most popular goodness of fit measure in applied work is Afriat’s efficiency
index (AI) [1]. Other frequently used measures are the ones of Houtman and Maks (HI) [15]
and Varian (VI) [27]. Section 2 provides a precise description of these alternative goodness
of fit measures.

The revealed preference axioms and goodness of fit measures have been used intensively
in the applied literature. The first tests of the axioms of revealed preference go back to the



sixties and seventies. Aggregated household consumption data was used in tests of SARP
by Koo [18, 19], Koo and Hasenkamp [20], Mossin [24] and Landsburg [21]. Varian [26]
tested GARP using similar data. Only Koo tried to measure the severity of the rejections
by focusing on the amount of violations and using a measure similar to HI. Over the last
decade, the goodness of fit measures have been used more and more often. Sippel [25] tests
relaxations of WARP, SARP and GARP related to AI. AI and GARP are used in papers by
Mattei [23], Harbaugh et al. [14] Andreoni and Miller [4], Février and Visser [13], Choi et al.
[7, 8], Dean and Martin [11] and Burghart [6]; the last four papers also use HI. VI and GARP
appears in Cox [10], Mattei [23], Choi et al. [7, 8] and Dean and Martin [11]. For WARP,
all three indices appear in Choi et al. [7]. To the best of our knowledge, there do not exist
any studies that compute goodness of fit measures for HARP, although there exist papers
in which HARP is tested (see for example Manser and McDonald [22]). Finally, we also
note continuing interest in goodness of fit measures, illustrated by the recent introduction
of several new indices in the literature; specifically the money pump index by Echenique et
al. [12] which calculates the monetary cost of irrational behaviour and the minimal swaps
and minimal loss index by Apesteguia and Ballester [5].

This paper is specifically concerned with the computational complexity of the goodness
of fit measures used in revealed preference analysis. In general, computational complexity
becomes an important issue if one wants to consider large data sets. In this respect, we
indicate that large consumption data sets are increasingly available (see e.g. the scanner
consumption data that nowadays can be used), which directly motivates the research ques-
tion we consider here. Indeed, while the computational complexity of methods for testing
GARP and the other revealed preference axioms is well understood by now, this is not
always the case for computing the above mentioned goodness of fit measures.

It is generally thought that calculating AI is easy. However, to our knowledge, no exact
algorithm exists in the literature. Varian [27] provides an approximation algorithm, which
comes within
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)m
of the true index-value in m GARP tests. As for the other two indices

(HI and VI), it has been empirically recognized that computing them is computationally
intensive.1 For instance, Varian [27] writes:

“Computing the set of efficiency indices [VI] that are as close as possible to 1 in
some norm is substantially more difficult . . . This approach is significantly more
difficult from a computational perspective.”

Similarly, Choi et al. [8] state:

“All indices [VI and HI] are computationally intensive for even moderately large
data sets.”

The goal of the current paper is to give a theoretical foundation for these practical
observations and to strengthen the existing results. As far as we are aware, explicit com-
plexity results are known only for index HI. More specifically, Houtman and Maks establish
a link between their index for SARP and feedback vertex set on a digraph, which implies
NP-Hardness. Next, Dean and Martin [11] state that HI for GARP is also NP-HARD.

We define the computational complexity for every combination of the three goodness
of fit measures (AI, VI and HI) and the four revealed preference axioms (GARP, SARP,
WARP and HARP) mentioned above. We will refer to these problems as {A, V,H}I-
{G,S,W,H}ARP, where choosing a symbol from the set {A, V,H} and a symbol from
the set {G,S,W,H} identifies a particular problem. For example, AI-GARP is the problem
of computing the maximum index AI such that the data set satisfies a relaxation of GARP.

1Because of the difficulty to exactly calculate VI, some authors have focused on designing approximate
heuristics. See, for example, Varian [28] and Alcantud et al. [3].



Our main results are summarized in Table 1, where a column corresponds to a specific axiom
and a row to a specific measure and where n stands for the number of observations.2

WARP SARP GARP HARP
AI (sec 6) n2 log n n2 log n n2.376 log n n3

VI (sec 4) NP-HARD NP-HARD NP-HARD NP-HARD
HI (sec 5) Inapproximable Inapproximable Inapproximable Inapproximable

Table 1: Overview of Results

The rest of this paper unfolds as follows. The next section sets the stage by introducing
the basic revealed preference concepts that we will use throughout. Section 3 provides a
statement of the computational problems we focus on. Sections 4 and 5 then presents our
results on computational complexity for the indices VI and HI. Section 6 does the same for
the index AI. Here, we also give exact polynomial time algorithms for computing this index
in practical applications. Section 7 concludes.

2 Revealed preference concepts

We start by stating the 4 revealed preference axioms that we will consider. Subsequently,
we present the different goodness of fit measures.

2.1 Axioms of Revealed Preference

Our analysis starts from a data set S = {(pi, qi)| i = 1, . . . , n}, where pi (qi) is an N -
dimensional vector of prices (quantities) corresponding to observation i = 1, . . . , n. Without
loss of generality, we will assume that prices are normalized such that piqi = 1 for every
observation i.

To define the concept of revealed preferences we consider two observations i and j. If
(piqi =) 1 ≥ piqj , we say that bundle qi is directly revealed preferred to bundle qj . This
is expressed by writing qiR0qj , where R0 captures the direct revealed preference relation.
The transitive closure of R0 is denoted by R and is called the indirect revealed preference
relation. If 1 > piqj , we say that bundle qi is strictly directly revealed preferred to bundle
qj , which is denoted by qiP0qj . Finally, P stands for the transitive closure of P0.

We can then state the four revealed preference axioms that we consider in this paper.

Definition 1. (WARP) A data set S satisfies WARP if for each pair of bundles, qi, qj
(i, j = 1, . . . , n with i 6= j), the following holds: if qiR0qj then it is not the case that qjR0qi.

Definition 2. (SARP) A data set S satisfies SARP if for each pair of bundles, qi, qj,
(i, j = 1, . . . , n with i 6= j), the following holds: if qiRqj then it is not the case that qjR0qi.

Definition 3. (GARP): A data set S satisfies GARP if for each pair of bundles, qi, qj,
(i, j = 1, . . . , n with i 6= j), the following holds: if qiRqj then it is not the case that qjP0qi.

Definition 4. (HARP): A data set S satisfies HARP if for every sequence of observations,
i, j, k, . . . , l(= 1, . . . , n), the following holds: log(piqj) + log(pjqk) + . . .+ log(plqi) ≥ 0.

In words, the main differences between the alternative axioms can be summarized as
follows (see Varian [29] for a more extensive discussion on the meaning of the axioms).
Data consistency with WARP is a necessary condition for data consistency with SARP;

2‘inapproximable’ stands for: no polynomial-time algorithm can achieve a constant-factor approximation
unless P = NP .



the essential difference is that WARP (in contrast to SARP) does not require transitivity
of preferences. Next, data consistency with SARP means that consumption behavior can
be described as maximizing a utility function that generates single-valued demand. Sim-
ilarly, data consistency with GARP means that consumption behavior can be described
as maximizing a utility function that generates multi-valued demand. As such, GARP is
a generalization of SARP. Finally, data consistency with HARP means that consumption
behavior can be described as maximizing a utility function that is homothetic. This implies
that GARP is a necessary condition for HARP.

2.2 Goodness of fit measures

In practice, direct application of any of the above revealed preference axioms to some given
data set effectively obtains a ‘sharp’ test: a data set either satisfies the axiom or it does not.
In words, such a test allows us to conclude whether or not observed behavior is ‘exactly’
consistent with the hypothesis of utility maximization (of a particular form, depending on
whether we consider WARP, SARP, GARP or HARP). However, a data set that is not
exactly consistent may actually be very close to consistency. For example, there may be
only a limited number of observations that cause the observed violations of the axiom that is
subject to testing. Or, the violations may be very insignificant in that small adjustments of
the observations’ expenditures (i.e. prices times quantities) may suffice to obtain consistency.
Generally, it is interesting to quantify the degree to which a given data set is close to
consistency (see [27] for extensive motivation).

To account for these considerations, a number of goodness of fit measures have been
described in the literature. Three often used measures are Afriat’s efficiency index (AI),
Varian’s efficiency vector index (VI) and the Houtman and Maks index (HI). Essentially,
the indices AI and VI look for minimal expenditure perturbations to obtain consistency
with the revealed preference axiom under evaluation: the AI index applies a common per-
turbation to all observations, while the VI index allows a different perturbation for each
individual observation. Next, the index HI identifies the largest subset of observations that
are consistent with the axiom. Essentially, this quantifies the degree of violation in terms
of the number of observations that are involved in a violation of the revealed preference
axiom that is tested. We refer to Varian [29] for a more detailed discussion of the different
goodness of fit measures we evaluate.

To formally introduce our goodness of fit measures, we make use of the vector e =
(e1, e2, . . . , en), with 0 ≤ ei ≤ 1. This vector introduces an index ei for each observation i,
which relaxes the revealed preference relations R0 and P0 as follows:

if ei(= eipiqi) ≥ piqj then qiR0(e)qj ,

if ei(= eipiqi) > piqj then qiP0(e)qj .

Analogous to before, R(e) and P (e) represent the transtive closures of R0(e) and P0(e).
These newly defined relations R0(e), P0(e), R(e) and P (e) give rise to relaxed versions of
the earlier axioms of revealed preference, which are defined for a given vector e. Clearly
these axioms comply with the original versions of WARP, SARP, GARP and HARP as soon
as ei = 1 for all i.

Definition 5. (WARP(e)) A data set S satisfies WARP(e) if for each pair of bundles,
(i, j = 1, . . . , n with i 6= j), the following holds: if qiR0(e)qj then it is not the case that
qjR0(e)qi.

Definition 6. (SARP(e)) A data set S satisfies SARP(e) if for each pair of bundles,
qi, qj, (i, j = 1, . . . , n with i 6= j), the following holds: if qiR(e)qj then it is not the case that
qjR0(e)qi.



Definition 7. (GARP(e)) A data set S satisfies GARP(e) if for each pair of bundles,
qi, qj, (i, j = 1, . . . , n with i 6= j), the following holds: if qiR(e)qj then it is not the case that
qjP0(e)qi.

Definition 8. (HARP(e)) A data set S satisfies HARP(e) if for every sequence of obser-
vations i, j, k, . . . , l(= 1, . . . , n),, the following holds: log(piqj) + log(pjqk) + . . .+ log(plqi) ≥
log(ei) + log(ej) + . . .+ log(el).

To define the Afriat Index (AI), we assume that e1 = · · · = en, which does indeed comply
with a common perturbation for all observations. The index AI equals the highest value
for which the data is consistent with the tested revealed preference axiom. More precisely,
if AI = 1, then the data is consistent with the tested axiom. While if AI < 1, then
this indicates that we need to pertubate the data to make it consistent with the revealed
preference axiom under study. The smaller the number AI is, the higher the perturbation
or, alternatively, the more severe the rejection of the axiom. Finally, we note that AI is
well-defined. If for a given e the data is consistent with, for example, WARP(e), then the
same holds for all e′ < e. Indeed, by construction we have that the revealed preference
relations in terms of e′ are always a subset of the ones in terms of e (e.g. R0(e′) ⊆ R0(e)).

The Varian Index (VI) differs from the index AI by allowing for observation specific
perturbations. The index VI equals the vector e that is closest to one, for some given norm,
such that the data satisfies the revealed preference axiom under study. For example, if
we use the quadratic norm, then VI should minimize

∑
i(1 − ei)2 such that, for example,

WARP(e) is satisfied. Further, the index VI is subject to the same qualifications as the
index AI.

Finally, the Houtman and Maks index (HI) equals the size of the largest subset of
observations which satisfy the axioms of revealed preference. Formally, this complies with
restricting the possible values of ei so that ei ∈ {0, 1}.

3 Problem statement

In this section we introuduce the tools that we need to prove the results announced in Table
1. In particular, in Section 3.1 we show how to reformulate the goodness-of-fit measures
using graph theory and in Section 3.2 we state the corresponding optimization problems.

3.1 Graph representation

In order to verify whether a data set actually satisfies some revealed preference axiom, it is
natural to construct a graph (see Koo [19]). We now extend this procedure by taking into
account a given vector e = (e1, . . . , en). For some data set S, we construct the associated
graph Ge(S). In this graph, there is a node for every observation. Next, for each pair of
observations (i, j) (i 6= j), there is an arc from node i to node j when ei ≥ piqj . The length
of this arc is equal to piqj − ei.

The graph Ge(S) will be used to test WARP, SARP and GARP. To test HARP, we make
use of another graph G′e(S). The nodes and arcs of this alternative graph are defined in the
same way as for the graph Ge(S), but now the length of the arc is given by log(piqj)−log(ei).

The axioms of revealed preference can then be formulated as follows:

Definition 9. (WARP(e)) The data set S satisfies WARP(e) if and only if the graph
Ge(S) does not contain any cycle consisting of two arcs.

Definition 10. (SARP(e)) The data set S satisfies SARP(e) if and only if the graph
Ge(S) is acyclic.



Definition 11. (GARP(e)) The data set S satisfies GARP(e) if and only if the graph
Ge(S) does not contain any cycles of negative length.

Definition 12. (HARP(e)) The data set S satisfies HARP(e) if and only if the graph
G′e(S) does not contain any cycles of negative length.

3.2 Problem descriptions

We are now in a position to define an optimization problem that measures how close a given
data set is to satisfying a particular axiom of revealed preference. This leads to twelve
different problems. For example, for SARP(e) we obtain the problems AI-SARP, VI-SARP
and HI-SARP, each corresponding to a specific index. Straightforward adaptations define
the problems AI-{S,G,H}ARP, VI-{S,G,H}ARP and HI-{S,G,H}ARP. For compactness,
we only state the optimization problems with respect to SARP; the optimization problems
corresponding to {W,G,H}-ARP are defined analogously.

Problem 1. (VI-SARP) Given a data set S, for what values ei, with 0 ≤ ei ≤ 1 for each
i, is

∑n
i=1 ei maximized, while S satisfies SARP(e)?

Clearly, other objective functions are possible, We will give results and come back to
this issue in Section 4.

Problem 2. (HI-SARP) Given a data set S, what is the largest subset of observations
Q ⊆ {1, . . . , n} such that Q satisfies SARP?

Results concerning this problem will be given in Section 5.

Problem 3. (AI-SARP) Given a data set S, for what value e1, with 0 ≤ e1 ≤ 1, is e1
maximized while S satisfies SARP(e), with e = (e1, . . . , e1)?.

4 The complexity of Varian’s Index

Clearly, when given a vector e = (e1, . . . , en), there are different ways to specify an objec-
tive function measuring the quality of e. Obvious candidates are minimize

∑n
i=1 (1− ei),

minimize
∑n
i=1 (1− ei)2 or minimize maxi (1 − ei). In fact, all these objective functions

can be captured by considering minimize (
∑n
i=1 (1− ei)ρ)1/ρ for ρ ≥ 1. Observe that,

since limρ→∞(
∑n
i=1 (1− ei)ρ)1/ρ = maxi (1 − ei), the Afriat index arises when ρ → ∞.

The results in this section are phrased for ρ = 1, i.e., for the case where we minimize∑n
i=1 (1− ei) or equivalently maximize

∑n
i=1 ei. At the end of the section we point out

that the reduction remains valid for every fixed ρ ≥ 1.

Let us now consider the following decision problem associated with VI-SARP:

Input: A data set S = {pi, qi |i = 1, . . . , n} and a number Z.
Question: Do there exist n numbers ei, with 0 ≤ ei ≤ 1, such that

(i) The data set S satisfies SARP(e), and

(ii)
∑n
i=1 ei ≥ Z?

Theorem 1. VI-SARP is NP-Hard.

Proof. We prove that VI-SARP is NP-Hard by a reduction from the well-known NP-Hard
independent set problem [16], which is formulated as follows:



Input: A graph G = (V,E) and a number k.
Question: Does there exist a subset V ′ ⊆ V of at least k vertices, such that for every pair
of vertices i, j ∈ V ′, the edge (i, j) is not in E?

Given an instance of IS we now construct the following instance of VI-SARP. For
every node i ∈ V , there is an observation in VI-SARP: n := |V |. The vectors
pi = (p1i , . . . , p

N
i ), qi = (q1i , . . . , q

N
i ) are created as follows. We set, for i = 1, . . . , n, qii := 1,

all remaining qji := 0. Further, we set pii := 1, for i = 1, . . . , n. If there is an edge between

node i and node j in G, i.e., if {i, j} ∈ E, then pji := ε (for some 0 < ε < 1
n ), otherwise

pji := 2. Finally, we set Z := k. This completes the description of the instance of VI-SARP.
Notice that this construction implies that if an edge exists between i and j in G, then
piqj = pjqi = ε, else piqj = pjqi = 2.

We now argue the equivalence between IS and VI-SARP. Suppose the instance of inde-
pendent set is a yes-instance, i.e., an independent set of size at least k exists. For every
vertex in that independent set, set ei = 1 and for every other vertex set ei = 0. It is
clear that

∑
ei ≥ Z. Consider the graph Ge(S), and recall that an arc is present from i

to j if and only if piqj ≤ ei. We claim that the graph Ge(S) is acyclic. Indeed, notice
that vertices outside the independent set will not have any outgoing arcs in Ge(S) since for
each such vertex i: piqj − ei = piqj > 0. Also note that no arc connects two observations
corresponding to nodes in the independent set, since for a pair of such observations i, j we
have piqj − ei = pjqi − ej = 2− 1 > 0. Thus, arcs in Ge(S) only exist from vertices in the
independent set to vertices outside the independent set. It follows that the graph is acyclic.

Now, suppose that the instance of VI-SARP is a yes-instance, so
∑
ei ≥ Z = k. Then

for at least k observations ei > ε; if not, at most k − 1 ei-values exceed ε; since ei ≤ 1,∑
ei is then bounded by k − 1 + (n − k − 1)ε < k − 1 + 1 = k, which contradicts with

the requirements for a yes-instance. We will call such an ei value large. We claim that
the vertices with large ei-values constitute an independent set in G. Indeed, consider two
vertices i and j with a large ei value. If i and j are connected in G, then piqj = pjqi = ε,
implying that there is an arc in the graph Ge(S) from i to j and from j to i, which is a
cycle. Therefore i and j are not connected in G. Thus the set of vertices with large ei is an
independent set of size at least k.

We now proceed with the closely related problems VI-GARP, VI-WARP and VI-HARP:

Input: A data set S = {pi, qi |i = 1, . . . , n} and a number Z.
Question: Do there exist n numbers ei, with 0 ≤ ei ≤ 1, such that

(i) The data set S satisfies the appropriate axiom, GARP(e), WARP(e) or HARP(e), and

(ii)
∑n
i=1 ei ≥ Z?

Theorem 2. VI-GARP is NP-Hard.

Theorem 3. VI-WARP is NP-Hard.

Theorem 4. VI-HARP is NP-Hard.

Instances of these problems are built as in the proof of Theorem 1. The proofs of
equivalence are relatively straightforward.

Let us now return to the general objective function
∑n
i=1 (1− ei)ρ (with ρ ≥ 1) given

at the start of this section. We now consider the following problem:



Input: A data set S = {pi, qi |i = 1, . . . , n} and a number Z.
Question: Do there exist n numbers ei, with 0 ≤ ei ≤ 1, such that

(i) The data set S satisfies SARP(e), and

(ii)
∑n
i=1 (1− ei)ρ ≤ Z?

Corollary 1. Varian’s Index is NP-HARD for objective functions of the form minimize
(
∑n
i=1 (1− ei)ρ)1/ρ, for any fixed ρ ≥ 1.

Proof. Given an instance of Independent Set, create an instance of VI-{W,S,G,H}ARP as
in the proof of their respective theorems with the following differences. Set Z := n− k and

let 0 < ε < 1− (n−k)
(n−k+1)(1/ρ)

. It can be easily checked that the equivalences hold.

5 The index HI

In this section, we consider the problems HI-{W,S,G,H}ARP. We give the problem HI-
SARP, all other problems are analogous, differing only in the axiom of revealed preference
to be satisfied. Notice that, in their original paper, Houtman and Maks already showed a
relation between HI and feedback vertex set, see also [11]

Input: A data set S = {pi, qi |i = 1, . . . , n} and a number Z.
Question: Do there exist n numbers ei, with ei ∈ {0, 1}, such that

(i) The data set S satisfies SARP(e), and

(ii)
∑n
i=1 ei ≥ Z?

Theorem 5. HI-{W,S,G,H}ARP is NP-Hard.

Proof. The proof of NP-hardness for maximizing the sum of the elements of VI is easily
extended to HI. As the choice of ei is now limited to either zero or one it is clear that every
large ei = 1 and every other ej = 0.

Theorem 6. No polynomial time ρ-approximation algorithm exists for HI-
{W,S,G,H}ARP, unless P = NP.

Proof. Consider an instance of Independent Set, and the corresponding instance of HI-SARP
as constructed in Theorem 1. Now consider that the optimum of the HI-SARP instance is
z, then the optimum for IS is also z. If not, then for we could find an independent set of
size z + 1 and by the previous reduction we could find e so that

∑
ei ≥ z + 1.

Now consider we have a ρ-approximation for HI-SARP, then we could find a vector-
index so that

∑
ei ≥ z × ρ in polynomial time. Given this vector-index we could find an

independent set of size z × ρ as follows, for every i for which ei = 1 add the vertex i to
the independent set. This would give us a ρ-approximation for IS in polynomial time. This
implies that P = NP.

6 Afriat’s index (AI)

6.1 Introductory observations

As with the previous indices, it is our goal to find the maximum value of e
(e1 = e2 = . . . = eT = e), such that a given data set still passes {W,S,G,H}ARP.



However, such a maximum value frequently does not exist. For example, consider the
following matrix of the values piqj (for two observations)(

1 0.50
0.60 1

)
As long as e ∈ [0; 0.6[, all axioms of revealed preference will be satisfied, but for e ≥ 0.6 a
cycle of negative length between the two vertices exists in both Ge(S) and G′e(S) and, thus,
the axioms are violated. Since there is no maximum feasible value for e, we look for the value
e∗ that is the supremum of the values of e for which the axioms of revealed preference are
satisfied. Varian [27] describes an approximation algorithm which approximates e∗ to within
(1/2)t by testing the axiom under e t times. In an overview paper, Varian [29] mentions
that it is also easy to calculate e∗ exactly and exact values are calculated for AI-GARP in
a number of papers, see for instance Choi et al. [7]. However, to the best of our knowledge,
no exact polynomial algorithm has been published in the literature. In the next section
we provide such a polynomial time exact algorithm for AI-{W,S,G}ARP and a separate
algorithm for AI-HARP.

6.2 Complexity results

Theorem 7. AI-WARP can be solved in O(n2 log(n)).

Proof. We first argue that Algorithm 1 is correct. Clearly, if the dataset satisfies WARP(e),
then it satisfies WARP(e’) for all e′ ≤ e. Moreover, the dataset satisfies WARP(0). Thus,
for an increasing e, WARP(e) becomes infeasible at some value e∗. This can only happen
when an arc, completing a cycle consisting of two arcs, is added to the graph Ge(S), i.e.,
at some value piqj . It follows that Algorithm 1 is correct.

Next we analyse the complexity of this algorithm. To construct A, piqj must be calcu-
lated for all pairs of observations, which takes O(n2) time. In the worst case, this array
is of size O(n2), so sorting is done in O(n2 log(n)). In the second step of the algorithm,
WARP(e) is tested for different values of e. As the array is halved in each iteration, at most
O(log(n2)) such tests are needed and each such test can be done in O(n2), by checking each
pair of nodes for violations of WARP(e). This gives a total time complexity for the second
step of O(n2 log(n)). The total time complexity is thus determined by the sorting of the
array and the second step and is O(n2 log(n)).

Algorithm 1 AI-WARP

1: Initialization: Construct an array A of all values piqj ≤ 1, i 6= j. Sort these values in
ascending order.

2: Let x be the median value in A. Test WARP(x), if WARP(e) is satisfied, remove all
values lower than or equal to x from A, otherwise remove all higher values.

3: If more than one element remains in the array, repeat step 2, otherwise let x be the
remaining value in A, then e∗ = x

Theorem 8. AI-SARP can be solved in O(n2 log(n)).

Proof. For AI-SARP we consider algorithm 1, with the adjustment that SARP(e) is tested
instead of WARP(e). SARP(e) can also be tested in O(n2), for example by a topological
ordering algorithm [2], leading to the same time complexity.



Theorem 9. AI-GARP can be solved in O(n2.376 log(n)).

Proof. We first note that the value e∗ can be feasible for GARP(e), if for that value a cycle
of length 0 exists in the graph G(S). Therefore, we consider a variant of the algorithm,
which does not discard the highest known feasible value of e.

The time complexity of this algorithm is similar to that for AI-WARP and AI-SARP, but
differs in that testing GARP(e) takes O(n2.376). This test is done by finding the transitive
closure by way of matrix multiplication [9].

Finally, we provide a polynomial time algorithm for AI-HARP.

Algorithm 2 AI-HARP

1: Input: A set of observations pt = (p1t , . . . , p
N
t ), qt = (q1t , . . . , q

N
t ) for t = 1, . . . , T

2: Initialization: Construct the graph G′1(S)
3: Calculate the minimum cycle mean (MCM), which is the shortest average length of the

arcs in any cycle in the graph G′1(S).
4: Calculate e∗ as follows: e∗ = exp (MCM).

Theorem 10. AI-HARP can be solved in time proportional to O(n3).

Proof. We will show that computing the minimum cycle mean (MCM) of G′1(S) is sufficient
to find e∗. HARP(e) is satisfied if there are no cycles of negative length in G′e(S). Thus, if
such a cycle exists, we need to remove it by lowering e. A decrease in e will lengthen every
arc in the graph by the same amount, as the length of an arc is log(piqj) − log(e). It is
clear that the if we set the value of e∗ so that the cycle with the shortest average arc length
has a length of zero, the average arc length of every other cycle will be non-negative and
no cycles of negative length will remain. Indeed, by setting e∗ := exp(MCM), the length of
each arc becomes log(piqj)− log(exp(MCM)) = log(piqj)− MCM.

The time complexity of this algorithm is polynomial as there exist algorithms for finding
the MCM in O(nm) time [17], with m being the number of arcs in the graph. In G′1(S)
there will be n2 arcs. The building of the graph takes O(n2) time. The overall time bound
of the algorithm is thus O(n2 log(n) + n3) = O(n3) time.

7 Conclusion

Motivated by the increasing availability of large scale consumption data sets, we have in-
vestigated the computational complexity of testing the utility maximization hypothesis in
revealed preference terms. In particular, we have focused on three goodness of fit measures
for four different revealed preference axioms (i.e. WARP, SARP, GARP and HARP). We
have demonstrated that, for all four axioms, the Houtman and Maks index is inapproximable
and that computing Varian’s index is NP-Hard. Next, we have shown that these conclu-
sions do not apply to Afriat’s index, and we have presented exact polynomial algorithms for
computing this index (for every revealed preference axiom that we considered).
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