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Abstract

The original possible winner problem is: Given an unweighted election with partial preferences
and a distinguished candidatec, can the preferences be extended to total ones such thatc wins?
We introduce a novel variant of this problem in which not someof the voters’ preferences
are uncertain but some of their weights. Not much has been known previously about the
weighted possible winner problem. We present a general framework to study this problem,
both for integer and rational weights, with and without upper bounds on the total weight to be
distributed, and with and without ranges to choose the weights from. We study the complexity
of these problems for important voting systems such as scoring rules, Copeland, ranked pairs,
plurality with runoff, and (simplified) Bucklin and fallback voting.

1 INTRODUCTION

Much of the previous work in computational social choice hasfocused on the complexity of manipu-
lation, control, and bribery problems in voting (see the surveys by Faliszewski et al. [18, 21]). More
recently, many papers studied the possible winner problem,which generalizes the (unweighted)
coalitional manipulation problem. The original possible winner problem was introduced by Kon-
czak and Lang [24]. The input to this problem is an election with partial (instead of total) preferences
and a distinguished candidate, and the question is whether it is possible to extend the partial pref-
erences to total ones such that the distinguished candidatewins. Xia and Conitzer [28] studied this
and also the necessary winner problem. Betzler and Dorn [7] and Baumeister and Rothe [5] estab-
lished a dichotomy result for the possible winner problem, and Betzler et al. [8, 6] investigated the
parameterized complexity of this problem.

A number of variants of the possible winner problem have beenstudied as well. Bachrach, Betz-
ler, and Faliszewski [1] investigated a probabilistic variant thereof. Chevaleyre et al. [10] introduced
the possible winner with respect to the addition of new alternativesproblem, which is related to,
yet different from the problem of control via adding candidates2(see [2, 23]) and is also similar, yet
not identical to the cloning problem in elections [16]. Their variant was further studied by, e.g.,
Xia, Lang, and Monnot [29] and Baumeister, Roos, and Rothe [4]. The latter paper in particular
considered a weighted variant of the possible winner problem, and it also introduced and studied
this problem under voting rule uncertainty, an approach that was followed up recently by Elkind and
Erdélyi [14] who applied it to coalitional manipulation [11]. Baumeister et al. [3] studied variants of
the possible winner problem with truncated ballots. Lang etal. [25] and Pini et al. [27] investigated
the possible and necessary winner problem for voting trees and multi-round election systems such
as STV. Most of the papers listed above consider onlyunweightedelections. We present a general
framework to study theweightedpossible winner problem, and we focus on elections where not
some of the voters’ preferences, but some of theirweights, are uncertain. The problems we study
in our framework come with integer or rational weights, withor without upper bounds on the total
weight to be assigned, and with or without given ranges to choose the weights from. An interesting
point in this regard is that while the original possible winner problem generalizes the coalitional
manipulation problem [11], certain variants of the possible winner problem with uncertain weights
generalize constructive control by adding/deleting voters [2, 23].

1To appear inProceedings of the 20th European Conference on Artificial Intelligence, Montpellier, France, August 2012.
2We usecandidateandalternativesynonymously.



The following situation may motivate why it is interesting to study the possible winner problem
with uncertain weights. Imagine a company that is going to decide on its future strategy by voting at
the annual general assembly of stockholders. Among the parties involved, everybody’s preferences
are common knowledge. However, who will succeed with its preferred alternative for the future
company strategy depends on the stockholders’ weights, i.e., on how many stocks they each own, and
there is uncertainty about these weights. Is it possible to assign weights to the parties involved (e.g.,
by them buying new stocks) such that a given alternative wins? As another example, suppose we
want to decide which university is the best in the world basedon different criteria (e.g., graduation
and retention rates, faculty resources, student selectivity, etc.). Each criterion can be seen as a
voter who gives a ranking over all universities (candidates). Suppose the voting rule is fixed (e.g.,
plurality), but the chair can determine the weights of thesecriteria. It is interesting to know whether
a given university can win if the chair chooses the weights carefully.

2 PRELIMINARIES

An electionis a pair(C,V) consisting of a finite setC of candidates and a finite listV of voters
that are represented by their preferences over the candidates inC and are occasionally denoted by
v1, . . . ,v|V|. A voting systemE is a set of rules determining the winning candidates according to the
preferences inV. The voting systems considered here are all preference-based, that is, the votes are
given as linear orders overC. For example, ifC = {a,b,c,d} then a votea > c > b > d means that
this voter (strictly) prefersa to c, c to b, andb to d. If such an order is not total (e.g., when a voter
only specifiesa > c > d as her preference over these four candidates), we say it is a partial order.
For winner determination in weighted voting systems, a votev of weightw is considered as if there
werew unweighted (i.e., unit-weight) votesv.

For a given election(C,V), theweighted majority graph (WMG)is defined as a directed graph
whose vertices are the candidates, and we have an edgec → d of weightN(c,d) between any two
verticesc andd, whereN(c,d) is the number of voters preferringc to d minus the number of voters
preferringd to c. Note that in the WMG of any election, all weights on the edgeshave the same parity
(and whether it is odd or even depends on the parity of the number of votes), andN(c,d) =−N(d,c)
(which is why it is enough to give only one of these two edges explicitly).

We will consider the following voting rules.

• Positional Scoring Rules:These rules are defined by ascoring vector~α = (α1,α2, . . . ,αm),
wherem is the number of candidates, theαi are nonnegative integers, andα1 ≥α2 ≥ ·· · ≥αm.
Let ρi(c) denote the position of candidatec in votervi ’s vote. Thenc receivesαρi(c) points
from vi , and the total score ofc is ∑n

i=1 αρi(c) for n voters. All candidates with the largest score
are the~α winners. In particular, we will considerk-approval elections,k≤ m, whose scoring
vector has a 1 in the firstk positions, and the remainingm− k entries are all 0. The special
case of 1-approval is also known asplurality and that of(m−1)-approval asveto. The scoring
vector(m−1,m−2, . . .,2,1,0) defines theBordarule.

• Copelandα (for each rational number α, 0≤ α ≤ 1):3 For any two alternativesc andc′, we
can simulate apairwise electionbetween them, by seeing how many voters preferc to c′, and
how many preferc′ to c; the winner of the pairwise election is the one preferred more often.
Then, an alternative receives one point for each win in a pairwise election,α points for each
tie, and zero points for each loss. This is the Copeland scoreof the alternative. A Copeland
winner maximizes the Copeland score.

• Ranked pairs: This rule first creates an entire ranking of all the candidates. In each step,
we consider a pair of candidatesc,c′ that we have not previously considered; specifically, we

3The original Copeland system [12] is defined for the specific value ofα = 1/2; the generalization to otherα values is due
to Faliszewski et al. [20].



choose among the remaining pairs one with the highestN(c,c′) value (in case of ties, we use
some tie-breaking mechanism) and then fix the orderc > c′, unless this contradicts previous
orders already fixed (i.e., unless this order violates transitivity). We continue until we have
considered all pairs of candidates (and so we have a full ranking). A candidate at the top of
the ranking for some tie-breaking mechanism is a winner.

• Plurality with runoff: This rule proceeds in two rounds. First, all alternatives except those
two with the highest plurality score are eliminated; in the second round (the runoff), the
plurality rule is used to select a winner among these two. Some tie-breaking rule is applied in
both rounds if needed.

• Bucklin and fallback voting (both simplified): In a Bucklin election, the voters’ preferences
are linear orders and the levelℓ score of a candidatec is the number of voters rankingc among
their topℓ positions. The Bucklin score of a candidatec is the smallest numbert such that
more than half of the voters rankc somewhere in their topt positions. A Bucklin winner
minimizes the Bucklin score.4 In (simplified) fallback elections, on the other hand, nontotal
(more specifically, “top-truncated” as defined in [3]) preference orders are allowed. Every
Bucklin winner is also a fallback winner, but if no Bucklin winner exists (which may happen
due to the voters’ partial orders) andℓ is the length of a longest preference order among the
votes, all candidates with the greatest levelℓ score are the fallback winners. Throughout this
paper we will refer to “simplified Bucklin” and “simplified fallback” simply as Bucklin and
fallback voting.

We will use the following notation. If the set of candidates is, say,C = B∪D∪{c}, then we
mean byc >

−→
D > · · · thatc is preferred to all candidates, where

−→
D is an arbitrarily fixed ordering

of the candidates occurring inD, and “· · · ” indicates that the remaining candidates (those fromB in
this example) can be ranked in an arbitrary order afterwards.

Some proofs in this paper useMcGarvey’s trick[26] (applied to WMGs), which constructs a list
of votes whose WMG is the same as some targeted weighted directed graph. This will be helpful
because when we present our proofs, we only need to specify the WMG instead of the whole list of
votes, and then by using McGarvey’s trick for WMGs, a votes list can be constructed in polynomial
time. More specifically, McGarvey showed that for every unweighted majority graph, there is a
particular list of preferences that results in this majority graph. Extending this to WMGs, the trick
works as follows. For any pair of candidates,(c,d), if we add two votes,c > d > c3 > · · · > cm and
cm > cm−1 > · · · > c3 > c > d, to a vote list, then in the WMG, the weight on the edgec → d is
increased by 2 and the weight on the edged → c is decreased by 2, while the weights on all other
edges remain unchanged.

3 PROBLEM DEFINITIONS AND DISCUSSION

We now define our variants of the possible winner problem withuncertain weights. LetE be a given
voting system andF ∈ {Q+,N}.

E -Possible-Winner-with-Uncertain-Weights-F (E -PWUW-F)

Given: An E election(C,V0∪V1), V0∩V1 = /0, where the weights of the voters inV0 are
not specified yet and weight zero is allowed for them, yet all voters inV1 have
weight one, and a designated candidatec∈C.

Question: Is there an assignment of weightswi ∈ F to the votesvi in V0 such thatc is anE

winner of election(C,V0∪V1) whenvi ’s weight iswi for 1≤ i ≤ |V0|?

4We consider only this simplified version of Bucklin voting. In the full version (see, e.g., [17]), among all candidates with
smallest Bucklin score, sayt, for c to win it is also required thatc’s level t score is largest.



We distinguish between allowing nonnegative rational weights (i.e., weights inQ+) and non-
negative integer weights (i.e., weights inN). In particular, we allow weight-zero voters inV0. Note
that for inputs withV0 = /0 (which is not excluded in the problem definition), we obtain the ordinary
unweighted (i.e., unit-weight) winner problem forE . Allowing weight zero for voters inV0 in some
sense corresponds to control by deleting voters (see [2, 23]); later in this section we also briefly dis-
cuss the relationship with control by adding voters. The reason why we distinguish between votes
with uncertain weights and unit-weight votes in our probleminstances is that we want to capture
these problems in their full generality; just as votes with total preferences are allowed to occur in
the instances of the original possible winner problem. The requirement of normalizing the weights
in V1 to unit-weight, on the other hand,is a restriction (that doesn’t hurt) and is chosen at will. This
will somewhat simplify our proofs.

We also consider the following restrictions ofE -PWUW-F:

• In E -PWUW-RW-F, anE -PWUW-F instance and regions (i.e., intervals)Ri ⊆F, 1≤ i ≤ |V0|,
are given, and the question is the same as inE -PWUW-F, except that each weightwi must
be chosen fromRi in addition.

• In E -PWUW-BW-F, anE -PWUW-F instance and a positive boundB∈ F is given, and the

question is the same as inE -PWUW-F, except that∑|V0|
i=1wi ≤ B must hold in addition (i.e.,

the total weight that can be assigned must be bounded byB).

• In E -PWUW-BW-RW-F, anE -PWUW-BW-F instance and regions (i.e., intervals)Ri ⊆ F,
1≤ i ≤ |V0|, are given, and the question is the same as inE -PWUW-BW-F, except that each
weightwi must be chosen fromRi in addition.

One could also define other variants ofE -PWUW-F (e.g., thedestructivevariant where the
question is whetherc’s victory can be prevented by some weight assignment) or other variants of
E -PWUW-BW-RW-F andE -PWUW-RW-F (e.g., by allowingsets of intervalsfor each weight),
but here we focus on the eight problems defined above. We focuson thewinner model (aka. the
co-winneror thenonunique-winnermodel) where the question is whetherc can be madea winner
by assigning appropriate weights. By minor proof adjustments, most of our results can be shown to
also hold in theunique-winnermodel where we ask whetherc can be made the only winner.

We assume that the reader is familiar with common complexity-theoretic notions, such as the
complexity classes P and NP, and the notions of hardness and completeness with respect to the
polynomial-time many-one reducibility, which we denote by≤p

m.
The following reductions hold trivially among our problems, by setting the bound on the total

weight allowed to the sum of the highest possible weights forthe first two reductions and by setting
the intervals to[0,B] (whereB is the bound on the total weight) for the last two reductions:

PWUW-RW-Q+ ≤p
m PWUW-BW-RW-Q+ (1)

PWUW-RW-N ≤p
m PWUW-BW-RW-N (2)

PWUW-BW-Q+ ≤p
m PWUW-BW-RW-Q+ (3)

PWUW-BW-N ≤p
m PWUW-BW-RW-N. (4)

Related to our variants of the PWUW problem is the problem of constructive control by adding
voters (see [2]), CCAV for short. Here, a setC of candidates with a distinguished candidatec∈C,
a listV of registered voters, an additional listV ′ of as yet unregistered voters, and a positive integer
k are given. The question is whether it is possible to makec win the election by adding at mostk
voters fromV ′ to the election.

Obviously, there is a direct polynomial-time many-one reduction from CCAV to PWUW-BW-
RW-N. The voters inV1 are the registered voters fromV and the voters inV0 are those fromV ′, where
the weights can be chosen from{0,1} for all votes inV0, and the total bound on the weightB is set



Scoring Rules, Plurality, 3-AV k-AV, Bucklin, Copeland,
PWUW- Plurality 2-AV, k≥ 4 Fallback Ranked

with runoff Veto Pairs

Q+ P P P P P ?
N ? P P P NP-c. NP-c.
BW-RW-Q+ P P P P P ?
BW-RW-N ? P ? NP-c. NP-c. NP-c.
BW-Q+ P P P P P ?
BW-N ? P ? NP-c. NP-c. NP-c.
RW-Q+ P P P P P ?
RW-N ? P P P NP-c. NP-c.

Table 1: Overview of results. “NP-c.” stands for NP-complete.

to k. If succinct representation is assumed,5 there is also a polynomial-time many-one reduction in
the other direction. The registered voters are those fromV1, and the unregistered voters are those
from V0, where each vote is added according to its maximal weight in the PWUW instance. The
numberk of voters who may be added equals the boundB on the total weight.

Since there are reductions in both directions, complexity results carry over from CCAV to
PWUW-BW-RW-N when we assume succinct representation. For the voting systems considered
in this paper, this implies that PWUW-BW-RW-N is NP-complete for Copeland0 and Copeland1,
and is solvable in polynomial time for plurality (see [20, 2]). (Note that the NP-hardness results on
CCAV for Bucklin and fallback voting from [17] concern the full, not the simplified versions of
these voting rules.) These already known cases are nevertheless covered by our proofs in the next
section, since they handle several restrictions of the PWUWproblems at the same time. Conversely,
the results from the next section for PWUW-BW-RW-N all carry over to CCAV if we assume suc-
cinct representation.

4 RESULTS AND SELECTED PROOFS

Table 1 gives an overview of our results. In the next section,we will provide or sketch some of the
proofs for these results. Due to space constraints, not all proofs can be presented in full detail.

4.1 Integer Weights

We begin with the results for the integer cases.

Proposition 1 1. Each of the four variants ofplurality-PWUW-N, veto-PWUW-N, and 2-
approval-PWUW-N studied in this paper is inP.

2. For each k≥ 1, k-approval-PWUW-N and k-approval-PWUW-RW-N are inP.

PROOF. For the first statement, we present the proof details for 2-approval-PWUW-BW-RW-N,
where for each vote inV0 the range of allowed weights is{0,1}. The proof can be adjusted to also
work when other ranges are given.

Given a 2-approval-PWUW-BW-RW-N instance as above, we construct the following max-flow
instance. LetV ′

0 denote the list of votes inV0 wherec is ranked among the top two positions. We
may assume, without loss of generality, that the given boundB on the total weight satisfiesB≤ |V ′

0|.
6

The vertices are{s,s′, t}∪V′
0∪ (C\ {c}) with the following edges:

5This means that when there are several identical votes, we don’t list them all but rather store a number in binary saying
how often this vote occurs.

6Otherwise, the optimal strategy is to let the weights of the votes inV′
0 be 1 and to let the weights of all other votes be 0.



• There is an edges→ s′ with capacityB and an edge froms′ to each node inV ′
0 with capacity 1.

• There is an edge from a nodeL in V ′
0 to a noded in C\ {c} with capacity 1 if and only ifd is

ranked besidesc among the top two positions inL.

• There is an edge from each noded ∈C\{c} to t with capacityB+score(c,V1)−score(d,V1),
wherescore(e,V1) is the 2-approval score of anye∈C in vote listV1.7

In the max-flow problem, we are asked whether there exists a flow whose value isB. We note that in
the PWUW instance, it is always optimal to chooseB votes inV ′

0 and to let their weights be 1. The
bound ond→ t for d∈C\{c} ensures that the 2-approval score ofd is no more than the 2-approval
score ofc.

The claims for 2-approval-PWUW-RW-N and 2-approval-PWUW-BW-N follow from (2)
and (4).

For the second statement, it suffices to maximize the weightsof the votes inV ′
0 that rankc among

their topk positions, and to minimize the weights of the other votes.
❑

In particular, it is open whether 3-approval-PWUW-BW-RW-N and 3-approval-PWUW-BW-N
are also in P. Fork≥ 4, however, we can show that these problems are NP-complete.

Theorem 2 For each k≥ 4, k-approval-PWUW-BW-RW-N and k-approval-PWUW-BW-N areNP-
complete.

PROOF. It is easy to see that both problems belong to NP. For provingNP-hardness, we give a proof
for 4-approval-PWUW-BW-N by a reduction from the NP-complete problem EXACT COVER BY

3-SETS (X3C): Given a setB = {b1, . . . ,b3q} and a collectionS = {S1, . . . ,Sn} with |Si | = 3 and
Si ⊆ B, 1≤ i ≤ n, doesS contain an exact cover forB, i.e., a subcollectionS ′ ⊆ S such that
every element ofB occurs in exactly one member ofS ′?

Construct an instance ofk-approval-PWUW-BW-N with the set

C = {c,b1, . . . ,b3q,b
1
1, . . . ,b

1
3q,b

2
1, . . . ,b

2
3q,b

3
1, . . . ,b

3
3q}

of candidates, wherec is the designated candidate, and with the setV0 of n votes of the formc >
−→
Si > · · · , the setV1 of q−1 votes of the formb j > b1

j > b2
j > b3

j > · · · for eachj, 1≤ j ≤ 3q, and the
boundB = q on the total weight of the votes inV0. Recall that the votes inV1 all have fixed weight
one, and those of the votes inV0 are fromN. We show thatS has an exact cover forB if and only
if we can set the weights of the voters in this election such thatc is a winner.

Assume that there is an exact coverS ′ ⊆ S for B. By setting the weights of the votesc >
−→
Si > · · · to one for thoseq subsetsSi contained inS ′, and to zero for all other votes inV0, c is a
winner of the election, asc and allb j , 1≤ j ≤ 3q, receive exactlyq points, whereasb1

j , b2
j , andb3

j ,
1≤ j ≤ 3q, receiveq−1 points each.

Conversely, assume thatc can be made a winner of the election by choosing the weights ofthe
votes inV0 appropriately. Note that the bound on the total weight for the votes inV0 is B = q. Every
bi getsq−1 points from the votes inV1, andc gets points only from the votes inV0. Since there are
always someb j getting points if a vote fromV0 has weight one, there are at least threeb j havingq
points if a vote fromV0 has weight one. Hencec must getq points from the votes inV0 by setting
the weight ofq votes to one. Furthermore, everyb j can occur only once in the votes having weight
one inV0, as otherwisec would not win. Thus, theSi corresponding to the votes of weight one inV0

must form an exact cover forB.
7Note that if this capacity is negative, the given 2-approval-PWUW-BW-RW-N instance is trivially a no-instance, sincec

can never be made a winner.



By adding dummy candidates to fill the positions receiving points, we can adapt this proof for
k-approval for any fixedk > 4. NP-hardness fork-approval-PWUW-BW-RW-N, k≥ 4, then follows
from the trivial reduction (4) stated in Section 3. ❑

We now show that all variants of PWUW with integer weights areNP-complete for Copelandα ,
ranked pairs, Bucklin, and fallback elections.

Theorem 3 For each rational numberα, 0≤ α ≤ 1, every variant ofCopelandα -PWUW-N stud-
ied in this paper isNP-complete.

PROOF. NP membership is easy to see for all problem variants. We first prove NP-hardness for
Copelandα -PWUW-N, and then show how to modify the proof for the variants of the problem.
Given an X3C instance(B,S ) with B = {b1, . . . ,b3q} andS = {S1, . . . ,Sn}, we construct the
following PWUW instance for Copelandα , where the set of candidates isB ∪ {c,d,e}. Without
loss of generality we assume thatq≥ 4 and we are asked whetherc can be made a winner.

The votes onC are defined as follows.V0 will encode the X3C instance andV1 will be used to
implement McGarvey’s trick.V0 consists of the followingn votes: For eachj, 1≤ j ≤ n, there is a
voted > e>

−→
Sj > c > · · · . V1 is the vote list whose WMG has the following edges:

• c→ d with weightq+1,d → ewith weightq+1, ande→ c with weightq+1.

• For everyi, 1≤ i ≤ 3q, d → bi ande→ bi each with weightq+ 1, andbi → c with weight
q−3.

• The weight on any other edge not defined above is no more than 1.

It follows that no matter what the weights of the votes inV0 are,d beatse ande beatsc in
pairwise elections, and bothd ande beat all candidates inB in pairwise elections. Forc to be a
winner,c must beatd in their pairwise election, which means that the total weight of the votes inV0

is no more thanq. On the other hand,c must beat all candidates inB. This happens if and only if
the votes inV0 that have positive weights correspond to an exact cover ofB, and all of these votes
must have weight one. This means that Copelandα -PWUW-N is NP-hard.

For theBW andBW-RW variants, we letB= q; for theRW andBW-RW variants, we let the range
of each vote inV0 be{0,1}. ❑

Theorem 4 All variants ofranked-pairs-PWUW-N studied in this paper areNP-complete.

PROOF. The proof is similar to the proof of Theorem 3. That the problems are in NP is easy
to see. For the hardness proof, given an X3C instance(B,S ) with B = {b1, . . . ,b3q} and
S = {S1, . . . ,Sn}, we construct the following ranked-pairs-PWUW-N instance, where the set of
candidates isB∪{c,d}. We are asked whetherc can be made a winner.V0 consists of the following

n votes: For eachj,1≤ j ≤ n, there is a votee>
−→
Sj > c > d > · · · . V1 is the vote list whose WMG

has the following edges, and is constructed by applying McGarvey’s trick:

• c→ d with weight 2q+1,d → e with weight 4q+1, ande→ c with weight 2q+1.

• For everyi, 1≤ i ≤ 3q, d → bi ande→ bi each with weight 2q+1, andbi → c with weight
4q−1.

• The weight on any other edge not defined above is 1.

If the total weight of votes inV0 is larger thanq, then the weight one→ c ande→ bi in the
WMG is at least 3q+ 2, and the weight ond → e is no more than 3q, which means thatc is not
a winner for ranked pairs. Moreover, ifc is a winner, then the weight on anybi → c should not
be strictly higher than the weight onc → d, otherwisebi → c will be fixed in the final ranking. It



follows that if c is a winner, then the votes inV0 that have positive weights correspond to an exact
cover ofB, and all of these votes must have weight one. This means that ranked-pairs-PWUW-N
is NP-hard.

For theBW andBW-RW variants, we letB= q; for theRW andBW-RW variants, we let the range
of each vote inV0 be{0,1}. ❑

Theorem 5 All variants of Bucklin-PWUW-N studied in this paper areNP-complete.

PROOF. NP membership is easy to see for all problem variants. We first prove NP-hardness for
Bucklin-PWUW-N, and then show how to modify the proof for the variants of the problem. Given
an X3C instance(B,S ) with B = {b1, . . . ,b3q} andS = {S1, . . . ,Sn}, we construct the following
Bucklin-PWUW-N instance. The set of candidates isB∪{c,d}∪D∪D′, whereD = {d1, . . . ,d3q}
and D′ = {d′

1, . . . ,d
′
3q} are sets of auxiliary candidates. We are asked whetherc can be made a

winner.V0 consists of the followingn votes: For eachj, 1≤ j ≤ n, there is a voted >
−→
Sj > c>

−→
D >

−→
D′ > · · · . V1 consists ofq−1 copies of

−→
B > c>

−→
D′ >

−→
D > d and one copy of

−→
D′ > c>

−→
B > d >

−→
D .

If the total weight of votes inV0 is larger thanq, thend is the unique candidate that is ranked in
top positions for more than half of the votes, which means that c is not a winner. Suppose the total
weight of the votes inV0 is at mostq. Then, the Bucklin score ofc is 3q+1 and the Bucklin score
of any candidate inD andD′ is larger than 3q+ 1. Therefore,c is a Bucklin winner if and only if
the Bucklin score of any candidate inB is at least 3q+ 1. This happens if and only if the votes in
V0 that have positive weights correspond to an exact cover ofB, and all of these votes must have
weight one. This means that Bucklin-PWUW-N is NP-hard.

For theBW andBW-RW variants, we letB= q; for theRW andBW-RW variants, we let the range
of each vote inV0 be{0,1}. ❑

Bucklin voting can be seen as the special case of fallback voting where all voters give complete
linear orders over all candidates. So the NP-hardness results for Bucklin voting transfer to fallback
voting, while the upper NP bounds are still easy to see.

Corollary 6 All variants offallback-PWUW-N studied in this paper areNP-complete.

4.2 Rational Weights and Voting Systems that Can Be Represented by Linear
Inequalities

Chamberlin and Cohen [9] observed that various voting rulescan be represented by systems of linear
inequalitites, see also [19]. We use this property to formulate linear programs, thus being able to
solve the PWUW problem variants with rational weights for these voting rules efficiently, provided
that the size of the systems describing the voting rules is polynomially bounded. Note that an LP
with rational instead of integer values can be solved in polynomial time [22].

What voting rules does this technique apply to? The crucial requirement a voting rule needs
to satisfy is that the scoring function used for winner determination can be described by linear
inequalities and that this description is in a certain senseindependent of the voters’ weights. By
“independent of the voters’ weights” we mean that the pointsa candidate gains from a vote are
determined essentially in the same way in both a weighted andan unweighted electorate, but in the
former we have a weighted sum of these points that gives the candidate’s score, whereas in the latter
we have a plain sum. Scoring functions satisfying this condition are said to beweight-independent.
This requirement is fulfilled by, e.g., the scoring functions of all scoring rules, Bucklin, and fallback
voting. Copeland’s scoring function, on the other hand, does not satisfy it. In a Copeland election,
every candidate gets one point for each other candidate she beats in a pairwise contest. Who of
the two candidates wins a pairwise contest and thus gains a Copeland point depends directly on



the voters’ weights. Thus, the Copeland score in a weighted election is not a weighted sum of the
Copeland scores in the corresponding unweighted election in the above sense.

In what follows, we have elections where the voter list consists of the two sublistsV0 andV1.
We have to assign weightsx1, . . . ,x|V0| to the voters inV0. We don’t exclude the case where weight
zero can be assigned, but we will seek to find solutions where all weights are strictly positive, since
assigning weight zero to a voter is equivalent to excluding this voter entirely from the election. For
c∈C, let ρ0

i (c) denote the position ofc in the preference of theith voter inV0, 1≤ i ≤ |V0|, and let
ρ1

j (c) denote the position ofc in the preference of thejth voter inV1, 1≤ j ≤ |V1|.

Lemma 7 LetE be a voting rule with a weight-independent scoring functionthat can be described
by a system A of polynomially many linear inequalities. ThenE -PWUW-Q+, E -PWUW-BW-Q+,
E -PWUW-RW-Q+, andE -PWUW-BW-RW-Q+ are each inP.

PROOF. Let x1,x2, . . . ,xn be the variables of the systemA that describesE for anE election withn
voters. The following linear program can be used to solveE -PWUW-BW-RW-Q+. Let an instance
of this problem be given: an election(C,V0∪V1) with as yet unspecified weights inV0, a designated
candidatec ∈ C, a boundB ∈ Q+, and regionsRi ⊆ Q+, 1≤ i ≤ |V0|. Thevector of variablesof
our linear program is~x= (x1,x2, . . . ,x|V0|,χ) ∈R|V0|+1 and we maximize theobjective function~c·~xT

with~c = (0,0, . . . ,0,1) and the following constraints:

A (5)

xi − χ ≥ 0 for 1≤ i ≤ |V0| (6)

χ ≥ 0 (7)

|V0|

∑
i=1

xi ≤ B (8)

xi ≤ r i for 1≤ i ≤ |V0| (9)

−xi ≤−ℓi for 1≤ i ≤ |V0| (10)

Constraint (5) gives the linear inequalitites that have to be fulfilled for the designated candidate
c to win underE . By maximizing the additional variableχ in the objective function we try to
find solutions where the weights are positive, this is accomplished by constraint (6). Constraint (8)
implements our given upper boundB for the total weight to be assigned and constraints (9) and (10)
implement our given rangesRi = [ℓi , r i ] ⊆ Q for each weight.

Omit (8) for E -PWUW-RW-Q+, omit (9) and (10) forE -PWUW-BW-Q+, and omit (8), (9),
and (10) forE -PWUW-Q+.

A solution in Q for a linear program with polynomially bounded constraintscan be found in
polynomial time. ❑

In the following theorems we present the specific systems of linear inequalities describing scor-
ing rules in general, and the voting systems Bucklin, fallback, and plurality with runoff. These can
be used to formally specify the complete linear program stated in the proof of Lemma 7.

Theorem 8 For each scoring rule~α,~α-PWUW-Q+,~α-PWUW-BW-Q+,~α-PWUW-RW-Q+, and
~α-PWUW-BW-RW-Q+ are inP.

PROOF. We are given an election withm different candidates inC, wherec∈C is the distinguished
candidate. Recall thatρ0

i (c) denotesc’s position in the preference of votervi ∈V0, and thatαρ0
i (c)

denotes the number of pointsc gets for this position according to the scoring vector~α. Let SV1(c)
denote the number of points candidatec gains from the voters inV1 (recall that those have all weight
one). Then the distinguished candidatec is a winner if and only if for all candidatesc′ ∈ C with



c′ 6= c, we have

(

(

αρ0
j (c)

−αρ0
j (c

′)

)

1≤ j≤|V0|

)

~xT ≥ SV1(c
′)−SV1(c), where~x = (x1,x2, . . . ,x|V0|) ∈

R|V0| are the weights that will be assigned to the voters inV0. The linear program for scoring rule
~α is of the following form. As in the proof of Lemma 7, we have thevector of variables~x =
(x1,x2, . . . ,x|V0|,χ) ∈ R|V0|+1 and we maximize the objective function~c ·~xT with ~c = (0,0, . . . ,0,1)
and the following constraints:

−
|V0|

∑
i=1

(

αρ0
i (c) −αρ0

i (c′)

)

xi ≤ SV1(c)−SV1(c
′) ∀ c′ 6= c (11)

xi − χ ≥ 0 for 1≤ i ≤ |V0| (12)

χ ≥ 0 (13)

|V0|

∑
i=1

xi ≤ B (14)

xi ≤ r i for 1≤ i ≤ |V0| (15)

−xi ≤−ℓi for 1≤ i ≤ |V0| (16)

Here again, constraints (14) to (16) are needed only for the restricted variants.
Since we have at most(m−1)|V0|+3|V0|+2 = (m+2)|V0|+2 constraints, this linear program

can be solved in polynomial time. ❑

Note that by addingχ to the left-hand side of (11), a solution whereχ is positive is an assignment
of weights making the distinguished candidate a unique winner.

Being level-based voting rules, for Bucklin and fallback voting we have to slightly expand the
presented approach. Due to space constraints, we omit the proof of Theorem 9 and only briefly
sketch the idea. Intuitively, it is clear that we first try to make the distinguished candidate a level 1
winner; if this attempt fails, we try the second level; and soon. So the linear program in the proof of
Theorem 9 has to be solved for each level beginning with the first until a solution has been found. For
Bucklin voting, the representation by linear inequalitiesis due to Dorn and Schlotter [13], and we
adapt it for the simplified version of Bucklin and fallback voting. For the latter, we add appropriate
constraints if the approval stage is reached.

Theorem 9 Let E be either Bucklin or fallback voting.E -PWUW-Q+, E -PWUW-BW-Q+, E -
PWUW-RW-Q+, andE -PWUW-BW-RW-Q+ are each inP.

Note that the proof of Theorem 9 does not work in the unique-winner case.
For plurality with runoff we can take a similar approach: Foreach candidated different fromc,

we use a set of linear inequalities to figure out whether thereexists a set of weights such that (1)c
andd enter the runoff (i.e., the plurality scores ofc andd are at least the plurality score of any other
candidate), and (2)c beatsd in their pairwise election. Therefore, we have the following corollary
whose proof does not work in the unique-winner case.

Theorem 10 Let PR be the plurality with runoff rule.PR-PWUW-Q+, PR-PWUW-BW-Q+, PR-
PWUW-RW-Q+, andPR-PWUW-BW-RW-Q+ are each inP.

PROOF. For each candidated different from c, there exists a set of linear inequalities that are
similar to those in the proof of Theorem 8 such thatc andd enter the runoff if and only if these
inequalities can be satisfied. We also add the following inequality: ∑

{i |c>ρ0,i d}
xi + |{k|c>ρ1,k d}|≥

∑
{i |d>ρ0,i c}

xi + |{k|d >ρ1,k c}|, where{i |c >ρ j,i d} denotes those votersvi ∈Vj for j ∈ {0,1} that

preferc to d. Then, for each candidated different fromc we construct an LP that is similar to the LP
in the proof of Theorem 8. It follows thatc is a possible winner if and only if at least one of these
LPs has a feasible solution. ❑



5 CONCLUSIONS AND OPEN QUESTIONS

We introduced the possible winner problem with uncertain weights, where not the preferences but
the weights of the voters are uncertain, and we studied this problem and its variants in a general
framework. We showed that some of these problem variants areeasy to solve and some are hard to
solve for some of the most important voting rules. Interestingly, while the original possible winner
problem (in which there is uncertainty about the voters’ preferences) generalizes the coalitional
manipulation problem and is a special case of swap bribery [15], the possible winner problem with
uncertain weights generalizes the problem of constructivecontrol by adding or deleting voters.

Some interesting issues remain open, as indicated in Table 1, e.g., regarding 3-approval,
Copeland voting, positional scoring rules, and plurality with runoff. Also, it would be interest-
ing to study an even more general variant: the weighted possible winner problem with uncertainty
about both the voters’ preferences and their weights.
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