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Abstract

One way of computing the probability of a specific voting situation under the Im-
partial Anonymous Culture assumption is via counting integral points in polyhedra.
Here, Ehrhart theory can help, but unfortunately the dimension and complexity of
the involved polyhedra grows rapidly with the number of candidates. However, if we
exploit available polyhedral symmetries, some computations become possible that
previously were infeasible. We show this in three well known examples: Condorcet’s
paradox, Condorcet efficiency of plurality voting and in Plurality voting vs Plurality
Runoff.

1 Introduction

Under the Impartial Anonymous Culture (IAC) assumption, the probability for certain
election outcomes can be computed by counting integral solutions to a system of linear
inequalities, associated to the specific voting event of interest (see for example [GL11]).
There exists a rich mathematical theory going back to works of Ehrhart [Ehr67] in the 1960s
that helps to deal with such problems. We refer to [BR07] and [Bar08] for an introduction.
The connection to Social Choice Theory was discovered by Lepelley et al. [LLS08] and
Wilson and Pritchard [WP07]. A few years earlier a similar theory had been described
specifically for the social choice context by Huang and Chua [HC00] (see also [Geh02]).
Based on Barvinok’s algorithm [Bar94] there now exists specialized mathematical software
for performing previously cumbersome or practically impossible computations. The first
available program was LattE, with its newest version LattE integrale (see [LDK+11a]);
alternatives are barvinok (see [VB08]) and Normaliz (see [BIS12]) which are also usable
within the polymake framework (see [GJ00]).

The purpose of this note is to shed some light on the possibilities for social choice
computations that arise through the use of Ehrhart theory and weighted generalizations of
it (see [BBL+10]). We in particular show how symmetry of linear systems characterizing
certain voting events can be used to reduce computation times, and in some cases, even leads
to previously unkown results. As examples, we consider three well studied voting situations
with four candidates: Condorcet’s paradox, the Condorcet efficiency of plurality voting and
different outcomes in Plurality vs Plurality Runoff.

In Section 2 we review some linear models for voting events and introduce some of
the used notation. In Section 3 we sketch how counting integral points in polyhedra and
Ehrhart’s theory can be used to compute probabilities for voting outcomes. In Section 4 we
show how the complexity of computations can be reduced by using a symmetry reduced,
lower dimensional reformulation. We in particular show how to use integration to obtain
exact values for the limiting probability of voting outcomes when the number of voters tends
to infinity. As examples, we obtain previously unknown, exact values for two four candidate
election events: for the Condorcet efficiency of plurality voting and for Plurality vs Plurality
Runoff.

1An earlier version of this paper has been published online by Social Choice and Welfare, April 13th
2012.



2 Linear systems describing voting situations

Notation

For the start we look at three candidate elections, as everything that will follow can best be
motivated and explained in smaller examples. Assume there are n voters, with n ≥ 2, and
each of them has a complete linear (strict) preference order on the three candidates a, b, c.
We subdivide the voters into six groups

(nab, nac, nba, nbc, nca, ncb) , (1)

according to their six possible preference orders:

abc(nab) acb(nac) bac(nba) bca(nbc) cab(nca) cba(ncb)

For example, there are nab voters that prefer a over b and b over c. We omit the last
preference in the index, as it is determined once we know the others. This type of indexing
will show to be useful when we reduce the number of variables in Section 4.

The tuple (1) is referred to as a voting situation. In an election with

n = nab + nac + nba + nbc + nca + ncb (2)

voters, there are
(
n+5
5

)
possible voting situations. We make the simplifying Impartial Anony-

mous Culture (IAC) assumption that each of these voting situations is equally likely to occur.

Condorcet’s Paradox

Maybe the most famous voting paradox goes back to the Marquis de Condorcet (1743–
1793). He observed that in an election with three or more candidates, it is possible that
pairwise comparison of candidates can lead to an intransitive collective choice. For instance,
candidate a could be preferred over candidate b, b could be preferred over candidate c and
c could be preferred over candidate a. In this case there is no Condorcet winner, that is,
someone who beats every other candidate by pairwise comparison.

The condition that candidate a is a Condorcet winner can be described via two linear
constraints:

nab + nac + nca > nba + nbc + ncb (3)

nab + nac + nba > nca + nbc + ncb (4)

( a beats b )

( a beats c )

The probability of candidate a being a Condorcet winner in an election with n voters
can be expressed as the quotient

Prob(n) =
card

{
(nab, . . . , ncb) ∈ Z6

≥0 satisfying (2), (3), (4)
}(

n+5
5

) .

The denominator is a polynomial of degree 5 in n. It had been observed by Fishburn and
Gehrlein [GF76] (cf. [BB83]) that the numerator shows a similar behavior: Restricting to
even or odd n it can be expressed as a degree 5 polynomial in n. The leading coefficient of
both polynomials is the same and we approach the same probability for large elections (as
n tends to infinity). This limiting probability is known to be

lim
n→∞

Prob(n) =
5

16
.

Having the probability for candidate a being a Condorcet winner, we obtain the proba-
bility for a Condorcet paradox (no Condorcet winner exists) as 1−3 ·Prob(n) with an exact
limiting probability of 1

16 .
In a similar way we can determine probabilities for other voting events.



Condorcet efficiency of Plurality voting

If there is a Condorcet winner, there is good reason to consider him to be the voter’s choice.
However, many common voting rules do not always choose the Condorcet winner even if
one exists. This is in particular the case for the widely used plurality voting, where the
candidate with a majority of first preferences is elected.

The condition that candidate a is a Condorcet winner but candidate b is the plurality
winner can be expressed by the two inequalities (3) and (4), together with the two additional
inequalities

nba + nbc > nab + nac (5)

nba + nbc > nca + ncb (6)

( b wins plurality over a )

( b wins plurality over c )

The Condorcet efficiency of a voting rule is the conditional probability that a Condorcet
winner is elected if one exists. As there are 3 ·2 possibilities for choosing a Condorcet winner
and another plurality winner, we obtain

Prob(n) =
6 · card

{
(nab, . . . , ncb) ∈ Z6

≥0 satisfying (2), (3), (4), (5), (6)
}

3 · card
{

(nab, . . . , ncb) ∈ Z6
≥0 satisfying (2), (3), (4)

}
for the likelihood of a Condorcet winner being a plurality loser. Again, depending on n
being odd or even, one obtains polynomials in n in the denominator and the numerator
(see [Geh82]). The exact value of the limit limn→∞ Prob(n) is 16/135. Therefore, the
Condorcet efficiency of plurality voting with three candidates is 119/135 = 88.148%.

Plurality vs Plurality Runoff

Plurality Runoff voting is a common practice to overcome some of these “problems” of
Plurality voting. It is used in many presidential elections, for example in France. After a
first round of plurality voting in which none of the candidates has achieved more than 50%
of the votes, the first two candidates compete in a second runoff round.

The condition that candidate b is the plurality winner, but candidate a wins the second
round of Plurality Runoff can be expressed by the two inequalities (5) and

nab + nac > nca + ncb, (7) ( a wins plurality over c )
together with the linear condition (3) that a beats b in a pairwise comparison. The proba-
bility that another candidate is chosen in the second round as the number of voters tends
to infinity is known to be 71/576 = 12.32638% (see [LLS08]).

Four and more candidates

Having m candidates we can set up similar linear systems in m! variables. For example, in an
election with four candidates a, b, c, d we use the 24-dimensional vector xt = (nabc, . . . , ndcb).
Here, indices are taken in lexicographical order. The condition that a is a Condorcet winner
is described by the three inequalities that imply a beats b, a beats c and a beats d in
a pairwise comparison. As linear systems with 24 variables become hard to grasp, it is
convenient to use matrices for their description. We are interested in all non-negative integral
(column) vectors x satisfying the matrix inequality Ax > 0 for the matrix A ∈ Z3×24 with
entries

(8)

1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 -1

1 1 1 1 1 1 1 1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 1 1 -1 -1 -1

1 1 1 1 1 1 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1



3 Likelihood of voting situations and Ehrhart’s theory

Integral points in polyhedral cones

In order to deal with an arbitrary number of candidates, let us put the example above in a
slightly more general context. In any of the three voting examples, the voting situations of
interest lie in a polyhedral cone, that is, in a set P of points in Rd (with d = 6 or d = 24 in
case of three or four candidate elections) satisfying a finite number of homogeneous linear
inequalities. In addition to the strict inequalities which are different in each of the examples,
the condition that the variables ni are non-negative can be expressed by the homogeneous
linear inequalities ni ≥ 0.

Let P,S ⊂ Rd denote two d-dimensional polyhedral cones, each defined by some homoge-
neous linear (possibly strict) inequalities. We may assume that P is contained in S and that
both polyhedral cones are contained in the orthant Rd

≥0. If we are interested in elections
with n voters, we consider the voting situations (integral vectors) in the intersection of P
and S with the affine subspace

Ld
n =

{
(n1, . . . , nd) ∈ Rd |

d∑
i=1

ni = n

}
.

The expected frequency of voting situations being in P among voting situations in S is then
expressed by

Prob(n) =
card

(
P ∩ Ld

n ∩ Zd
)

card (S ∩ Ld
n ∩ Zd)

. (9)

When estimating the probability of candidate a being a Condorcet winner for instance,
the homogeneous polyhedral cone S is simply the non-negative orthant Rd

≥0 described by
the linear inequalities ni ≥ 0. In that case the denominator is known to be equal to(

n + d− 1

d− 1

)
.

This is a polynomial in n of degree d− 1 (the dimension of Ld
n ∩ S).

Ehrhart theory

By Ehrhart’s theory, the number of integral solutions in a polyhedral cone intersected
with Ld

n can be expressed by a quasi-polynomial in n. Roughly speaking, a quasi-polynomial
is simply a finite collection p1(n), . . . , pk(n) of polynomials, such that the number of voting
situations is given by pi(n) if i ≡ n mod k.

The degree of the polynomial is equal to the dimension of the polyhedral cone intersected
with Ld

n. In the voting events considered here this dimension is always equal to d − 1. So
in the examples with three candidates their degree is always 5. The number k of different
polynomials depends on the linear inequalities involved. For the Condorcet paradox we have
k = 2 polynomials p1(n) and p2(n), where p1(n) gives the answer for odd n (1 ≡ n mod 2)
and p2(n) gives the answer for even n (0 ≡ 2 ≡ n mod 2). For Condorcet efficiency we have
k = 6 (see [Geh02]) and for Plurality vs Plurality Runoff we have k = 12 (see [LLS08]).

Given a polyhedral cone P, the quasi-polynomial q(n) = card
(
P ∩ Ld

n ∩ Zd
)

can be
explicitly computed using software packages like LattE integrale [latte] or barvinok

[barvinok]. The result for the polyhedral cone P describing candidate a as the Condorcet
winner could look like



1/384 * n^5

+ ( 1/64 * { 1/2 * n } + 1/32 ) * n^4

+ ( 17/96 * { 1/2 * n } + 13/96 ) * n^3

+ ( 23/32 * { 1/2 * n } + 1/4 ) * n^2

+ ( 233/192 * { 1/2 * n } + 1/6 ) * n

+ ( 45/64 * { 1/2 * n } + 0 )

The curly brackets {· · · } mean the fractional part of the enclosed number, allowing to
write the quasi-polynomial in a closed form. In this example we get different polynomials
for odd and even n. Note that the leading coefficient (the coefficient of n5) is in both cases
the same. By Ehrhart’s theory this is always the case, as it is equal to the relative volume
of the polyhedron P ∩ Ld

1. That is, it is equal to a
√
d-multiple of the standard Lebesgue

measure on the affine space Ld
1. The measure is normalized so that the space contains one

integral point per unit volume.
One technical obstacle using software like LattE integrale or barvinok is the use

of polyhedral cones described by a mixture of strict and non-strict inequalities. As the
software assumes the input to have only non-strict inequalities or equality conditions, one
has to avoid the use of strict inequalities. A simple way to achieve this is the replacement
of strict inequalities x > 0 by non-strict ones x ≥ 1, in case x is known to be integral.
For instance, if x is a linear expression with integer coefficients, and if we are interested in
integral solutions as in our examples, this is a possible reformulation.

Altogether, by obtaining quasi-polynomials for numerator and denominator in (9) we
get an explicit formula for Prob(n) via Erhart’s theory.

Limiting probabilities via integration

If we want to compute the exact value of limn→∞ Prob(n) as n tends to infinity, we can
use volume computations without using Ehrhart’s theory. As mentioned above, the leading
coefficients of denominator and numerator correspond to the relative volumes of the sets
P ∩ L1 and S ∩ L1:

lim
n→∞

Prob(n) = lim
n→∞

card
(
P ∩ Ld

1 ∩ (Z/n)d
)

card
(
S ∩ Ld

1 ∩ (Z/n)d
) =

relvol
(
P ∩ Ld

1

)
relvol

(
S ∩ Ld

1

)
In fact, as long as we use the same measure to evaluate the numerator and the denomina-

tor, it does not matter what multiple of the standard Lebesgue measure we use to compute
volume on the affine space Ld

1. The exact relative volume can be computed using LattE

integrale. Alternatives are for example Normaliz (see [normaliz]) or vinci (see [BEF00]).
Exact computations can be quite involved in higher dimensions (cf. [DF88]). In such cases
it is sometimes only possible to compute an approximation, using Monte Carlo methods for
instance.

4 Reducing the dimension by exploiting polyhedral
symmetries

In many models the involved linear systems and polyhedra are quite symmetric. In partic-
ular, permutations of variables may lead to equivalent linear systems describing the same
polyhedron. Such symmetries are often visible in smaller examples and can automatically
be determined for larger problems, for instance by our software SymPol (see [RS10]). In
the three examples described in Section 2, we can exploit such symmetries to reduce the
complexity of computations.



Condorcet’s paradox

In case of a being a Condorcet winner in a three candidate election, the variables nab and
nac occur pairwise (as nac + nab) in inequalities (3), (4) and in equation (2). The same is
true for nbc and ncb. By introducing new variables na = nac + nab and n∗a = nbc + ncb we
can reduce the dimension of the linear system to only four variables:

na + nca − n∗a − nba > 0

na + nba − n∗a − nca > 0

na + nca + n∗a + nba = n

na, n∗a, nba, nca ≥ 0.

The index a indicates that we group all variables which carry candidate a as their first
preference and index ∗a stands for grouping of all variables with candidate a ranked last. In
the reduced linear system each 4-tuple (na, n∗a, nba, nca) represents several voting situations,
previously described by 6-tuples. For na we have (na + 1) different possibilities of non-
negative integral tuples (nac, nab). Similar is true for n∗a. Together we have

(na + 1)(n∗a + 1)

voting situations with three candidates represented by each non-negative integral vector
(na, n∗a, nba, nca).

In the four candidate case it is possible to obtain a similar reformulation by grouping
among 24 variables. We introduce a new variable for sets of variables having same coefficients
in the linear system. Having a matrix representation as in (8), this kind of special symmetry
in the linear system is easy to find by identifying equal columns. Introducing a new variable
for each set of equal columns we get

(10)

na − nba + nca + nda + n∗ab − n∗ac − n∗ad − n∗a > 0

na + nba − nca + nda − n∗ab + n∗ac − n∗ad − n∗a > 0

na + nba + nca − nda − n∗ab − n∗ac + n∗ad − n∗a > 0

These three inequalities describe voting situations in which candidate a beats candidates
b, c and d each in a pairwise comparison. As in all of our examples, we additionally have
the condition that the involved variables add up to n and that all of them are non-negative.

As before, the used indices of variables reflect which voter preferences are grouped. As
in the three candidate case, na and n∗a denote the number of voters with candidate a being
their first and last preference respectively. Similarly, xy and ∗yx in the index indicate that
voters with preference order starting with x, y and ending with y, x have been combined.

Using our software SymPol [sympol] one easily checks that the original system with
24 variables has a symmetry group of order 199065600. The new reduced system with 8
variables, obtained through the above grouping of variables, turns out to have a symmetry
group of order 6 only. So most of the symmetry in the original system is of the simple form
that is detectable through equal columns in a matrix representation. The remaining 6-fold
symmetry comes from the possibility to arbitrarily permute the variables nba, nca, nda when
at the same time the variables n∗ab, n∗ac, n∗ad are permuted accordingly. This symmetry is
due to the fact that candidates b, c and d are equally treated in the linear system (10). The
two new variables na and n∗a each combine six of the former variables. The other six new
variables each combine two former ones.



Weighted counting

In general, if we group more than two variables, say if we substitute the sum of k variables
n1 + . . . + nk by a new variable N , we have to include a factor of(

N + k − 1

k − 1

)
when counting voting situations via N . If we substitute d variables (n1, . . . , nd) by D
new variables (N1, . . . , ND), say by setting Ni to be the sum of ki of the variables nj , for
i = 1, . . . , D, then we count for each D-tuple

p(N1, . . . , ND) =

D∏
i=1

(
Ni + ki − 1

ki − 1

)
(11)

many voting situations.
In the example above, with four candidates and candidate a being the Condorcet winner,

we have d = 24, D = 8 and we obtain a degree 16 polynomial(
na + 5

5

)
(nba + 1)(nca + 1)(nda + 1)(n∗ab + 1)(n∗ac + 1)(n∗ad + 1)

(
n∗a + 5

5

)
to count voting situations for each 8-tuple

(na, nba, nca, nda, n∗ab, n∗ac, n∗ad, n∗a) .

Geometrically, the polyhedral cone P ⊂ Rd is replaced by a new polyhedral cone P ′ ⊂ RD

in a lower dimension. As the counting is changed we obtain for the probability (9) of voting
situations in P among those in S:

Prob(n) =

∑
x∈P∩Ld

n∩Zd

1

∑
x∈S∩Ld

n∩Zd

1
=

∑
y∈P′∩LD

n ∩ZD

p(y)

∑
y∈S′∩LD

n ∩ZD

p(y)
. (12)

Here, S ′ is equal to the corresponding homogeneous polyhedral cone obtained from S ⊂ Rd,
and p(y) is the polynomial (11) in D variables. In the example of Condorcet’s paradox, S ′
is simply equal to the full orthant RD

≥0.
As seen in Section 3, we can use Ehrhart’s theory to determine an explicit formula for

Prob(n). The right hand side of the formula above suggests that we can do this also via
weighted lattice point counting in dimension D. A corresponding Ehrhart-type theory has
recently been considered (see [BBL+10]). A first implementation is available in the package
barvinok via the command barvinok summate. We successfully tested the software on
some reformulations of three candidate elections, but so far barvinok seems not capable
to do computations for the four candidate case. However, there still seems quite some
improvement possible in the current implementation (personal communication with Sven
Verdoolaege). It can be expected that future versions of LattE integrale will be capable
of these computations (personal communication with Matthias Köppe). It appears to be
“just” a matter of implementing the ideas in [BBL+10].

We note that, theoretically, it can generally be expected that weighted counting over
a smaller dimensional polyhedron is faster than unweighted counting over a corresponding
high dimensional polyhedron. However, due to fact that a suitable implementation for
weighted counting is not available at the moment, latter approach may practically still be a
good choice. For instance, the latest version of Normaliz (July 2012) appears to be capable
to obtain the Ehrhart quasi-polynomials for the 23-dimensional polyhedra considered in this
note (personal communication with Winfried Bruns and Bogdan Ichim).



Limiting probabilities via integration

If we want to compute the exact value of limn→∞ Prob(n) we may use integration. Using (12)
we get through substitution of y = nz:

lim
n→∞

Prob(n) = lim
n→∞

∑
y∈P′∩LD

n ∩ZD

p(y)

∑
y∈S′∩LD

n ∩ZD

p(y)
= lim

n→∞

∑
z∈P′∩LD

1 ∩(Z/n)D
p(nz)

∑
z∈S′∩LD

1 ∩(Z/n)D
p(nz)

= lim
n→∞

∑
z∈P′∩LD

1 ∩(Z/n)D
p(nz)/ndeg p

∑
z∈S′∩LD

1 ∩(Z/n)D
p(nz)/ndeg p

=

∫
P′∩LD

1

lt(z) dz∫
S′∩LD

1

lt(z) dz

.

Here, the division of numerator and denominator by a degree of p (deg p) power of n shows
that the integrals on the right are taken over the leading term lt(z) of the polynomial
p(z) only. Thus determining the exact limiting probability is achieved by integrating a
degree d −D monomial over a bounded polyhedron (polytope) in the (D − 1)-dimensional
affine space LD

1 . We refer to [LDK+11b] for background on efficient integration methods
(cf. [BBL+11] and [Sch98]).

As in the case of relative volume computations in dimension d, the integral is taken
with respect to the relative Lebesgue measure – here on the affine space LD

1 . In fact, as we
are computing a quotient, any measure being a multiple of the standard Lebesgue measure
on LD

1 will give the same value.
For the example with candidate a being a Condorcet winner in a four candidate election,

the leading term to be integrated is

n5
a · nba · nca · nda · n∗ab · n∗ac · n∗ad · n5

∗a,

which is much simpler than the full polynomial. Integrating this polynomial over the
reduced 8-dimensional polyhedron can be done using LattE integrale (called with op-
tion valuation=integrate). In this way one obtains in a few seconds an exact value of
1717/2048 for the probability that a Condorcet winner exists (as n tends to infinity). This
value corresponds to the one obtained by Gehrlein in [Geh01] and serves as a test case for
our method. The corresponding volume computation with LattE integrale (called with
option valuation=volume) in 24 variables did not finish after several weeks of computa-
tion. This is due to the fact that triangulating a 24-dimensional polyhedron is much more
involved than integration over a corresponding lower dimensional polyhedron (of dimension
8 in this case). However, Winfried Bruns, Bogdan Ichim and Christof Söger report (May
2012) that the 24-dimensional volume computation is doable with the newest version of their
software Normaliz (see [normaliz]). Nevertheless, their volume computation, using sophis-
ticated heuristics for triangulations (see [BIS12]), is still much slower than the corresponding
integration over the 8-dimensional polyhedron.

In a similar way we can deal with other voting situations as well.

Condorcet efficiency of plurality voting

Assuming candidate a is a Condorcet winner, but candidate b wins a plurality voting, we
obtain a reduced system in the three candidate case with five variables:



na − nba − nbc − ncb + nca > 0

na + nba − nbc − ncb − nca > 0

−na + nba + nbc > 0

nba + nbc − ncb − nca > 0

Here the only reduction is the grouping na = nab + nac. The corresponding polynomial
weight is na + 1.

The four candidate case is more involved. The linear system with 24 variables has
a comparatively small symmetry group of order 92160. We can group six variables into
na. Taking the reduced system (10) of three inequalities with 8 variables (modeling that
candidate a is a Condorcet winner) we have to add three inequalities for the condition that
candidate b wins plurality. These can be shortly described by nb > na, nc, nd, but a grouping
of variables in nb, nc and nd is incompatible with the other three conditions. Instead we
use new variables nb∗a, nc∗a and nd∗a (in (10) combined in n∗a) for preferences in which a is
ranked last. Additionally we have to keep the variables where candidate a is ranked third
(in (10) combined in n∗ab, n∗ac, n∗ad).

In the three inequalities (10) we can simply substitute n∗a by nb∗a + nc∗a + nd∗a and
n∗ad, n∗ac and n∗ab by nbca + ncba, nbda + ndba and ncda + ndca. The additional three linear
inequalities for candidate b being a plurality winner are then:

nb∗a + nba + nbca + nbda − na > 0

nb∗a + nba + nbca + nbda − nc∗a − nca − ncba − ncda > 0

nb∗a + nba + nbca + nbda − nd∗a − nda − ndba − ndca > 0

This reduced linear system has 6 inequalities for 13 variables. It still has a symmetry of
order 2 coming from an interchangeable role of candidates c and d. The degree 11 polynomial
used for integration is

n5
a · nba · nca · nda · nb∗a · nc∗a · nd∗a.

With it, using LattE integrale, we obtain an exact limit of

10658098255011916449318509

14352135440302080000000000
= 74.261410 . . .%

for the Condorcet efficiency of plurality voting with four candidates. To the best of our
knowledge this value has not been computed before.

Plurality vs Plurality Runoff

The case of Plurality vs Plurality Runoff has a high degree of symmetry. For three candidates
we obtain a reduced four dimensional reformulation:

nb − na > 0

na − nca − ncb > 0

na + nca − nb − ncb > 0

Counting is done via the polynomial weight (na + 1)(nb + 1). Integration of nanb over
the corresponding 3-dimensional polyhedron yields the known limiting probability.



If we consider elections with m candidates, m ≥ 4, we can set up a linear system with
only 2(m − 1) variables and m inequalities. We denote the candidates by a, b and ci for
i = 1, . . . ,m− 2:

nb − na > 0

For i = 1, . . . ,m− 2 : na − nci·a·b − nci·b·a > 0

na +

m−2∑
i=1

nci·a·b − nb −
m−2∑
i=1

nci·b·a > 0

The first two lines model that candidate b wins plurality over candidate a and that
candidate a is second, winning over candidates ci, for i = 1, . . . ,m− 2. The last inequality
models the condition that candidate a beats b in a pairwise comparison. The variable nci·a·b
gives the number of voters with candidate ci being their first preference and candidate a being
ranked before candidate b. Similarly, nci·b·a is the number of voters with first preference
ci and candidate b being ranked before candidate a. We use “·” to denote any ordering
of candidates; in contrast to “∗” used before we also allow an empty list here. For both
variables, nci·a·b and nci·b·a, we group (m−1)!/2 of the m! former variables. The new variables
na and nb both represent (m − 1)! former variables. Therefore, counting is adapted using
the polynomial weight

(na · nb)
(m−1)!−1 ·

m−2∏
i=1

(nci·a·b · nci·b·a)
(m−1)!/2−1

of degree m!− 2m + 2.
The above inequalities assume that candidates b and a are ranked first and second in

a plurality voting. So having the probability for the corresponding voting situations, we
have to multiply by m(m − 1) to get the overall probability of a plurality winner losing in
a second Plurality Runoff round.

For four candidates (m = 4) we obtain an exact limiting probability of

2988379676768359

12173449145352192
= 24.548339 . . .%.

This result can be obtained using the weighted, dimension-reduced problem with LattE

integrale, as well as by a relative volume computation in 24 variables. However, the latter
is a few hundred times slower than integration over the dimension reduced polyhedron. A
similar result from a volume computation is obtained in [LDK+11b].

To be certain about our new results, we computed the value above, as well as the
likelihood for the existence of a Condorcet winner, with a fully independent Maple calcu-
lation, using the package Convex (see [convex]). For it, we first obtained a triangulation
(non-overlapping union of simplices) of the dimension-reduced polyhedron and then applied
symbolic integration to each simplex.

We also tried to solve the five candidate case, where the polyhedron is only 7-dimensional
(in 8 variables). The integration of a polynomial of degree 112, however, seems a bit too
difficult for the currently available technology. Nevertheless it seems that we are close to
obtain exact five candidate results as well.

5 Conclusions

Using symmetry of linear systems we can obtain symmetry reduced lower dimensional re-
formulations. These allow to compute exact limiting probabilities for large elections with



four candidates. In this work we only gave a few starting examples. Similar calculations
are possible for many other voting situations as well. Even during the work on this project,
the software packages LattE integrale and Normaliz for corresponding polyhedral com-
putations have introduced substantial improvements. We can look forward to capabilities
of future versions.

At the moment, for elections with five or more candidates further ideas seem necessary.
One possibility to reduce the complexity of computations further is the use of additional
symmetries which remain in our reduced systems.
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putation of the highest coefficients of weighted Ehrhart quasi-polynomials
of rational polyhedra, Found. Comput. Math., to appear, preprint at
http://arxiv.org/abs/1011.1602v1.

[BBL+11] , How to integrate a polynomial over a simplex, Math. Comp. 80 (2011),
no. 273, 297–325.

[BB83] S. Berg and B. Bjurulf, A note on the paradox of voting: anonymous preference
profiles and May’s formula, Public Choice 40 (1983), 307–316.

[BIS12] W. Bruns, B. Ichim and C. Sger, The power of pyramid decomposition in Nor-
maliz, preprint at http://arxiv.org/abs/1206.1916.

[BEF00] B. Büeler, A. Enge, and K. Fukuda, Exact volume computation for polytopes:
a practical study, Polytopes—combinatorics and computation (Oberwolfach,
1997), DMV Sem., vol. 29, Birkhäuser, Basel, 2000, pp. 131–154.
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