
Being Caught Between a Rock and a Hard

Place in an Election—Voter Deterrence by

Deletion of Candidates

Britta Dorn and Dominikus Krüger

Abstract

We introduce a new problem modeling voter deterrence by deletion of candidates in
elections: In an election, the removal of certain candidates might deter some of the
voters from casting their votes, and the lower turnout then could cause a preferred
candidate to win the election. This is a special case of the variant in the family
of ‘control’ problems in which an external agent is allowed to delete candidates and
votes in order to make his preferred candidate win, and a generalization of the variant
where candidates are deleted, but no votes. We initiate a study of the computational
complexity of this problem for several voting systems and obtain NP-completeness
and W[2]-hardness with respect to the parameter number of deleted candidates for
most of them.

1 Introduction

Imagine: finally, you have the chance of getting rid of your old mayor, whom you absolutely
cannot stand. Luckily, in addition to the normal unscrupulous opponents, the perfect can-
didate is running for the vote this year. You agree with everything he says and therefore
you are even looking forward to Election Day. But suddenly the word is spread that he has
withdrawn his candidacy. Again, you are feeling caught between a rock and a hard place.
Does it make any sense to go to the polls if you only have a choice between the lesser of two
evils?

Low voter turnouts caused by scenarios such as the one in the above example may lead
to modified outcomes of an election. This is reminiscent of a family of problems which has
been studied extensively in the computational social choice literature recently, the family
of ‘control’ problems [1, 10–12, 17] where an external agent can change the outcome of an
election by adding or deleting candidates and/or voters, respectively. In particular, in the
setting of constructive control by deleting candidates, the agent can prevent candidates from
running for office, which causes other candidates to rise in ranking for certain voters. This
may ultimately result in the external agent’s preferred candidate winning the election.

In real life, this process is a little bit more complicated and control of an election can
occur in a more entangled way: As in our introductory example, if some candidates do not
stand for election, then certain voters will not even take part in the election because they feel
that there is nothing interesting to decide or no relevant candidate to vote for. The lower
turnout could have consequences for the remaining candidates: the winner of the election
under normal conditions might lose points because of the lower polling after the deletion of
certain candidates, and this can produce a different winner. Hence, by deterring the voters
by means of deleting their favorite candidates, one might prevent them from casting their
votes and therefore change the outcome of the election. Therefore, we call this phenomenon
voter deterrence.

This situation can be observed in the primaries in US elections or in mayoral elections,
where mayors often are elected with single-digit turnout, sometimes caused by the with-
drawal of candidacy of one or several alternatives in the run-up.

As to our knowledge, this problem has not yet been considered from a computational
point of view. In this paper, we want to initiate the study of the corresponding decision
problem Voter Deterrence defined below. We mainly consider the case where voters
are easily deterred: As soon as their most preferred candidate does not participate in the
election, they refrain from the election. This is what we denote as 1-Voter Deterrence,
but clearly, one can also consider x-Voter Deterrence, where a voter only refuses to
cast his vote if his top x candidates are removed. Surprisingly, it turns out that 1-Voter
Deterrence is already computationally hard for several voting systems, even for Veto.

This paper is organized as follows. After introducing notation and defining the decision
problem x-Voter Deterrence in Section 2, we investigate the complexity of this problem
for the case of x = 1 for the voting systems Plurality (for which it turns out to be solvable
in polynomial time, but it is NP-complete for x = 2), Veto, 2-approval, Borda, Maximin,
Bucklin, Fallback Voting, and Copeland (for all of which the problem turns out to be NP-
complete). As a corollary, we can show that the hard problems are also W[2]-hard with
respect to the solution size, i.e., with respect to the parameter number of deleted candidates,
which means that they remain hard even if only few candidates have to be deleted to make
the preferred candidate win. This is stated in Section 4 together with a short discussion
of the complexity with respect to the parameter number of candidates. We conclude with
a discussion of open problems and further directions that might be interesting for future
investigations.

2 Preliminaries

Elections. An election is a pair E = (C, V) consisting of a candidate set C = {c1, . . . , cm}
and a multiset V = {v1, . . . , vn} of votes or voters, each of them a linear order over C, i.e.,
a transitive, antisymmetric, and total relation over the candidates in C, which we denote
by �. A voting system maps (C, V) to a set W ⊆ C called the winners of the election. All
our results are given for the unique winner case, where W consists of a single candidate.

We will consider the voting systems Plurality, Veto, 2-approval, Borda, Maximin, Buck-
lin, Fallback Voting, and Copeland. A description of these systems can be found e.g. in [6].

Voter Deterrence, Control. In an x-Voter Deterrence instance, we are given an
election E = (C, V), a preferred candidate p ∈ C, and natural numbers k, x ≤ |C|, as well
as a voting system. It will always be clear from the context which voting system we are
using, so we will not mention it explicitly in the problem description. Let R ⊆ C denote
a subset of candidates, and let VR ⊆ V denote the set of voters who have ranked only
candidates from R among the first x ranks in their vote. The task consists in determining a
set R of at most k candidates that are removed from C, and who therefore prevent the set of
voters VR from casting their votes, such that p is a winner in the election Ẽ = (C\R, V \VR).
The set R is then called a solution to the x-Voter Deterrence instance. The underlying
decision problem is the following.

x-Voter Deterrence
Given: An election E = (C, V), a preferred candidate p ∈ C, and k, x ∈ N.
Question: Is there a subset of candidates R ⊆ C with |R| ≤ k, such that p is

the winner in the election Ẽ = (C \R, V \ VR)?

x-Voter Deterrence is a special case of one of the many variants in the family of
‘control’ problems [11], where the chair is allowed to delete candidates and votes, which is
defined as follows.

Constructive Control by Deleting Candidates and Votes
Given: An election E = (C, V), a preferred candidate p ∈ C, and k, l ∈ N.

Question: Is there a subset C ′ ⊆ C with |C ′| ≤ k, and a subset V ′ ⊆ V with

|V ′| ≤ l, such that p is a winner in the election Ẽ = (C \ C ′, V \ V ′)?
Note that in the Voter Deterrence problem, the deleted candidates and votes are

coupled, which is not necessarily the case in the above control problem. In [11], it is shown
that the above control problem is NP-hard for the voting systems Plurality, Condorcet,
Copelandα (0 ≤ α ≤ 1), Approval voting, and Maximin. However, since x-Voter Deter-
rence is a special case of this variant of control, this does not settle its complexity for these
voting systems.

If we set x = m, we obtain Constructive Control via Deleting Candidates,
which is the above control problem with l = 0. The latter variant hence is a special case
of m-Voter Deterrence, implying that the hardness results from [1, 12] carry over, i.e.,
m-Voter Deterrence is NP-hard for Plurality and Copelandα for 0 ≤ α ≤ 1.

In this paper, we will mainly consider 1-Voter Deterrence, i.e., a voter will refuse
to cast his vote if his most preferred candidate does not participate in the election. For
the voting system Plurality, we also consider 2-Voter Deterrence, where a voter only
refrains from voting if his two top ranked candidates are eliminated from the election.

Parameterized complexity. The computational complexity of a problem is usually stud-
ied with respect to the size of the input I of the problem. One can also consider the
parameterized complexity [8, 15, 18] taking additionally into account the size of a so-called
parameter k which is a certain part of the input, such as the number of candidates, or
the size of the solution set. A problem is called fixed-parameter tractable with respect to a
parameter k if it can be solved in f(k) · |I|O(1) time, where f is an arbitrary computable
function depending on k only. The corresponding complexity class consisting of all problems
that are fixed-parameter tractable with respect to a certain parameter is called FPT .

The first two levels of (presumable) parameterized intractability are captured by the
complexity classes W[1] and W[2]. Proving hardness with respect to these classes can be
done using a parameterized reduction, which reduces a problem instance (I, k) in f(k)·|I|O(1)

time to an instance (I ′, k′) such that (I, k) is a yes-instance if and only if (I ′, k′) is a yes-
instance, and k′ only depends on k but not on |I|, see [8, 15,18].

For all our hardness proofs, we use the W[2]-complete Dominating Set (DS) problem
for undirected graphs.

Dominating Set
Given: An undirected graph G = (V, E), and a nonnegative integer k.
Question: Is there a subset V ′ ⊆ V with |V ′| ≤ k such that every vertex v ∈ V
is contained in V ′ or has a neighbor in V ′?

Notation in our proofs. In all our reductions from Dominating Set, we will associate
the vertices of the given graph G = (V, E) with candidates of the election E = (C, V) to be
constructed. For that sake, we use a bijection g : V → C. By N(v) := {u ∈ V | {u, v} ∈ E},
we denote the set of neighbors or the neighborhood of a vertex v ∈ V. Analogously, we
define the neighborhood of a candidate ci as N(ci) = g(N(vi)) for ci = g(vi), i.e., the set of
neighbors of a candidate ci ∈ C corresponding to the vertex vi ∈ V is the set of candidates
corresponding to the neighborhood of vi in G. By N(vi) we denote the set of non-neighbors
of vi, analogously for neighborhoods of candidates.

In our reductions, we usually need one dummy candidate for every ci ∈ C, these will
be denoted by ĉi. All other dummy candidates appearing are marked with a hat as well,
usually they are called d̂ or similarly. When building the votes in our reductions, we write
‘k ‖ a1 � · · · � al’ which means that we construct the given vote a1 � · · · � al exactly k
times.

In our preference lists, we sometimes specify a whole subset of candidates, e.g., c � D for
a candidate c ∈ C and a subset of candidates D ⊆ C. This notation means c � d1 � · · · � dl

for an arbitrary but fixed order of D = {d1, . . . , dl}. If we use a set
→
D in a preference list, we

mean one specific, fixed (but arbitrary, and unimportant) order of the elements in D, which

is reversed if we write
←
D. Hence, if c �

→
D stands for c � d1 � · · · � dl, then c �

←
D means

c � dl � · · · � d1. Finally, whenever we use the notation Drest for a subset of candidates in
a vote, we mean the set consisting of those candidates in D that have not been positioned
explicitly in this vote.

3 Complexity-theoretic analysis

In this section, we will give several hardness proofs for Voter Deterrence for differ-
ent voting systems. All our results rely on reductions from the NP-complete problem
Dominating Set. We only prove NP-hardness for the different voting systems, but since
membership in NP is always trivially given, NP-completeness follows immediately. For
all these reductions we assume that every vertex of the input instance has at least two
neighbors, which is achievable by a simple polynomial time preprocessing.

3.1 Plurality

It is easy to see that 1-Voter Deterrence can be solved efficiently for Plurality. One
can simply order the candidates according to their score and if there are more than k
candidates ahead of p, this instance is a no-instance. Otherwise p will win after deletion of
the candidates that were ranked higher than him, because all the votes which they got a
point from are removed. Therefore the following theorem holds.

Theorem 1. 1-Voter Deterrence is in P for the voting system Plurality.

For 2-Voter Deterrence, it is not so easy to see which candidates should be deleted.
In fact, the problem is NP-complete.

Theorem 2. 2-Voter Deterrence is NP-complete for the voting system Plurality.

Proof. We prove Theorem 2 with a parameterized reduction from Dominating Set. Let
〈G = (V, E), k〉 be an instance of DS.
Candidates: For every vertex vi ∈ V we need one candidate ci and one dummy candidate ĉi,
as well as the preferred candidate p and his dummy candidate p̂, so C = I ∪D ∪ {p} with
I = {c1, . . . , cn} and D = {ĉ1, . . . , ĉn, p̂}. For ease of presentation we denote I ∪ {p} by I∗.
Votes: The votes are built as follows.

n ‖ p � p̂ � Crest, (1)

∀ci ∈ I :

|N(ci)| ‖ ci � ĉi � Crest, (2)

∀cj ∈ I∗ \ (N(ci) ∪ {ci}) :

1 ‖ ci � cj � Crest. (3)

Note that n votes are built for every candidate ci. Therefore each candidate in I∗ has
the score n. The score of a candidate can only be decreased if the corresponding candidate
himself is deleted. Note also that the score of every dummy candidate cannot exceed n− 1.
We will now show that one can make p win the election by deleting up to k candidates if
and only if the DS-instance has a solution of size at most k.

“⇒”: Let S be a given solution to the DS-instance. Then R = g(S) is a solution
to the corresponding 2-Voter Deterrence-instance. Since S is a dominating set, every
candidate in I will be at least once in the neighborhood of a candidate ci ∈ R or be a

candidate in R himself. Therefore p is the only candidate who gains an additional point
from every deleted candidate cx ∈ R from the vote built by (3) and will therefore be the
unique winner.

“⇐”: Let R be a given solution to a 2-Voter Deterrence-instance. Since every
candidate in I∗ has the original score n and these scores can only be increased if the corre-
sponding candidate himself is not deleted, as discussed before, every candidate cx ∈ I must
not appear as cj on the second position of the votes built by (3) for at least one candidate
of R or be a member of R himself. Therefore S = g−1(R) is a solution to the equivalent
DS-instance.

3.2 Veto

Theorem 3. 1-Voter Deterrence is NP-complete for the voting system Veto.

Proof. We prove Theorem 3 with a parameterized reduction from Dominating Set. Let
〈G = (V, E), k〉 be an instance of DS.
Candidates: For every vertex vi ∈ V we need one candidate ci, as well as the preferred
candidate p and k + 1 dummy candidates, so C = I ∪ D ∪ {p} with I = {c1, . . . , cn} and

D = {d̂1, . . . , d̂k+1}. For ease of presentation we denote I ∪ {p} by I∗.
Votes: The votes are built as follows.

∀ci ∈ I :

∀cj ∈ I∗ \ (N(ci) ∪ {ci}) :

1 ‖ ci � Crest � D � cj , (1)

∀cj ∈ N(ci) ∪ {ci} :

1 ‖ p � Irest � D � cj , (2)

∀d̂j ∈ D :

2 ‖ p � I � Drest � d̂j . (3)

Note that every vote built by (2) and (3) can only be removed by deleting the candidate p,
who should win the election. Therefore these votes will not be removed. Note also that for
each set of votes constructed for a candidate ci ∈ I, every candidate in C \ D takes the
last position in one of theses votes, hence the score of every such candidate is the same. In
contrast, the dummy candidates cannot win the election at all, due to the fact that they are
on the last position of the constructed votes twice as often as the other candidates.
We will now show that one can make p win the election by deleting up to k candidates if
and only if the DS-instance has a solution of size at most k.

”⇒”: Let S be a given solution to the DS-instance. Then R = g(S) is a solution to
the corresponding 1-Voter Deterrence-instance. Since S is a dominating set, every
candidate in I will be on the last position of a vote built by (2) for a cj ∈ R at least once
and therefore lose a point relative to p, hence p is the unique winner.

“⇐”: Let R be a given solution to a 1-Voter Deterrence-instance. As discussed
before, only votes built by (1) can be removed by deleting a candidate. Since at most k
candidates can be deleted, it is not helpful to delete a dummy candidate, because they
have less points than p and their deletion cannot decrease the points of any candidate in I
(which are actually holding p from winning). Therefore only candidates in I are in R, or
there exists a solution R′ ⊆ R, for which this holds. With every candidate chosen from I,
the corresponding neighbors are losing one point relative to p. As p and every candidate
of I had the same amount of points in the beginning, every candidate in I has to be at
least neighboring one deleted candidate or be deleted himself. By the definition of the
neighborhood of candidates, S = g−1(R′) is a solution to the equivalent DS-instance.

3.3 2-approval

Theorem 4. 1-Voter Deterrence is NP-complete for the voting system 2-approval.

Proof. We prove Theorem 4 by a parameterized reduction from Dominating Set. Let
〈G = (V, E), k〉 be an instance of DS.
Candidates: For every vertex vi ∈ V, we create one candidate ci and one additional dummy
candidate ĉi, finally we need the preferred candidate p. So with I = {c1, . . . , cn} and
D = {ĉ1, . . . , ĉn}, the candidates are C = I ∪D ∪ {p}.
Votes: The votes are built as follows.

∀ci ∈ I :

∀cj ∈ N(ci) :

1 ‖ ci � cj � ĉj � Crest � p, (1)

∀cj ∈ I \ (N(ci) ∪ {ci}) :

1 ‖ ĉi � cj � ĉj � Crest � p, (2)

2 ‖ ĉi � p � Crest, (3)

n− |N(ci)| ‖ ci � ĉi � Crest � p. (4)

Without any candidate deleted, all ci ∈ I and p have the same score of 2n, while the dummy
candidates ĉj ∈ D have a score less than 2n. Note that one decreases p’s score by deleting
a dummy candidate, because a deletion of this kind results in losing a vote built in (3).
Therefore one has to delete candidates in I to help p in winning.
We will now show that one can make p win the election by deleting up to k candidates if
and only if the DS-instance has a solution of size at most k.

“⇒”: Let S be a given solution to the DS-instance. Then R = g(S) is a solution
to the corresponding 1-Voter Deterrence-instance. Since S is a dominating set, every
candidate cx ∈ I will be at the second position of a vote built by (1) for one ci ∈ R at least
once and therefore lose a point. As a consequence, every corresponding dummy candidate ĉx
will have a score not greater than 2n− 2, as they gain points in votes built by (1) and (2),
by succeeding to position 2, but lose points as a result of the removal of votes built by (4).
Consequently, p wins being the only candidate remaining with a score of 2n.

“⇐”: Let R be a given solution to a 1-Voter Deterrence-instance. Since one cannot
increase p’s score by deleting a candidate ci ∈ I, the deletion of the candidates in R has
to reduce the scores of all candidates in I by at least 1. Whenever a dummy candidate
is deleted, p loses points instead of gaining them, therefore R ⊆ I must hold. To reduce
the score of every candidate in I by just deleting candidates in I, every such candidate has
to be in the neighborhood of at least one deleted candidate or be deleted himself. By the
definition of the neighborhood of candidates, S = g−1(R) is a solution to the equivalent
DS-instance.

3.4 Borda

Theorem 5. 1-Voter Deterrence is NP-complete for the voting system Borda.

Proof. We prove Theorem 5 by a parameterized reduction from Dominating Set. Let
〈G = (V, E), k〉 be an instance of DS.
Candidates: For every vertex vi ∈ V we create one candidate ci and one dummy candidate ĉi,
finally we need the preferred candidate p. So the candidates are C = I ∪ D ∪ {p} with
I = {c1, . . . , cn} and D = {ĉ1, . . . , ĉn}. For ease of presentation, we denote I ∪ {p} by I∗.

Votes: The votes are built as follows.
∀ci ∈ I :

∀cj ∈ N(ci) :

1 ‖ ci �
→
I∗rest � cj � ĉj �

→
Drest � ĉi, (1)

1 ‖ ci � cj � ĉj �
←
I∗rest �

←
Drest � ĉi, (2)

1 ‖ ĉi � ĉj � cj �
←
I∗rest � ci �

←
Drest, (3)

1 ‖ ĉi �
→
I∗rest � ĉj � cj � ci �

→
Drest. (4)

Recall that
→
A denotes one specific order of the elements within the set A which is reversed

in
←
A. Keeping this in mind, it is easy to see that every candidate in I∗ has the same score

within one gadget constructed by the four votes built by (1) to (4) for one cj , while the
dummy candidates all have a lower score. Note that the deletion of any candidate will
decrease the score of every other candidate. Therefore the scores of the candidates in I have
to be decreased more than the one of p, whereas the scores of the candidates in I∗ can never
be brought below the score of any candidate in D.
We will now show that one can make p win the election by deleting up to k candidates if
and only if the DS-instance has a solution of size at most k.

“⇒”: Let S be a given solution to the DS-instance. Then R = g(S) is a solution
to the corresponding 1-Voter Deterrence-instance. Since S is a dominating set, every
candidate cx ∈ I will appear at least once as cj in the votes built by (1) to (4) for one
ci ∈ R and therefore lose two points relative to p. With the dummy candidates unable to
reach a higher score than p and every other candidate having a score below the one of p,
the preferred candidate wins.

“⇐”: Let R be a given solution to a 1-Voter Deterrence-instance. Since one cannot
increase the score of p, the deletion of the candidates in R has to decrease the score of every
candidate of I relative to p. Therefore every candidate in I has to appear at least once as cj
in the votes built by (1) to (4) for one ci ∈ R. Hence, every candidate of I must have at
least one neighbor in R or be a member of R himself. Therefore S = g−1(R) is a solution
to the equivalent DS-instance.

3.5 Maximin

Theorem 6. 1-Voter Deterrence is NP-complete for the voting system Maximin.

Proof. We prove Theorem 6 by a parameterized reduction from Dominating Set. Let
〈G = (V, E), k〉 be an instance of DS.
Candidates: For every vertex vi ∈ V we create one candidate ci and one dummy candidate ĉi,
finally we need the preferred candidate p. So the candidates are C = I ∪ D ∪ {p} with
I = {c1, . . . , cn} and D = {ĉ1, . . . , ĉn}.
Votes: The votes are built as follows.

∀ci ∈ I :

1 ‖ ci �
→
I rest �

→
N(ci) � p �

→
Drest � ĉi, (1)

1 ‖ ci �
←
N(ci) � p �

←
I rest �

←
Drest � ĉi, (2)

1 ‖ ĉi �
→
I rest � p �

→
N(ci) �

→
Drest � ci, (3)

1 ‖ ĉi � p �
←
N(ci) �

←
I rest �

←
Drest � ci. (4)

Recall that
→
A denotes one specific order of the elements within set A which is reversed

in
←
A. With this in mind, it is easy to see that every candidate in I has the same score as p,

namely 2n. The dummy candidates are not able to win the election as long as at least one
of the candidates in I or p is remaining.
We will now show that one can make p win the election by deleting up to k candidates if
and only if the DS-instance has a solution of size at most k.

“⇒”: Let S be a given solution to the DS-instance with |S| = k′ ≤ k. Then R = g(S) is
a solution to the corresponding 1-Voter Deterrence-instance. Since S is a dominating
set, every candidate cx ∈ I will belong to the neighborhood of a candidate in R or be a
member of R himself at least once. Therefore each candidate cx will have at most 2n−k′−2
votes in which he is preferred to p. Therefore the maximin score of these candidates will be
at most 2n − k′ − 2, while p is preferred to every other candidate in C in at least 2n − k′
votes, which makes p the unique winner of the election.

“⇐”: Let R be a given solution to a 1-Voter Deterrence-instance. Then the deletion
of the candidates in R decreases the score of every candidate in I more than the score of p.
Note that the score of p is always higher than the score of the dummy candidates. The
only way to decrease the score of a candidate cx ∈ I is to delete cx himself, or one of his
neighbors, since this removes the votes built by (1) and (2), in which the neighbors are
preferred to p, while p is preferred in the remaining votes built by (3) and (4). Since every
candidate has to be in the neighborhood of at least one deleted candidate or be deleted
himself, S = g−1(R) is a solution to the equivalent DS-instance.

3.6 Bucklin and Fallback Voting

A candidate c’s Bucklin score is the smallest number k such that more than half of the
votes rank c among the top k candidates. The winner is the candidate that has the smallest
Bucklin score [20].

Theorem 7. 1-Voter Deterrence is NP-complete for Bucklin.

Note that Bucklin is a special case of Fallback Voting, where each voter approves of each
candidate, see [9]. We therefore also obtain

Corollary 1. 1-Voter Deterrence is NP-complete for Fallback Voting.

Proof. We prove Theorem 7 by a parameterized reduction from Dominating Set. Let
〈G = (V, E), k〉 be an instance of DS.
Candidates: For every vertex vi ∈ V we create one candidate ci and one dummy candi-
date ĉi. Additionally, we need the preferred candidate p and several dummy candidates.
We need n(n + k) filling dummies f̂ , k(2n + k − 1) security dummies ŝ, and finally k − 1

leading dummies l̂. So the candidates are C = I ∪D∪S∪F ∪L∪{p} with I = {c1, . . . , cn},
D = {ĉ1, . . . , ĉn}, S = {ŝ1, . . . , ŝk(2n+k−1)}, F = {f̂1, . . . , f̂n(n+k)}, and L = {l̂1, . . . , l̂k−1}.
For ease of presentation, we denote I ∪ {p} by I∗.
Votes: The votes are built as follows.

∀ci ∈ I :

1 ‖ ci � N(ci) � {f̂(i−1)(n+1)+1, . . . , f̂i(n+1)−|N(ci)|−1}
� {ŝ(2i−2)(k+1)+1, . . . , ŝ2(i−1)(k+1)} � Crest � p, (1)

1 ‖ ĉi � N(ci) � {f̂i(n+1)−|N(ci)|, . . . , f̂(i)(n+1)} � p
� {ŝ(2i−1)(k+1)+1, . . . , ŝ2i(k+1)} � Crest, (2)

∀r ∈ {1, . . . , k − 1} : one vote of the form

1 ‖ l̂r � {f̂n(n+1)+(r−1)n+1, . . . , f̂n(n+1)+in}
� {ŝ2n(k+1)+(r−1)(k+1)+1, . . . , ŝ2n(k+1)+r(k+1)} � Crest � p. (3)

Note that every candidate in I∗ occurs within the first n + 2 positions in the votes
built by (1) and (2) for every candidate ci ∈ I exactly once. Therefore p is not the unique
winner without modification. Note also that deleting some of the dummy candidates is not
helping p, as they all appear just once within the first n+2 positions. Because of the security
dummies, no candidate in I∗ can move up to one of the first n + 2 positions, if he has not
been there before. After the deletion of k candidates, up to k votes can be removed—note
that every removed vote has to be built by (1) or (3) if p wins the election with this deletion.
We will now show that one can make p win the election by deleting up to k candidates if
and only if the DS-instance has a solution of size at most k.

“⇒”: Let S be a given solution to a DS-instance with |S| = k′ ≤ k. Then R = g(S) ∪
{l̂1, . . . , l̂k−k′} is a solution to the corresponding 1-Voter Deterrence-instance. Since S
is a dominating set, every candidate cx ∈ I will lose at least one vote built by (1) because
he is the neighbor of at least one candidate in R or a member of R himself. Since |R| = k, k
votes are removed and therefore the score of p is n + 2, whereas the score of every other
candidate is greater than n+ 2, which makes p win the election.

“⇐”: Let R be a given solution to a 1-Voter Deterrence-instance. Since p wins
with the candidates in R deleted, R has to contain just candidates in I ∪ L, and |R| = k,
because everything else would increase the score of p to the maximum, which would keep p
from winning uniquely. Let R′ = R ∩ I be the intersection of R and I. Since the score of p
with k removed votes of this kind is n+ 2, and the score of every candidate in I was n+ 2
without the removal of any votes, every candidate in I has to be removed himself or has to
be neighboring at least one deleted candidate in R, because only then his score is greater
than n+ 2. Therefore S = g−1(R′) is a solution to the equivalent DS-instance.

3.7 Copeland

For any two distinct candidates i and j, let N(i, j) be the number of voters that prefer i to
j, and let C(i, j) = +1 if N(i, j) > N(j, i), C(i, j) = 0 if N(i, j) = N(j, i), and C(i, j) = −1
if N(i, j) < N(j, i). The Copeland score of candidate i is

∑
j 6=i C(i, j) [6].

Theorem 8. 1-Voter Deterrence is NP-complete for the voting system Copeland.

Proof. We prove Theorem 8 by a parameterized reduction from Dominating Set. Let
〈G = (V, E), k〉 be an instance of DS.
Candidates: For every vertex vi ∈ V we create one candidate ci and one dummy candidate ĉi.
Additionally we need the preferred candidate p, one thievish candidate t̂ and furthermore n
filling dummy candidates. So the candidates are C = I∪D∪F ∪{t̂, p} with I = {c1, . . . , cn},
D = {ĉ1, . . . , ĉn}, and F = {f̂1, . . . , f̂n}.
Votes: The votes are built as follows.

∀ci ∈ I :

1 ‖ ci �
→
N(ci) � t̂ �

→
I rest � p �

→
F �

→
Drest � ĉi, (1)

1 ‖ ci � p �
←
I rest �

←
N(ci) �

←
F � t̂ �

←
Drest � ĉi, (2)

1 ‖ ĉi � t̂ �
→
N(ci) �

→
I rest � p �

→
F � ci �

→
Drest, (3)

1 ‖ ĉi � p �
←
I rest �

←
F � t̂ �

←
N(ci) � ci �

←
Drest. (4)

After creating these n gadgets (consisting of the above 4 votes) the candidates have
different scores. Note that the candidates of each set are always tying with the other
candidates in their set, since every gadget has two votes with one specific order of the
members and another two of the reversed order. Since candidates in D are losing every
pairwise election against all other candidates, they have a score of −(2n+2). The candidates

in F are just winning against the candidates in D and are tied against t̂ and therefore have
a score of −1. Since the candidates in I and p are on a par with t̂, this gives them a score
of 2n and t̂ a score of n. Note that if there exists a deletion of k candidates which makes p
win the election, there also exists a deletion of up to k candidates in I doing so. The main
idea here is that the thievish candidate can steal exactly one point from every candidate in I
by winning the pairwise election between them due to the deleted candidate and thereby
removed votes. Since t̂ starts with a score of n, this will only bring him to a score of 2n− k
with k deleted candidates. Therefore he cannot get a higher score than p initially had.
We will now show that one can make p win the election by deleting up to k candidates if
and only if the DS-instance has a solution of size at most k.

“⇒”: Let S be a given solution to a DS-instance. Then R = g(S) is a solution to
the corresponding 1-Voter Deterrence-instance. Since S is a dominating set, every
candidate cx ∈ I will be a neighbor of a deleted candidate, or a deleted candidate himself.
Therefore t̂ will win the pairwise election with every such candidate cx due to the fact that
initially they were tied, but at least one vote built by (1) and one by (2) are deleted, where cx
was in the neighborhood of the deleted ci, or cx got deleted himself. As a consequence, t̂
has a score of 2n− k and every candidate in I has a score of 2n− 1, which makes p win the
election with an unchanged score of 2n.

“⇐”: Let R be a given solution to a 1-Voter Deterrence-instance. As discussed
before, there must be a solution R′ of size at most k with R′ ∩ (C \ I) = ∅. Since p and the
candidates in I were leading initially with the same score of 2n, and p cannot get a higher
score if any candidate is deleted, the candidates in I must have their score lowered through
deletion of some candidates. Any deleted candidate himself cannot win anymore, but since
only up to k candidates are to delete, the remaining candidates in I have to lose at least
one pairwise election after the deletion, which they won or at least tied before. By design
of the gadget, this can only be achieved for a candidate cx by deleting ci with cx ∈ N(ci).
This makes cx lose the former tied pairwise election with t̂, giving cx a score of 2n−1. Since
this must hold for every candidate in I and therefore any non-deleted candidate must be a
neighbor of one candidate in M ′ at least. Hence S = g−1(R′) is a solution to the equivalent
DS-instance.

4 Parameterized complexity-theoretic analysis

In this section, we shortly take a closer look at the parameterized complexity of Voter
Deterrence for the previously considered voting systems.

Since all the NP-hardness proofs of the previous section are based on parameterized
reductions from Dominating Set, we immediately obtain

Corollary 2. 1-Voter Deterrence isW[2]-hard for Copeland, Veto, Borda, 2-approval,
Maximin, Bucklin, and Fallback Voting, and 2-Voter Deterrence is W[2]-hard for Plu-
rality, all with respect to the parameter number of deleted candidates.

In contrast, considering a different parameter, one easily obtains the following tractability
result.

Theorem 9. The problem x-Voter Deterrence is in FPT with respect to the parameter
number of candidates for all voting systems having a polynomial time winner determination.

Proof. It is easy to see that Theorem 9 holds: An algorithm trying out every combination of
candidates to delete has an FPT -running time O(mk ·n ·m ·Tpoly), where m is the number
of candidates, n the number of votes, k ≤ m is the number of allowed deletions, and Tpoly is
the polynomial running time of the winner determination in the specific voting system.

5 Conclusion

We have initiated the study of a voting problem that takes into account correlations that
appear in real life, but which has not been considered from a computational point of view
so far. We obtained NP-completeness and W[2]-hardness for most voting systems we con-
sidered. However, this is just the beginning, and it would be interesting to obtain results
for other voting systems such as k-approval or scoring rules in general. Also, we have
concentrated on the case of 1-Voter Deterrence and so far have investigated 2-Voter
Deterrence for Plurality only.

One could also look at the destructive variant of the problem in which an external agent
wants to prevent a hated candidate from winning the election, see e.g. [17] for a discussion
for the ‘control’ problems.

We have also investigated our problem from the point of view of parameterized
complexity. It would be interesting to consider different parameters, such as the num-
ber of votes, or even a combination of several parameters (see [19]), to determine the
complexity of the problem in a more fine-grained way. This approach seems especially
worthwile because Voter Deterrence, like other ways of manipulating the outcome
of an election, is a problem for which NP-hardness results promise some kind of resis-
tance against this dishonest behavior. Parameterized complexity helps to keep up this
resistance or to show its failure for cases where certain parts of the input are small, and
thus provides a more robust notion of hardness. See, e.g., [3–5,7,9], and the recent survey [2].

However, one should keep in mind that combinatorial hardness is a worst case concept,
so it would clearly be interesting to consider the average case complexity of the problem or
to investigate the structure of naturally appearing instances. E.g., when the voters have
single peaked preferences, many problems become easy [13]. Research in this direction is
becoming more and more popular, see for example [13,14,16].

Acknowledgments. We are grateful to the anonymous referees whose constructive feed-
back helped to improve this work. Finally, we thank Oliver Gableske for the fruitful discus-
sion which initiated our study of Voter Deterrence.

References

[1] J. Bartholdi, C. Tovey, M. Trick, et al. How Hard is it to Control an Election? Mathematical
and Computer Modelling, 16(8-9):27–40, 1992.

[2] N. Betzler, R. Bredereck, J. Chen, and R. Niedermeier. Studies in Computational Aspects
of Voting—a Parameterized Complexity Perspective. In H. Bodlaender et al., editor, Fellows
Festschrift, LNCS 7370, pages 318–363. Springer, Heidelberg, 2012.

[3] N. Betzler and J. Uhlmann. Parameterized complexity of candidate control in elections and
related digraph problems. Theor. Comput. Sci., 410(52):5425–5442, 2009.

[4] R. Bredereck, J. Chen, S. Hartung, R. Niedermeier, O. Suchỳ, and S. Kratsch. A multivariate
complexity analysis of lobbying in multiple referenda. In Proceedings of the 26th Conference
on Artificial Intelligence (AAAI ’12), 2012. Accepted for publication.

[5] R. Christian, M. Fellows, F. Rosamond, and A. Slinko. On complexity of lobbying in multiple
referenda. Review of Economic Design, 11(3):217–224, 2007.

[6] V. Conitzer, J. Lang, and T. Sandholm. How many candidates are needed to make elections
hard to manipulate? CoRR, cs.GT/0307003, 2003.

[7] B. Dorn and I. Schlotter. Multivariate complexity analysis of swap bribery. Algorithmica,
2011. Available electronically.

[8] R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs in Computer
Science. Springer, New York, 1999.

[9] G. Erdélyi and M. Fellows. Parameterized control complexity in bucklin voting and in fallback
voting. Proceedings of COMSOC, 10, 2010.

[10] G. Erdélyi and J. Rothe. Control complexity in fallback voting. In Proceedings of the Sixteenth
Symposium on Computing: the Australasian Theory - Volume 109, CATS ’10, pages 39–48,
Darlinghurst, Australia, Australia, 2010. Australian Computer Society, Inc.

[11] P. Faliszewski, E. Hemaspaandra, and L. Hemaspaandra. Multimode control attacks on elec-
tions. Journal of Artificial Intelligence Research, 40:305, 2011.

[12] P. Faliszewski, E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. Llull and Copeland vot-
ing computationally resist bribery and constructive control. Journal of Artificial Intelligence
Research, 35(1):275–341, 2009.

[13] P. Faliszewski, E. Hemaspaandra, L. A. Hemaspaandra, and J. Rothe. The shield that never
was: Societies with single-peaked preferences are more open to manipulation and control. Inf.
Comput., 209(2):89–107, 2011.

[14] P. Faliszewski and A. D. Procaccia. Ai’s war on manipulation: Are we winning? AI Magazine,
31(4):53–64, 2010.

[15] J. Flum and M. Grohe. Parameterized Complexity Theory. Texts in Theoretical Computer
Science. An EATCS Series. Springer, New York, 2006.

[16] E. Friedgut, G. Kalai, and N. Nisan. Elections can be manipulated often. In FOCS, pages
243–249. IEEE Computer Society, 2008.

[17] E. Hemaspaandra, L. A. Hemaspaandra, and J. Rothe. Anyone but him: The complexity of
precluding an alternative. Artif. Intell., 171(5-6):255–285, 2007.

[18] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathe-
matics and its Applications. Oxford University Press, 2006.

[19] R. Niedermeier. Reflections on multivariate algorithmics and problem parameterization. In
STACS 2010: Proceedings of the 27th International Symposium on Theoretical Aspects of
Computer Science, pages 17–32, 2010.

[20] L. Xia, M. Zuckerman, A. D. Procaccia, V. Conitzer, and J. S. Rosenschein. Complexity of
unweighted coalitional manipulation under some common voting rules. In Proc. 21st IJCAI,
pages 348–353, 2009.

Britta Dorn
Wilhelm-Schickard-Institut für Informatik
Sand 13
Universität Tübingen
72076 Tübingen, Germany
Email: britta.dorn@uni-tuebingen.de

Dominikus Krüger
Institut für Theoretische Informatik
James-Franck-Ring 5 / O27
Universität Ulm
89081 Ulm, Germany
Email: dominikus.krueger@uni-ulm.de

