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Abstract

Agenda voting occurs in a wide variety of contexts. This paper characterizes the class
of social choice functions that can be implemented by sophisticated voting on an agenda
under the assumption of complete information. The main result establishes that a sim-
ple pairwise condition is necessary and sufficient for implementation by agenda voting.
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1 Introduction

Voting by agenda occurs in a wide variety of political and social choice contexts. The economic
analysis of agendas has a rich tradition in the literature dating back to the early work of Black
[1958] and Farquharson [1969]. This paper contributes to that literature by characterizing the
social choice functions that can be implemented by sophisticated voting in an environment with
complete information. The main result establishes that a simple pairwise condition defined on
pairs of states is necessary and sufficient for implementation. The paper builds on earlier work by
Srivastava and Trick [1996], who conjectured that a weaker condition defined on pairs of adjacent
states (i.e. states that differ on the ranking of two outcomes) was necessary and sufficient.1

Formally, a voting agenda describes a binary tree where, at any decision node, the agents
vote between two collections of competing proposals. Ultimately, the winning proposal is the
outcome that survives the sequence of binary votes given by the agenda. If the agents are
forward-looking, their behavior is sophisticated and the winning proposal can be determined by
backward induction. Provided that the provisional winners are determined by simple majority,
the winning proposal must be drawn from the Condorcet set — the subset of outcomes that
indirectly dominates every outcome (see Miller [1977], McKelvey-Niemi [1978], Moulin [1986]).
Because the pairwise condition is relatively weak, agenda voting is capable of implementing a
wide variety of selections from the Condorcet set.

A variety of approaches can be used to implement outcomes from the Condorcet set. Most
closely related to implementation by agenda voting are the extensive-form mechanisms based
on backward induction (Gol’berg-Gourvitch [1986] and Herrero-Srivastava [1992]) and subgame
perfection (Abreu-Sen [1990], Moore-Repullo [1988], and Vartiainen [2007a]). Also related to
implementation by agenda voting are the normal-form solution concepts based on dominance
solvable voting (Moulin [1979]) and undominated Nash equilibrium (Palfrey-Srivastava [1989]).

While each of these four mechanisms is capable of implementing a wider variety of outcomes
than agenda voting (see e.g. Dutta-Sen [1993]), there are some compelling advantages to the
approach taken here. Perhaps most importantly, agenda voting is a straightforward way to de-
centralize choice. In contrast with many other approaches to implementation, agenda voting
expressly rules out artificial features like randomization (see e.g. Vartiainen [2007b]), nuisance
strategies (e.g. integer games and bad outcomes), and unnaturally complex strategy sets.2 Ar-
guably, the simplicity of agenda voting is a large part of the reason that this mechanism is so
widely used in real-world settings.

No less attractive is the fact that the necessary and sufficient condition for implementation

1Their conjecture replaces an earlier conjecture due to Herrero and Srivastava [1992].
2However, the agenda required to implement the desired outcomes may be large (see Trick [2006, 2009]).



by agenda voting is simple. By comparison, both of the extensive-form mechanisms discussed
above impose necessary conditions that can be quite difficult to verify in practice. In view
of this shortcoming, Moore [1992] has stressed the importance of finding a “full and workable
characterization of social choice functions that can be implemented in trees.” The main result
goes some way towards achieving this goal. As discussed, it provides a workable characterization
for a fairly broad class of social choice functions that can be implemented in trees. Moreover, it
also provides a simple sufficient condition for implementation in trees more generally. This follows
from the fact that agenda voting is a special case of implementation via backward induction.

Before moving on, it is worth noting that the approach taken in this paper is somewhat
unconventional from a technical standpoint. In the implementation literature, sufficiency of the
characterization is generally established by constructing a mechanism that implements any so-
cial choice function with the prescribed features. Unusually, the sufficiency proof given here is
obtained by algebraic methods that do not rely on the explicit construction of a mechanism.
The basic idea of the proof is that extensive-form games can be “added” together at the root
to form a new game. The strength of this approach is that the equilibrium of the new game
is easily determined from the equilibria of the original games. Since the intuition is straight-
forward, it is perhaps surprising that very little work in implementation theory leverages the
algebraic structure of extensive-form games. The only notable exception is the characterization
of implementation via backward induction given by Gol’berg-Gourvitch [1986].

2 Implementation by Agenda Voting

Before stating the main result, this section provides some preliminary definitions and gives some
examples of voting agendas that are widely discussed in the literature of social choice and political
economy. A discussion of the result is given in Section 3.

2.1 Definitions

Let X denote some finite set of outcomes. The population of agents is given by A = {1, ..., a}
where a = |A| is odd. Let L denote the collection of linear orders on X. An element P=(�1

, ...,�a) of La represents a profile of individual preference orders on X. For any profile P ∈ La,
the majority relation R is defined by xRy iff |{i ∈ A : x �i y}| > |{i ∈ A : y �i x}|. Since |A|
is odd, any majority relation R is a complete, asymmetric relation (or pairwise ranking) on X.
Let R denote the collection of majority relations on X.

A social choice function (SCF) is a mapping F : La → X that selects an outcome for every
profile P ∈ La. A Condorcet social choice function is an SCF that selects the same outcome
when the majority relations on P and P ′ coincide (i.e. R = R′). In other words, it can be
described as a mapping f : R → X that selects an outcome for every majority relation R ∈ R.
In what follows, I frequently abbreviate by referring to a majority relation R as a state.

Generically, a voting agenda can be described as a labelled binary tree. A binary tree B is a
pair (V,<) consisting of a finite set V of vertices and a strict (but incomplete) transitive order
< on V . The order < has a particular structure so that: every vertex has either zero or two
successors and all vertices except one have a unique predecessor. The <-maximal vertices in V ,
denoted by V0, are the leaves of the tree and the unique <-minimal vertex v∗ is the root. In
order to label the leaves V0 of a binary tree B with the alternatives in X (where |X| ≤ |V0|), let
ι : V0 → X define a surjection, or seeding, from the leaves to the elements of X. Together, the
binary tree B and the seeding ι define a voting agenda T = (B, ι) over the alternatives in X.

For any voting agenda T and majority relation R on X, the overall winner cT (R) = v∗(T,R)
is determined by backward induction. The winner v(T,R) at any leaf v ∈ V0 is the alternative



ι(v) that labels v and the winner at any non-leaf v /∈ V0 is given by majority voting between the
winners at the left successor v

l
of v and right successor v

r
. Formally:

v(T,R) ≡

 vl(T ;R) if (vl(T ;R), vr(T ;R)) ∈ R

vr(T ;R) otherwise

Definition 1 (Implementation by Agenda Voting) A Condorcet SCF f is imple-
mentable if there exists an agenda T on X such that cT (R) = f(R) for every state R ∈ R.

Before moving on, I pause to make two comments about this definition. First, observe that
it requires implementation for all possible states (i.e. every majority relation on X). In the
literature, this is known as the universal domain assumption. Second, it requires that the agenda
implementing f contain every alternative in X. Given the assumption of universal domain, this
is without loss of generality. The reason is that agenda voting must select the Condorcet winner
– i.e. the item x ∈ X s.t. xRy for all y ∈ X \{x} – whenever it exists. Because every alternative
in X is the Condorcet winner for some state(s), every alternative is chosen in some state — and,
hence, must be part of the agenda.

When there is no Condorcet winner, agenda voting must select from the Condorcet set:

Definition 2 (Condorcet Set) The Condorcet set C(Y,R) of the pairwise ranking R on Y
is the smallest subset of Y where yRy′ for all y ∈ C(Y,R) and y′ ∈ A\C(Y,R). When R is
understood, I abbreviate to C(Y ).

In other words, C(Y ) is a (possibly degenerate) cycle in Y whose members pairwise-dominate
every outcome in Y \C(Y ) (see e.g. Moulin [1986] and Laslier [1997]). Intuitively, the Condorcet
set generalizes the usual notion of maximization to address the situation where no single outcome
R-dominates every other outcome in Y .

2.2 Main Result

The main result establishes that f is implementable if it is implementable for all pairs of majority
relations. Formally, outcomes x and x′ are pairwise implementable in states R and R′ if there
exists a voting agenda T such that cT (R) = x and cT (R′) = x′. To state the main result:

Main Result A Condorcet SCF f is implementable iff is implementable for every pair of states.

Based on the work of Srivastava and Trick [1996], it can be shown that any outcomes x and
x′ in the Condorcet sets of R and R′ are pairwise implementable if the two states are sufficiently
distinct on a global level. If the states are globally similar however, one can only implement
outcomes from the same locale. Some definitions are required to formalize these notions.

Given a pairwise-ranking R on Y , a subset Y ′ ⊆ Y is a component of R if every element in
Y ′ bears the same relation to elements in Y \Y ′. Given an item y ∈ Y \Y ′ and any items y′,
y′′ ∈ Y ′, then y′′Ry if and only if y′Ry.3 A decomposition of a pairwise-ranking R on Y ⊆ X is
a partition of Y into components. The largest decomposition is the degenerate partition {Y }.

If R is cyclic on Y (so that C(Y ) = Y ), the maximal non-degenerate decomposition D(Y,R)
is unique (see Theorem 1.3.11 of Laslier [1997]). Moreover, the quotient ranking R/D(Y,R)
induces a pairwise-ranking on the components of D(Y,R). Formally, the global structure of a
state is determined by the maximal decomposition of the Condorcet set.

3To get a better intuition for this definition, note that the Condorcet set is a component of R. In particular,
C(R, Y ) is the smallest component of R such that Y \C(R, Y ) is also a component of R where cRy for some
c ∈ C(R, Y ) and y ∈ Y \C(R, Y ).



Definition 3 (Global Structure) For a pairwise-ranking R on Y ⊆ X, the global structure
〈G(Y ), RG〉 is a pair consisting of the maximal decomposition G(Y ) = D(C(Y ), R) of R on
the Condorcet set and the quotient ranking RG = R/D(C(Y ), R). Moreover, any component
g ∈ G(Y ) defines a locale.

States R and R′ are globally distinct if 〈G(X), RG〉 6= 〈G′(X), R′G〉 and globally similar if
〈G(X), RG〉 = 〈G′(X), R′G〉. In other words, two rankings are similar if they have the same
Condorcet set C and the global structure of the rankings on C is similar. Conversely, two
rankings are distinct when their Condorcet sets differ or the global structure of the rankings on
C is distinct.

The condition for implementation on pairs of states can be stated in terms of the global
structure. In particular, x and x′ are said to be pairwise implementable on Y ⊆ X (in states R
and R′) if there exists a voting agenda T on Y such that cT (R) = x and cT (R′) = x′. Given the
main result, the following proposition fully characterizes implementation by agenda voting:

Proposition 1 (Pairwise Condition) (I) For globally distinct states R and R′, the outcomes
x and x′ are pairwise implementable iff x ∈ C(X,R) and x′ ∈ C(X,R′). (II) For globally
similar states R and R′, the outcomes x and x′ are pairwise implementable iff they are in the
same locale g ∈ G(X) and are pairwise implementable for some subset g∗ ⊆ g.

It is worth clarifying that the main result does not depend on the fact that voting is by
majority. More generally, the pairwise-ranking on any profile P ∈ P may be derived from any
strong proper simple (SPS) game (A,W ). For a simple game (A,W ), the set W ⊆ 2a defines a
monotonic collection of winning coalitions such that w ∈ W and w ⊆ w′ imply w′ ∈ W . The
simple game (A,W ) is said to be strong and proper if a coalition w wins whenever its complement
A\w loses (so that w ∈W iff A\w /∈W ).

Formally, any SPS game induces a pairwise ranking PW such that xPW y iff {a ∈ A : x �a
y} ∈W . When PW ⊆ R is the collection of pairwise rankings induced by the SPS game (A,W ),
then f : PW → X defines a (partial) Condorcet social choice function. Generalizing the notion of
implementation defined above, a social choice function F : La → X is said to be implementable
if there exists an SPS game (A,W ) and a voting agenda T such that cT (PW ) = F (P ) for any
profile P ∈ P. Thus, F can be implemented by the SPS game (A,W ) if and only if fW is
implementable and F (P ) = fW (PW ) for any profile P ∈ P. As such, the following generalization
of the main result is immediate:

Theorem 1 An SCF F is implementable if there exists an SPS game (A,W ) and a (partial)
Condorcet social choice function f s.t. (i) f is implementable for every pair of states and, (ii)
F (P ) = f(PW ) for any P ∈ P.

One benefit of using an SPS game different from majority voting is that distinct outcomes
may be implemented on profiles whose majority relations coincide. However, it should be kept
in mind that departures from majority voting come at the cost of anonymity.

3 Discussion

In earlier work, Srivastava and Trick [1996] showed a necessary and sufficient condition for
pairwise implementation on adjacent states R and R′ that differ only on the pairwise-ranking of
two outcomes y and y′. To state their condition, let BR,R′ define the smallest component of R
such that {y, y′} ⊆ BR,R′ . Srivastava and Trick established that distinct outcomes are pairwise
implementable on R and R′ iff they are in the Condorcet sets of X and BR,R′ for each state.



Proposition 2 (Adjacent Pairwise Implementation) x and x′ are pairwise implementable
on adjacent states R and R′ iff: (i) x ∈ C(R,X) and x′ ∈ C(R′, X); and, (ii) x = x′ or,
x ∈ C(R,BR,R′) and x′ ∈ C(R′, BR,R′).

When two states are adjacent, the pairwise condition in Proposition 1 reduces to that given
in Proposition 2. While the pairwise condition is more complex than the condition given in
Proposition 2, it is somewhat easier to interpret.

For globally distinct states, pairwise implementation is virtually unrestricted. It is sufficient
that the outcomes are drawn from the Condorcet sets.4 Since agenda voting always draws from
the Condorcet set, this requirement is more generally necessary for implementation (see e.g.
Moulin [1986], Lemma 9).

For globally similar states, there are stronger restrictions on what can be implemented. As is
more generally necessary for implementation in this environment, the outcomes must be drawn
from the same locale g (see e.g. Moulin [1986], Lemma 10). Within any given locale however,
the restrictions are relatively weak. Any pair of outcomes that can be implemented on a subset
g∗ of g can also be implemented on X.

The proof of the main result follows directly from Proposition 1. The result is obtained by
algebraic methods and does not rely on the explicit construction of a mechanism (i.e. an agenda).
Since the approach is somewhat unconventional, it will be helpful to provide a brief overview.

To get the basic intuition, first consider any collection Rd of globally distinct states. Now,
fix a pair of states Rj , Rk ∈ Rd and a pair of outcomes xj ∈ C(X,Rj) and xk ∈ C(X,Rk). From
Proposition 1(I), there exists an agenda T (j, k) such that cT (j,k)(Rj) = xj and cT (j,k)(Rk) = xk.

Let T d define any collection of agendas T (j, k) ranging over all pairs of outcomes xj ∈ C(X,Rj),

xk ∈ C(X,Rk) and all pairs of states Rj , Rk ∈ Rd. Let C(T d) define the collection of choice
functions cT that correspond to some T ∈ T d. Any agendas T1 and T2 in T d may be joined at
the root to obtain a new agenda T1 + T2 and a new agenda choice function cT1+T2

such that

cT1+T2
(R) = max

R
{cT1

(R), cT2
(R)}

Applying a theorem in universal algebra due to Maroti [2002], it can be shown that the closure

of C(T d) under agenda concatenation coincides with the collection of agenda choice functions
that select from the Condorcet set in every state R ∈ Rd. Formally:

Proposition 3 (Globally Distinct States) For any collection of globally distinct states Rd,
the (partial) Condorcet social choice function fd : Rd → X is implementable iff fd(R) ∈ C(X,R)
for all R ∈ Rd.

In other words, Proposition 3 shows that the condition in Proposition 1(I) is necessary and
sufficient for globally distinct states. The next result shows the necessity and sufficiency of the
condition in Proposition 1(II) for globally similar states.

Proposition 4 (Globally Similar States) For any complete collection of globally similar
states Rs, the (partial) Condorcet social choice function fs : Rs → X is implementable iff
it is pairwise implementable for every pair of states R,R′ ∈ Rs.

Like Proposition 3, the proof of this result leverages the algebraic structure of agendas. To
get the basic intuition, consider any collection Rs of globally similar states with Condorcet set
C. Given an outcome x ∈ C, it is not difficult to construct an agenda T (x) that implements x

4Srivastava and Trick [1996] show the sufficiency of this condition when the Condorcet sets of R and R′ are
distinct (see Theorem 2 of their paper). It is easy to see that this is a corollary of Proposition 2.



for every R ∈ Rs. To see this, suppose that G(X) = {gi}ki=1 is the maximal decomposition C
so that giRGgi+1 for i < k and gkRGg1. To implement x ∈ g1, construct an elimination agenda
T (x) using the list

L = (x, g2, ..., gk, g1\{x}, X\C)

At every node, append an agenda that contains every outcome in gi (resp. g1\{x} and X\C).
The fact that cT (x)(R) = x for every state R ∈ Rs is a simple extension of a result due to
Miller [1977]. Define T s = {T (x) : x ∈ C} so that C(T s) describes a collection of agenda choice
functions cT that pick the same outcome for every R ∈ Rs. Clearly, the collection T s satisfies
the pairwise condition. Proposition 4 then follows by establishing that the closure of C(T s)
under agenda concatenation generates all of the social choice functions that satisfy the pairwise
condition. Given Propositions 3 and 4, the main result then follows by induction on the number
of globally distinct sub-collections in R. The details are presented in Section 4.

4 Proofs

4.1 Proof of Proposition 1

Proposition 1(I) follows from Theorem 1 of Srivastava and Trick [1996]. The following definition
is required to state this result: a subset PS ⊆ X is prime if there is no non-trivial partition
PS = {PSi}ki=1 of PS such that: (i) PS is a decomposition of R and R′ on PS; and, (ii) the
quotient relations induced by PS agree so that R/PS = R′/PS.

Theorem 1 of Srivastava and Trick The outcomes x and x′ are pairwise implementable on
states R and R′ for some subset of X iff there exists a prime set PS such that {x, x′} ⊆ PS ⊆ X,
x ∈ C(PS,R), and x′ ∈ C(PS,R′).

Proposition 1(I) is a consequence of the following lemma.

Lemma 1 If 〈G(X), RG〉 6= 〈G′(X), R′G〉, C(X,R) ∪C(X,R′) is a prime set.

Proof. Omitted due to lack of space.

Proof of Proposition 1(I). (⇐) By Lemma 1, C ∪ C′ is a prime set. By Theorem 1 of
Srivastava and Trick, any x ∈ C = C(C ∪ C′, R) and x′ ∈ C′ = C(C ∪ C′, R′) are pairwise
implementable for C ∪ C′ ⊆ X. To complete the proof, fix a pair x ∈ C and x′ ∈ C′ and
an agenda T that implements (x, x′) for C ∪C′. Next, construct an agenda whose left branch
at the root corresponds with T and whose right branch is any agenda on X\(C ∪C′). (When
X\(C∪C′) = ∅, the right branch can be omitted.) By construction, the desired outcome emerges
from the left branch in each state and defeats whatever emerges from the right. (⇒) If x and x′

are pairwise implementable, x ∈ C and x′ ∈ C′ (by Lemma 9 of Moulin [1986]).

Proposition 1(II) is a consequence of the following lemma:

Lemma 2 Given a collection of globally similar states Rs, the (partial) Condorcet social choice
function fs : Rs → X is implementable iff fs is implementable for some g∗ ⊆ g ∈ G(X).

Proof. For parsimony, let C = C(X,R) and G(X) = {gi}ki=1. First, fix an element x ∈ gi
and suppose that giRGgi+1 for i < k and gkRGg1 (otherwise, the components can be relabeled).
Construct an elimination agenda T (x) using L = (x, ..., gk, g1\g{x}, X\C). As in the proof of



Proposition 1(I), the bottom branch may be omitted when X\C =∅. To the branch labelled
x, append the item x. To the branches labelled by gi (respectively g1\{x} or X\C), append
an agenda Ti containing every outcome in gi (resp. g1\{x} or X\C). By construction, T (x)
implements x on Rs (see e.g. Lemma 8.3.3 of Laslier [1997]). Moreover, it can be associated
with the trivial agenda t(x) = x that implements x on {x} ⊆ g1.

Let T1= {T (x) : x ∈ C} define the collection of agendas T (x) on C. Similarly, let
T1(g∗)= {t(x) : x ∈ g∗} define the collection of agendas t(x) on g∗ ⊆ g ∈ G(X). By con-
struction, any agenda-implementable fs on X can be obtained by concatenating agendas in
T1. Since fs(R) ∈ C for all R ∈ Rs (by Lemma 9 of Moulin [1986]), one can ignore agendas
T (x) where x /∈ C. Likewise, any agenda-implementable fs on g∗ ⊆ g can be obtained by
concatenating agendas in T1(g∗) = {x : x ∈ g∗}.

Define Tn= {Tn−1 + Tk : Tn−1 ∈ Tn−1 and Tk ∈ Tk for k < n} and let Cn = {fs:fs = c(Tn)
for some Tn ∈ Tn} (where c(Tn) is the Condorcet social choice function implemented by Tn).
Likewise, let Tn(g∗)= {tn−1(g∗) + tk(g∗) : tn−1(g∗) ∈ Tn−1(g∗) and tk(g∗) ∈ Tk(g∗) for k < n}
and let Cn(g∗) = {fs:fs = c(tn) for tn ∈ Tn(g∗)}.

Using strong induction, I establish: fs = c(Tn) ∈ Cn iff fs = c(tn(g∗)) ∈ Cn(g∗) for some
g∗ ⊆ g ∈ G(X). The claim is trivial for the base case n = 1. So, suppose it holds for n ≤ N .

(⇒) Now, consider any fs = c(TN+Tk) ∈ CN+1(T ). By the induction step, c(TN ) = c(tN (g∗1))
for some tN (g∗1) on g∗1 ⊆ g1 and c(Tk) = c(tk(g∗2)) for some tk(g∗2) on g∗2 ⊆ g2. There are two
cases: (i) g1 6= g2; and, (ii) g1 = g2. (i) Suppose, without loss of generality, that g1(RG)g2. Then:

fs = c(TN + Tk) = c(TN ) + c(Tk) = c(TN ) = c(tN (g∗1))

where tN (g∗1) implements fs on g∗1 ⊆ g1 ∈ G(X) (by the induction step). (ii) In this case:

fs = c(TN + Tk) = c(TN ) + c(Tk) = c(tN (g∗1)) + c(tk(g∗2)) = c(tN (g∗1) + tk(g∗2))

where tN (g∗1) + tk(g∗2) implements fs on g∗1 ∪ g∗2 ⊆ g1 ∈ G(X).
(⇐) Suppose fs = c(tN (g∗1) + tk(g∗2)) ∈ CN+1(g∗) for tN (g∗1) on g∗1 ⊆ g∗ ⊆ g and tk(g∗2) on

g∗2 ⊆ g∗ ⊆ g. By the induction step, c(tN (g∗1)) = c(TN ) and c(tk(g∗2)) = c(Tk) for c(TN ) ∈ CN
and c(Tk) ∈ Ck. Following the same reasoning as case (ii) above, fs = ... = c(TN + Tk) where
TN + Tk implements fs.

Proof of Proposition 1(II). Given Lemma 2, let Rs = {R,R′}.

4.2 Proofs of Proposition 3, Proposition 4, and the Main Result

The proofs of these results rely on algebraic methods. Some preliminary definitions are required.

4.2.1 Preliminaries

Given a pairwise-ranking R on X, let the tournament algebra X be defined by a pair (X,+)
consisting of X and a binary operation + such that x + y = x iff xRy or x = y.5 In turn,
tournament algebras can be extended to products. Given a collection {Xi}mi=1 of tournament
algebras, the product algebra Πm

i=1Xi is defined by (Πm
i=1Xi,+) where + applies the operations

+i component-wise so that x + y ≡ (xi +i yi)
m
i=1. The projection of x ≡ (xi)

m
i=1 ∈ Πm

i=1Xi

onto any collection J ⊆ {1, ...,m} of components is πJ(x) = Πi∈Jxi. A subdirect product of
(Πm

i=1Xi,+) is a sub-algebra Y ≡ (Y,+) of Πm
i=1Xi (i.e. Y ⊆ Πm

i=1Xi and Y is closed under the

5More generally, an algebra X is a set X that is algebraically closed under a collection of n-ary operations.



binary operation +) such that Yi ≡ {π{i}(y) : y ∈ Y } = Xi for any component Yi. The subdirect
product Y is weakly indecomposable if there exists no bi-partition (J,K) of the m components
such that Y = πJ(Y )× πK(Y ) (up to re-ordering of the components).

A tournament algebra (X,+) is cyclic if C(X,R) = X where R is the relation induced by the
binary operation + (so that xRy iff x+ y = x and x 6= y). A congruence β on Y ≡ (Y,+) is an
equivalence relation on Y such that (x+ y)β(x′ + y′) iff xβx′ and yβy′. The largest congruence
on Y is the complete relation 1Y = Y ×Y while the smallest is the trivial relation IdY = {(y, y) :
y ∈ Y }. Given a congruence β on Y, the quotient algebra Y/β is (Y/β,+β) where Y/β is the
partition of Y induced by β and +β is the binary operation y/β+βy

′/β ≡ {Z ∈ Y/β : y+y′ ∈ Z}.
Finally, Y is irreducible when its only congruences are 1Y and IdY .

4.2.2 Proofs

The proofs of these results rely on a theorem in universal algebra established by Maroti [2002]
(combining Lemmas 5.10 and 5.14 of his Ph.D. dissertation). To state Maroti’s theorem:

Theorem (Maroti) Let Y be a weakly indecomposable subdirect product of m cyclic tournament
algebras. Then, Y has a unique largest congruence β 6= Y × Y and Y/β is an irreducible
tournament algebra.

They also rely on the following:

Claim 1 (I) Natural numbers h and h + 1 are co-prime. (II) If a and b are co-prime, then
every pair of congruence relations of the form x = k(mod a) and x = l(mod b) has a solution.

Proof. Omitted due to lack of space.

To simplify the presentation below, consider the following definitions. Let R(X) = {Ri}i∈I
denote the collection of states on X. For parsimony, I abbreviate C(X,Ri) to Ci. If there are
n outcomes, denote the domain by Xn so that R(n) defines the collection of states on Xn. Let
RdJ(X) = {Rj}j∈J denote a collection of J ⊆ I globally distinct states in R(X) so that Rd(n)
denotes any maximal collection of globally distinct states inR(n). LetRsj(n) denote the maximal

collection (or class) of states that are globally similar to Rj ∈ Rd(n) and let K(j) ⊆ I denote
the set of indices associated with Rsj(n). Finally, let R(n) = {Rsj(n)}j∈J denote the partition
dividing R(n) into classes of globally similar states.

It is possible to identify any Condorcet social choice function c : R(X) → X with a vector
~x ≡ (xi)i∈I ∈ Πi∈IX. Using this approach, let C(n) = {~x ∈ Πi∈ICi : ~x is implementable} denote
the collection of agenda-implementable Condorcet social choice functions on Xn. Let CdJ(X) =
{πJ(~x) ∈ Πj∈JCj : ~x ∈ C(X)} denote the collection of agenda-implementable Condorcet social
choice functions on RdJ(X). And, let Csj (n) = {πK(j)(~x) ∈ Πk∈K(j)Ck : ~x ∈ C(n)} denote the
collection of agenda-implementable Condorcet social choice functions on Rsj(n) = {Rk}k∈K(j).

Proof of Proposition 3. (⇒) If fd : Rd → X is implementable, it is also pairwise imple-
mentable for every pair of states in Rd. From Proposition 1(I), fd(R) ∈ C for all R ∈ Rd.

(⇐) Let RdI = {Ri}i∈I and suppose that |Ci| > 1. To establish the result, I show CdI (X) =
ΠI
i=1Ci. The proof is by induction on the number of globally distinct states I. Proposition 1(I)

proves the base case I = 2. Assume that the result holds for |I| = n. To complete the induction,
I show the result |I| = n + 1. To simplify the notation, let X̄ ≡ Πn+1

i=1 Ci and Y ≡ Cn+1(T d) so
that X̄J = πJ(X̄) and YJ = πJ(Y ) define the projections onto the sub-collection of states in J .
To establish Y = X̄, suppose otherwise.



First, note that Y is a subdirect product of X̄. By the induction hypothesis, CdJ(n)(X) =

Πi∈J(n)Ci for any collection J(n) of n states. Accordingly, πi(CdJ(n)(X)) = Ci. Second, each
component of Y is cyclic because Yi = Ci. Finally, Y is weakly indecomposable. To see this,
suppose Y = πJ(Y )× πK(Y ). By the induction step, πJ(Y ) = Πj∈JCj and πK(Y ) = Πk∈KCk

so that Y = Πj∈JCj × Πk∈KCk = X̄. But this contradicts the assumption that Y 6= X̄ and
establishes Y is weakly indecomposable. As such, Maroti’s theorem applies. Let β define the
largest congruence of Y such that β 6= Y ×Y . There are two cases to consider: (i) |X̄j | = |X̄k| =
h+ 1 > 1 for all j, k ≤ n+ 1; and (ii) there are distinct states j and k such that |X̄j | 6= |X̄k|.

(i) Pick any two states j and k and consider any distinct a, b ∈ Y . Label the elements
of X̄j so that the sequence {xlj}

h+1
l=0 defines a complete cycle x0jRj ...Rjx

l
jRj ...Rjx

h+1
j = x0j in

X̄j . And, label the elements of X̄k so that {xmk }
h+1
m=0 defines a complete reverse cycle x0k =

xh+1
k Rk...Rkx

m
k Rk...Rkx

0
k in X̄k. By the base case, there is a x

(l,m)
−jk ∈ Πi∈I\{j,k}Xi s.t. x(l,m) ≡

(xlj × xmk × x
(l,m)
−jk ) ∈ Y . Without loss of generality, let a ≡ x(0,0). By construction, x(l,m) and

x(l+1,m+1) are unranked by ΠN+1
i=1 Ri. Since Y/β is a tournament, (x(l,m), x(l+1,m+1)) ∈ β for

l ≤ h and m ≤ h so that (a, x(l+1,m+1)) ∈ β.
By Theorem 7 of Harary and Moser [1966], there exists an h-length cycle Cj ⊆ Xj con-

taining bj . Let l∗ be the lowest index l such that xlj ∈ Cj and let x∗ = x(l
∗,l∗). So, it

is possible to label the elements of Cj so that the sequence {xlj}hl=0 defines a complete cycle

xl
∗

j = x0jRj ...Rjx
l
jRj ...Rjx

h
j = x0j in Cj . Because h and h+ 1 are co-prime, (x(l,m), x(l

′,m′)) ∈ β
for any l, l′ ≤ h and m, m′ ≤ h + 1 (by Claim 1). In particular, (x∗, b) ∈ β. Since (a, x∗) ∈ β
(by the first argument), it then follows that (a, b) ∈ β so that β = Y × Y .

(ii) Fix components j and k such that |X̄j | = h′ > h = |X̄k| and consider any distinct a,
b ∈ Y . By the same approach as in the previous case, define a complete cycle on X̄j and a
complete reverse cycle on X̄k such that a corresponds to the first element in each sequence. By
Theorem 7 of Harary and Moser [1966], there exists an (h+1)-length cycle Cj ⊆ Xj that contains
bj . Let l∗ be the lowest index l such that xlj ∈ Cj and let x∗ = x(l

∗,l∗). By the same argument
given in the previous case, (a, x∗) ∈ β and (x∗, b) ∈ β so that (a, b) ∈ β so that β = Y × Y .

In both cases, β = Y × Y follows from Y 6= X̄. But this contradicts β 6= Y × Y . Thus,
Y = X̄. Given any collection of distinct states Rd, it then follows that fd is implementable if
fd(Rj) ∈ Cj for all Rj ∈ Rd. The proof covers Rd consisting of non-trivial states such that
|Cj | > 1. This is sufficient to establish the result for any collection of distinct states Rd.

The following lemma is needed in the proof of Proposition 4:

Lemma 3 Given a complete collection of globally similar states Rs, the (partial) Condorcet
social choice function fs : Rs → X is implementable for every pair of states in Rs iff fs is
implementable for every pair of states on a subset g∗ of some g ∈ G(X).

Proof. Let PW(n) = {~x ∈ Πi∈ICi : ~x satisfies the pairwise condition on R(n)} represent the
collection of Condorcet social choice functions that are pairwise implementable on Xn. Now,
consider the similarity class Rs(n) = {Rk}k∈K with global structure G(Xn) = {gl}l∈L. Let
PWs(n) = {πK(~x) ∈ Πk∈KCk : ~x ∈ PW(n)} represent the choice functions that are pairwise
implementable on Rs(n). First note that:

PWs(n) =
⋃
l∈L

PWs
l (n)

where PWs
l (n) = {πK(~x) ∈ Πk∈KCk : ~x ∈ PWs(n) ∩ Πk∈Kgl} is the sub-collection of PWs(n)

selecting from gl ∈ G(Xn). To see this, fix adjacent states R and R′ in Rs(n) such that



fs(R) = x ∈ gl and fs(R′) = x′. By assumption, fs is pairwise implementable for R and R′.
From Proposition 1(II), x ∈ gl implies x′ ∈ gl. By the same argument, fs(R′′) ∈ gl for all
R′′ ∈ Rs(n).

Let PWs
l (n)|g∗ define the sub-collection of PWs

l (n) that is pairwise implementable on g∗ ⊆
gl. And, let PWs

l (n)[g∗] define the sub-collection of PWs
l (n) with range g∗ ⊆ gl (so that

∪k∈K{fs(Rk)} = g∗ for any fs ∈ PWs
l (n)[g∗]). By construction, PWs

l (n) =
⋃
g∗⊆gl PW

s
l (n)[g∗].

To establish the desired result, it suffices to prove PWs
l (n)|g∗ = PWs

l (n)[g∗] for any g∗ ⊆ gl.
Using this identity, it follows that

PWs(n) =
⋃
l∈L

⋃
g∗⊆gl

PWs
l (n)|g∗

as required. To show PWs
l (n)|g∗ = PWs

l (n)[g∗] for any g∗ ⊆ gl, first consider the following:

Claim A If fs ∈ PWs
l (n), {R,R′} ⊆ Rs(n), and C(gl, R) = {fs(R′)}, then fs(R) = fs(R′).

Proof. Omitted due to lack of space. �

The result follows by establishing that PWs
l (n)[g∗] ⊆ PWs

l (n)|g∗ . The inverse inclusion
PWs

l (n)|g∗ ⊆ PWs
l (n)[g∗] follows from the fact that fs(R) = x for any R ∈ Rs(n) such that

xRx′ for all x′ ∈ g∗\{x} (by Lemma 9 of Moulin [1986]). To establish PWs
l (n)[g∗] ⊆ PWs

l (n)|g∗ ,
there are two cases to consider: (i) g∗ = gl; and, (ii) g∗ ( gl.

(i) For globally distinct states such that G(gl, R) 6= G(gl, R
′), it is sufficient to show that

fs(R) ∈ C(gl, R) for all R ∈ Rs(n). To see this, consider fs ∈ PWs
l (n)[gl] and fix some state R

such that |C(gl, R)| > 1 and any x′ ∈ C(gl, R). (The fact that fs(R) ∈ C(gl, R) for any R such
that |C(gl, R)| = 1 follows from Claim A and the assumption that fs ∈ PWs

l (n)[gl].) Consider
the state R′ such that R′|X\gl = R|X\gl , R′|gl\{x′} = R|gl\{x′}, and x′R′x for any x ∈ gl\{x′}.
Since fs ∈ PWs

l (n)[gl], x
′ is chosen for some state R′′ ∈ Rs(n). By Claim A, it follows that

fs(R′) = x′. By construction, {x′} ⊆ PS⊆ C(gl, R) for any non-trivial prime set PS on R
and R′. By Theorem 1 of Srivastava and Trick, it then follows that fs(R) ∈ C(gl, R). This
establishes fs(R) ∈ C(gl, R) for all R ∈ Rs(n).

Next, consider globally similar states such that G(gl, R) = G(gl, R
′) = {gil}i∈I . Without loss

of generality, suppose fs(R) ∈ gil . It is sufficient to show that fs(R) and fs(R′) are pairwise
implementable for some g ⊆ gil . From Theorem 1 of Srivastava and Trick, fs(R) and fs(R′) are
pairwise implementable for some prime set PS such that fs(R) ∈ PS. By definition, it must be
that PS ⊆ gil for any prime set such that fs(R) ∈ PS. This establishes the desired result.

(ii) Pick fs ∈ PWs
l (n)[g∗] for some g∗ ( gl. Fix a state R and consider the state R↓g

∗
defined

by R↓g
∗ |X\g∗ = R|X\g∗ , R↓g

∗ |g∗ = R|g∗ , and x′R↓g
∗
x for any x′ ∈ X\g∗ and any x ∈ g∗. By

construction, any non-trivial prime set PS on R and R↓g
∗

must contain some x′ ∈ X\g∗. Since
fs(R) and fs(R↓g

∗
) are pairwise implementable, fs(R) = fs(R↓g

∗
). Otherwise, C(PS,R↓g

∗
) ⊆

X\g∗ so that fs(R↓g
∗
) ∈ X\g∗ which contradicts the assumption that fs ∈ PWs

l (n)[g∗]. This
establishes that fs(R) = fs(R′) for any states R and R′ in Rs(n) such that R|g∗ = R′|g∗ .

To see that fs(R) ∈ C(g∗, R|g∗) for any R ∈ Rsj(n), fix a state R̄ such that xR̄x′ for any x ∈ g∗
and x′ ∈ gl\g∗. By the same reasoning as in (i) above, fs(R̄) ∈ C(g∗, R̄). Since fs(R) = fs(R̄)
for any R and R̄ in Rs(n) such that R|g∗ = R̄|g∗ , then fs(R) ∈ C(g∗, R) for all R ∈ Rs(n).

To complete the proof, fix any state R and consider the state R↑g
∗

defined by R↑g
∗ |X\g∗ =

R|X\g∗ , R↑g
∗ |g∗ = R|g∗ , and xR↑g

∗
x′ for any x ∈ g∗ and x′ ∈ X\g∗. Now consider any R′

globally similar to R on g∗. By construction, R↑g
∗ |g∗ = R|g∗ and R′↑g

∗ |g∗ = R′|g∗ so that
fs(R) = fs(R↑g

∗
) and fs(R′) = fs(R′↑g

∗
). Moreover, R↑g

∗
and R′↑g

∗
are globally similar on

g∗. Without loss of generality, suppose that G(g∗, R) = G(g∗, R′) = {g∗i }i∈I and fs(R) ∈ g∗i .



Following the same reasoning as in (i) above, fs(R↑g
∗
) and fs(R′↑g

∗
) are pairwise implementable

for some prime set PS ⊆ g∗i , which establishes the desired result.

Proof of Proposition 4 and Main Result. (⇒) If f : R → X (respectively fs : Rs → X)
is implementable, it is implementable for every pair of states in R (respectively Rs).

(⇐) As in Lemma 3, let PW(n) represent the choice functions that satisfy the pairwise
condition on R(n) and let PWs

j(n) represent the choice functions that satisfy the pairwise con-
dition on the similarity class Rsj(n) = {Rk}k∈K(j). Finally, let J(n) = |R(n)| represent the
number of similarity classes in R(n). For Proposition 4, I show (I) Csj (n) = PWs

j(n) for any
j ∈ J(n). For the main result, I show (II) C(n) = Πj∈JCsj (n) for any n. Results (I) and (II)
establish C(n) = Πj∈JPWs

j(n). Since PW(n) = Πj∈JPWs
j(n) by Proposition 1, it follows that

C(n) = PW(n). The proof is by strong induction on the size of the domain n and the number
of similarity classes J(n).

For n ∈ {1, 2, 3}, it is easy to see that (I) and (II) hold. (For n = 2, there are 2 globally
distinct states each consisting of a linear order. For n = 3, there are 8 states and 5 similarity
classes (3 classes that consist of two linear orders each and 2 classes consisting of one cycle).

For all m < n, assume C(m) = Πj∈J(m)Csj (m) and Csj (m) = PWs
j(m) for all j ∈ J(m). In

order to complete the induction, it is enough to show that (I) and (II) hold for n.
(I) Consider any non-trivial class similarity Rsj(n) ∈ R(n) (so that |Rsj(n)| > 1 or, equiva-

lently, |Gj(Xn)| > 1). Wlog, suppose Gj(X) = {gjl }l∈L(j) so that |gjl | < n. By Lemma 2:

Csj (n) =
⋃

l∈L(j)

⋃
g∗⊆gjl

Csjl(n)|g∗

where Csjl(n)|g∗ is the collection of Condorcet social choice functions that are implementable on

g∗ ⊆ gjl . Lemma 3 above establishes that:

PWs
j(n) =

⋃
l∈L(j)

⋃
g∗⊆gjl

PWs
jl(n)|g∗

By induction assumptions (I) and (II), Csjl(n)|g∗ = PWs
jl(n)|g∗ for any g∗ ⊆ gjl . Consequently,

Csj (n) = PWs
j(n) which establishes the desired result.

(II) First, let J∗(n) = {j ∈ J(n) : |Cj | > 1}. Given Csj (n) = PWs
j(n) for every j ∈ J∗(n),

the result follows by induction on J . For ease of notation, let πJ(C(n)) = πJ . To establish the
base case J = {1, 2}, suppose π{1,2} 6= π1×π2. Note that π{1,2} is a subdirect product of π1×π2.
For any state Rj ∈ Rsj(n), there exists an agenda T (x) that implements every outcome in x ∈ Cj .
(The construction is similar to that given in Lemma 2.) This observation also establishes that
the sub-algebra on each state is cyclic. Finally, the assumption that π{1,2} 6= π1 × π2 implies
that π{1,2} is weakly indecomposable. To see this, suppose that there are two disjoint collections
RU = {Ru : u ∈ U} and RV = {Rv : v ∈ V } such that RU ∪ RV = Rs1(n) ∪ Rs2(n) and
π{1,2} = πU (C(n)) × πV (C(n)). Now, consider any R1, R

′
1 ∈ Rs1(n) and suppose that R1 ∈ RU

and R′1 ∈ RV . It follows that it is possible to pairwise implement x ∈ g and x′ ∈ g′ for g 6= g′.
This contradicts Proposition 1 and establishes Rs1(n) ⊆ RU or Rs1(n) ⊆ RV . A similar argument
shows Rs2(n) ⊆ RU or Rs2(n) ⊆ RV . Since the collections RU and RV are non-trivial, then
Rs1(n) = RU and Rs1(n) = RV without loss of generality. But, this contradicts the assumption
that π{1,2} 6= π1 × π2 and establishes that π{1,2} is weakly indecomposable.

Accordingly, the theorem of Maroti applies. Let β define the largest congruence of Y such
that β 6= π{1,2} × π{1,2}. By Proposition 1, it is possible to pairwise implement (x1, x2) and
(x′1, x

′
2) on R1 ∈ Rs1(n) and R2 ∈ Rs2(n) so that x1R1x

′
1 and x′2R2x2. Using the same approach



as in Proposition 3, it follows that β = π{1,2}×π{1,2}. But, this contradicts the assumption that
β 6= π{1,2} × π{1,2} and establishes that π{1,2} = π1 × π2 in the base case J = {1, 2}.

Now, assume that the result holds for |J | = j. In order to complete the induction, it suffices
to show that the result holds for |J | = j + 1. Following the same line of argument as in the
base case (and Proposition 3), the result πJ = Πj∈Jπj can be established by contradiction. This
proves πJ∗(n)(C(n)) = Πj∈J∗(n)Csj (n). It then follows that C(n) = Πj∈J(n)Csj (n).
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