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Abstract

Distance rationalizability is a framework for classifying voting rules by interpreting
them in terms of distances and consensus classes. It also allows to design new voting
rules with desired properties. A particularly natural and versatile class of distances that
can be used for this purpose is that of votewise distances [12], which “lift” distances over
individual votes to distances over entire elections using a suitable norm. In this paper,
we continue the investigation of the properties of votewise distance-rationalizable rules
initiated in [12]. We describe a number of general conditions on distances and consensus
classes that ensure that the resulting voting rule is homogeneous or monotone. This
complements the results of [12], where the authors focus on anonymity, neutrality and
consistency. We also introduce a new class of voting rules, that can be viewed as
“majority variants” of classic scoring rules, and have a natural interpretation in the
context of distance rationalizability.

1 Introduction

In collaborative environments, agents often need to make joint decisions based on their
preferences over possible outcomes. Thus, social choice theory emerges as an important
tool in the design and analysis of multiagent systems [13]. However, voting procedures that
have been developed for human societies are not necessarily optimal for artificial agents
and vice versa. For instance, there are voting rules that allow for polynomial-time winner
determination (and thus are suitable for autonomous agents), yet have been deemed too
complicated to be comprehended by an average voter in many countries; an example is
provided by Single Transferable Vote. Further, unlike an electoral committee in a human
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society, the designer of a multi-agent voting system is usually unencumbered by legacy
issues or the need to appeal to the general public, and can choose a voting rule that is
most suitable for the application at hand, or, indeed, design a brand-new voting rule that
satisfies the axioms that he deems important.

A recently proposed distance rationalizability framework [17, 10, 12, 11] is ideally suited
for such settings. Under this framework, one can define a voting rule by a class of consensus
elections and a distance over elections; the winners of an election are defined as the winners
in the nearest consensus. In other words, for any election this rule seeks the most similar
election with an obvious winner (where the similarity is measured by the given distance),
and outputs its winner. Examples of natural consensus classes include strong unanimity
consensus, where all voters agree on the ranking of all candidates, and Condorcet consensus,
where there is a candidate that is preferred by a majority of voters to every other candidate.
Combined with the swap distance (defined as the number of swaps of adjacent candidates
that transforms one election into the other), these consensus classes produce, respectively,
the Kemeny rule and the Dodgson rule.

The examples above illustrate that the distance rationalizability framework can be used
to interpret (rationalize) existing voting rules in terms of a search for consensus (see [17]
for a comprehensive list of results in this vein). It can also be applied to design new voting
rules: for instance, in [10] the authors investigate the rule obtained by combining the Con-
dorcet consensus with the Hamming distance. Further, by decomposing a voting rule into a
consensus class and a distance we can hope to gain further insights into the structure of the
rule. This decomposition is especially useful when the distance reflects changes in voters’
opinions in a simple and transparent way like the so-called votewise distances introduced
in [12]. These are distances over elections that are obtained by aggregating distances be-
tween individual votes using a suitable norm, such as `1 or `∞. Indeed, paper [12] shows that
one can derive conclusions about anonymity, neutrality and consistency of votewise rules
(i.e., rules rationalized via votewise distances) from the basic properties of the underlying
distances on votes, norms, and consensus classes.

In this paper we pick up this thread of research and study two important properties
of voting rules not considered in [12], namely, monotonicity and homogeneity. Briefly put,
monotonicity ensures that providing more support to a winning candidate cannot turn him
into a loser, and homogeneity ensures that the result of an election depends on the propor-
tions of particular votes and not on their absolute counts. Both properties are considered
highly desirable for reasonable voting rules. (although, for example, single transferable vote
and plurality run-off used in political elections in, respectively, Australia and France, are
known not to be monotone). We focus on the four standard consensus classes considered
in the previous work (strong unanimity S, unanimity U , majority M and Condorcet C)
and `1- and `∞-norms, Our aim is to identify distances on votes that, combined with these
norms and consensus classes, produce homogeneous and/or monotone rules.

Of the four consensus classes considered in this paper, the majority consensus M re-
ceived relatively little attention in the existing literature. Thus, in order to study the
homogeneity and monotonicity of the rules that are distance-rationalizable with respect to
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M, we need to develop a better understanding of such rules. Our main result here is a
characterization of all voting rules that are rationalizable with respect to M via a neutral
distance on votes and the `1-norm. It turns out that such rules have a very natural interpre-
tation: they are “majority variants” of classic scoring rules. This characterization enables
us to analyze the homogeneity of the rules in this class, leading to a dichotomy result.

As argued above, a votewise distance-rationalizable rule can be characterized by three
parameters: a distance on votes, a norm, and a consensus class. From this perspective,
it is interesting to ask how much the voting rule changes if we vary one or two of these
parameters. We provide two results that contribute to this agenda. First, we show that
essentially any rule that is votewise-rationalizable with respect toM can also be rationalized
with respect to U , by modifying the norm accordingly. This enables us to answer a question
left open in [11]. Second, we show that, for any consensus class and any distance on votes,
replacing the `1-norm with the `∞-norm produces a voting rule that is an n-approximation of
the original rule, where n is the number of voters. For the Dodgson rule, this transformation
produces a rule that is polynomial-time computable and homogeneous. This line of work
also emphasizes the constructive aspect of the distance rationalizability framework: we are
able to derive new voting rules with attractive properties by combining a known consensus
class with a known distance measure in a novel way.

Related work. The formal theory of distance rationalizability was initiated by Meskanen
and Nurmi [17], though the idea, in one shape or another, appeared in earlier papers as
well (see, e.g., [18, 2, 16, 15]). The goal of Meskanen and Nurmi was to seek best possible
distance-rationalizations of classical voting rules. This research program was advanced
by Elkind, Faliszewski, and Slinko [10, 12, 11], who, in addition to further classification
work, also suggested studying general properties of distance-rationalizable voting rules. In
particular, in [11] they identified an interesting and versatile class of distances—which they
called votewise distances—that lead to rules whose properties can be meaningfully studied.

The study of distance rationalizability is naturally related to the study of another—
much older—framework, which is based on interpreting voting rules as maximum likelihood
estimators (the MLE framework). This framework, which could be dated back to Condorcet
and has been pursued by Young [21], and, more recently, in [8], [7], and—in the context
of combinatorial domains—in [19]. To date, most of the research on the MLE framework
was concerned with determining which of the existing voting rules can be interpreted as
maximum likelihood estimators; however, paper [19] also shows that the MLE approach can
be used to deduce new useful voting rules.

This paper is loosely related to the work of Caragiannis et al. [6], where the authors
give a monotone, homogeneous voting rule that calculates scores which approximate can-
didates’ Dodgson scores up to an O(m logm) multiplicative factor, where m is the number
of candidates. The relation to our work is twofold. First, we also focus on monotonicity
and homogeneity, although our goal is to come up with a general method of constructing
monotone and homogeneous rules and not to approximate particular rules. Second, in the
course of our study we discover a homogeneous and polynomial-time computable voting
rule that approximates the scores of candidates in Dodgson elections up to a multiplicative
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factor of n, where n is the number of voters. While the number of voters is usually much
bigger than the number of candidates, and thus our algorithm is usually inferior to that
of [6], it illustrates the power of the distance rationalizability framework.

Organization of the paper. The paper is organized as follows. Section 2 contains
preliminary definitions regarding voting rules in general and the distance-rationalizability
framework specifically. In Section 3 we provide a detailed study of rules that are vote-
wise rationalizable with respect to the majority consensus. Section 4 presents our results
on homogeneity of votewise rules, showing that very often votewise rules indeed satisfy
homogeneity, but that their subclasses (in particular, those rationalized via the majority
consensus and the Condorcet consensus) may also fail it under certain conditions. In Sec-
tion 4.1 we briefly depart from our path of studying homogeneity and monotonicity and
show that `∞-votewise rules form weak approximations of `1-votewise rules. Finally, in Sec-
tion 5 we present our results on monotonicity of votewise rules. We conclude in Section 6,
giving a broader view of our results and mentioning several open problems.

2 Preliminaries

Basic notation. An election is a pair E = (C, V ), where C = {c1, . . . , cm} is the set
of candidates and V = (v1, . . . , vn) is the set of voters. The size of an election is the
number of voters in it, i.e., we write |E| = |V |. Voter vi is identified with a total order �i
over C, which we will refer to as vi’s preference order, or ranking. We write cj �i c` to
denote that voter vi prefers cj to c`. We denote by P(C) the set of all preference orders
over C. For a voter v, we denote by top(v) the candidate ranked first by v. , and set
P(C, c) = {v ∈ P(C) | top(v) = c}. For any voter vi ∈ V and a candidate c ∈ C, we
denote by rank(vi, c) the position of c in vi’s ranking. For example, if top(vi) = c then
rank(vi, c) = 1. A voting rule is a mapping R that for any election (C, V ) outputs a
non-empty subset of candidates W ⊆ C called the election winners. Given an election
E = (C, V ) and s ∈ N, we denote by sE the election (C, sV ), where sV is obtained by
concatenating s copies of V .

Two important properties of voting rules that will be studied in this paper are homo-
geneity and monotonicity.

Homogeneity. A voting rule R is homogeneous if for each election E = (C, V ) and each
positive s ∈ N we have R(E) = R(sE).

Monotonicity. A voting rule R is monotone if for every election E = (C, V ), every c ∈
R(E) and every E′ = (C, V ′) obtained from E by moving c up in some voters’ rankings
(but not changing their rankings in any other way) we have c ∈ R(E′).

Voting rules. We will now define the classic voting rules discussed in this paper, namely,
scoring rules, (Simplified) Bucklin, and Dodgson.

4



Scoring rules In this paper, we will use a somewhat nonstandard definition of a scoring
rule. Any vector α = (α1, . . . , αm) ∈ (R+ ∪ {0})m defines a partial voting rule Rα for
elections with a fixed number m of candidates. Under this rule, for each preference
order u ∈ P(C), |C| = m, a candidate c ∈ C gets αrank(u,c) points (as is standard)
and these values are summed up together to obtain the score of c. However, we define
the winners to be the candidates with the lowest score (rather than with the highest;
as is typical when discussing scoring rules). A sequence of scoring vectors (α(m))m∈N,
where α(m) ∈ (R+ ∪ {0})m, defines a voting rule R(α(m)) which is applicable for any
number of alternatives.

For example, in this notation the Borda rule is defined by a family of scoring vectors
α(m) = (0, 1, . . . ,m − 1) and the k-approval is the family of scoring vectors given by
α

(m)
i = 0 for i ≤ k, α(m)

i = 1 for i > k. The 1-approval rule is also known as Plurality.
The traditional model, where the winners are the candidates with the highest score,
can be converted to our notation by setting α′i = αmax−αi, where αmax = maxmi=1 αi.
The reason for this deviation is that in the context of this paper it will be much more
convenient to speak of minimizing one’s score. Note that, in general, we do not require
α1 ≤ · · · ≤ αm, although this assumption is obviously required for monotonicity.

Note that vectors (α1, . . . , αm) and (βα1, . . . , βαm) define the same voting rule for
any β > 0; the same is true for (α1, . . . , αm) and (α1 + γ, . . . , αm + γ) for any γ ≥ 0.
Thus, in what follows, we normalize the scoring vectors by requiring their smallest
coordinate to be 0, and the smallest non-zero coordinate to be 1.

Bucklin The Bucklin rule1 RB can be thought of as an adaptive version of k-approval.
Under the Bucklin rule, we first determine the smallest value of k such that some
candidate is ranked in top k positions by more than half of the voters. The winner(s)
are the candidates that are ranked in the top k positions the maximum number of
times. Under the Simplified Bucklin rule RsB , the winners are all candidates ranked in
top k positions by a majority of voters. For any election E we have RB(E) ⊆ RsB (E).

Dodgson To define the Dodgson rule, we need to introduce the concept of a Condorcet
winner. A Condorcet winner is a candidate that is preferred to any other candidate
by a majority of voters. The Dodgson score of a candidate c is the smallest number
of swaps of adjacent candidates that have to be performed on the votes to make c the
Condorcet winner. The winner(s) under the Dodgson rule are the candidates with the
lowest Dodgson score.

Norms and Metrics. A norm on Rn is a mapping N : Rn → R that has the following
properties for all x, y ∈ Rn:

(1) N(αx) = |α|N(x) for all α ∈ R;

(2) N(x) ≥ 0 and N(x) = 0 if and only if x = (0, . . . , 0);
1Also known as the majoritarian compromise.
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(3) N(x+ y) ≤ N(x) +N(y).

Two important properties of norms that will be of interest to us are symmetry and
monotonicity. We say that a norm N is symmetric if for each permutation σ : [1, n]→ [1, n]
it holds that N(x1, . . . , xn) = N(xσ(1), . . . , xσ(n)). For monotonicity, we make use of the
definition proposed in [3]. Specifically, we say that a norm N is monotone in the positive
orthant, or Rn

+-monotone, if for any two vectors (x1, . . . , xn), (y1, . . . , yn) ∈ Rn
+ such that

xi ≤ yi for all i ≤ n we have N(x1, . . . , xn) ≤ N(y1, . . . , yn).
A well-studied class of norms are the `p-norms given by

`p(x1, . . . , xn) = (|x1|p + · · ·+ |xn|p)
1
p

for p ∈ N. This definition can be extended to p = +∞ by setting `∞(x1, . . . , xn) =
max{x1, . . . , xn}. Observe that for any p ∈ N ∪ {+∞} the `p norm is, in fact, a family of
norms, i.e., it is well-defined on Ri for any i ∈ N. Also, any such norm is clearly symmetric
and monotone in the positive orthant.

A metric, or distance, on a set X is a mapping d : X2 → R that satisfies the following
conditions for all x, y, z ∈ X:

(1) d(x, y) ≥ 0;

(2) d(x, y) = 0 if and only if x = y;

(3) d(x, y) = d(y, x);

(4) d(x, z) ≤ d(x, y) + d(y, z).

A function that satisfies conditions (1), (3) and (4), but not (2), is called a pseudodistance.
Given a distance d on X and a norm N on Rn, we can define a distance N ◦ d on Xn

by setting
(N ◦ d)(x,y) = N(d(x1, y1), . . . , d(xn, yn))

for all vectors x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ Xn. A distance defined in this manner
is called a product metric.

In this paper, we will study distances over votes and their extensions to distances over
elections via product metrics. Some examples of distances over votes are given by the
discrete distance ddiscr, the swap distance dswap, and the Sertel distance dser, defined as
follows. For any set of candidates C and any u, v ∈ P(C), we set ddiscr(u, v) = 0 if u = v
and ddiscr(u, v) = 1 otherwise. The swap distance dswap is given by dswap(u, v) = 1

2 |{(c, c
′) ∈

C2 | c �u c′, c′ �v c}|, where �u and �v are the preference orders associated with u and v,
respectively. The Sertel distance between u and v is defined as the smallest value of i such
that for all j > i voters u and v rank the same candidate in position j.

A distance d on P(C) is called neutral if for any u, v ∈ P(C) and any permutation
π : C → C we have d(u, v) = d(π(u), π(v)), where π(x) denotes the vote obtained from x
by moving candidate ci into position rank(x, π(ci)), for i = 1, . . . , |C|. Clearly, all distances
listed above are neutral.
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Distance Rationalizability. Intuitively, a consensus class is a collection of elections
with an obvious winner. Formally, a consensus class is a pair (E ,W) where E is a set of
elections and W : E → C is a function that for each election E ∈ E outputs the alternative
called the consensus winner. The following four consensus classes have been considered in
the previous work on distance rationalizability:

Strong unanimity. Denoted S, contains elections E = (C, V ) where all voters report the
same preference order. The consensus winner is the candidate ranked first by all
voters.

Unanimity. Denoted U , contains all elections E = (C, V ) where all voters rank the same
candidate first. The consensus winner is the candidate ranked first by all voters.

Majority. Denoted M, contains all elections E = (C, V ) where more than half of the
voters rank the same candidate first. The consensus winner is the candidate ranked
first by the majority of voters.

Condorcet. Denoted C, contains all elections E = (C, V ) with a Condorcet winner. The
consensus winner is the Condorcet winner.

We say that a voting rule R is compatible with a consensus class K if for any consensus
election E ∈ K it holds that W(E) = R(E). Similarly, R is said to be weakly compatible
with K if for any E ∈ K we have W(E) ∈ R(E). Essentially all well-known voting rules are
weakly compatible with S, U andM, but there are rules that are not compatible with any
of these consensus classes (e.g., k-approval for k > 1). The rules that are compatible with C
are also known as Condorcet-consistent rules; we use the term “compatibility” rather than
“consistency” to avoid confusion with the consistency property of voting rules.

We are now ready to define the concept of distance rationalizability. Our definition
below is taken from [12], which itself was inspired by [17, 10].

Definition 2.1. Let d be a distance over elections and let K = (E ,W) be a consensus class.
The (K, d)-score of a candidate c in an election E is the distance (according to d) between E
and a closest election E′ ∈ E such that c ∈ W(E′). A voting rule R is distance-rationalizable
via a consensus class K and a distance d over elections (is (K, d)-rationalizable) if for each
election E the set R(E) consists of all candidates with the smallest (K, d)-score.

A particularly useful class of distances to be used in distance rationalizability construc-
tions is that of votewise distances, which are obtained by combining a distance over votes
with a suitable norm. Formally, given a set of candidates C, consider a distance d over
P(C) and a family of norms N = (Ni)∞i=1, where Ni is a norm over Ri. We define a distance
d̂N over elections with the set of candidates C as follows: for any E = (C, V ), E′ = (C, V ′),
we set d̂N (E,E′) = (Ni ◦ d)(V, V ′) if |V | = |V ′| = i, and d̂N (E,E′) = +∞ if |V | 6= |V ′|.
A voting rule R is said to be N -votewise distance-rationalizable (or simply N -votewise)
with respect to a consensus class K if there exists a distance d over votes such that R is
(K, d̂N )-rationalizable. When N is the `p-norm for some p ∈ N∪{+∞}, we write d̂p instead
of d̂`p , and when N = `1, we omit the index altogether and write d̂. It is known that any
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voting rule is distance-rationalizable with respect to any consensus class that it is compat-
ible with [12]. However, some voting rules are not N -votewise distance-rationalizable with
respect to standard consensus classes for any reasonable norm N [11].

Let us now consider some examples of distance-rationalizations of voting rules. Nitzan
[18] was the first to show that Plurality is (U , d̂discr)-rationalizable and Borda is (U , d̂swap)-
rationalizable. It is easy to see that Dodgson is (C, d̂swap)-rationalizable and Kemeny is
(S, d̂swap)-rationalizable. The distance d̂∞ser, combined with the majority consensus, yields
the Simplified Bucklin rule [12].

For any set of candidates C with |C| = m and a scoring vector α = (α1, . . . , αm),
paper [12] defines a (pseudo)distance dα(u, v) on P(C) as as dα(u, v) =

∑m
j=1 |αrank(u,cj) −

αrank(v,cj)|, and shows that if α1 = 0 then Rα is (U , d̂α)-(pseudo)distance-rationalizable.
The following lemma, proved as part of Theorem 3 of [10],2 will be useful for us later on.

Lemma 2.2 ([10]). Let C = {c1, . . . , cm} be a set of candidates, α = (α1, . . . , αm) be
a normalized scoring vector, and c be a candidate. For each vote v over C it holds that
min{dα(v, u) | u ∈ P(C, c)} = 2|αrank(v,c) − α1|.

3 M-Scoring Rules

The majority consensus is a very natural notion of agreement in the society. However, it
has received little attention in the literature so far. Here we will show that it leads to a
series of interesting rules with nice properties.

Definition 3.1. For any scoring vector α = (α1, . . . , αm), let M-Rα be a partial voting
rule defined on the profiles with m alternatives as follows. Given an election E = (C, V )
with |C| = m and V = (v1, . . . , vn), for each candidate c ∈ C, we define the M-score of c
as the sum of

⌊
n
2

⌋
+ 1 lowest values among αrank(v1,c), . . . , αrank(vn,c). The winners are the

candidates with the lowest M-Rα scores. As in the classic case, a family of scoring vectors
(α(i))i∈N defines an M-scoring rule M-R(α(i)).

We will refer to voting rules from Definition 3.1 asM-scoring rules. Such rules (or their
slight modifications) are often used for score aggregation in real-life settings; for example, it
is not unusual for a professor to grade the students on the basis of their five best assignments
out of six or in some sport competitions to award winners on the basis of their several best
attempts.

It is not hard to see that M-Plurality is equivalent to Plurality: under both rules,
the winners are the candidates with the maximum number of first-place votes. However,
essentially all other scoring rules differ from their M-counterparts.

Proposition 3.2. Consider a normalized scoring vector α = (α1, . . . , αm). The ruleM-Rα
coincides with Rα if and only if (i) α1 = . . . = αm or (ii) αi = 0 for some i ∈ {1, . . . ,m}
and αj = 1 for all j 6= i.

2The proof in [10] assumes that—in our notation—α1 ≤ · · · ≤ αm, but it is not hard to see that it goes
through as long as we require α1 = 0 ≤ αk for all k > 1.
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Proof. Clearly, if all coordinates of the scoring vector are equal, bothM-Rα and Rα output
the set of all candidates on any preference profile. Further, we have already argued that if
α1 = 0, αj = 1 for each j > 1, thenM-Rα is the Plurality rule. Clearly, this argument also
applies if the only 0 appears in a different position of the scoring vector.

We will now show that the converse direction is also true. Note that we can assume
without loss of generality that α1 ≤ · · · ≤ αm: it is not hard to see that for any permutation
σ : [1,m] → [1,m] it holds that M-Rα is equivalent to Rα if and only if M-Rσ(α) is
equivalent to Rσ(α), where σ(α) is the scoring vector given by (ασ(1), . . . , ασ(m)). Thus for
any scoring rule that satisfies neither (i) nor (ii) we can assume that either (a) α1 = α2 = 0,
αm > 0 or (b) α1 = 0, α2 = 1, and αm > 1. We will argue that in both of these cases
M-Rα is not equivalent to Rα.

Indeed, consider two candidates c and w and an election E with n voters where bn2 c+ 1
voters rank c first and w second, and the remaining voters rank w first and c last.

In case (a), theM-Rα-score of both c and w is 0, so both of them are among the winners
under M-Rα. On the other hand, c’s Rα-score is at least dn2 e − 1, while w’s Rα-score is
zero, so w is among the winners under Rα and c is not. Thus, we haveM-Rα(E) 6= Rα(E).

In case (b), c is the unique winner underM-Rα. On the other hand, underRα candidate
c gets αm(dn2 e − 1) points, and candidate w gets bn2 c + 1 points. Since αm > 1, for large
enough values of n (it suffices to pick n > αm+1

αm−1) candidate w has a lower score under Rα,
i.e., c cannot be the winner of E.

TheM-scoring rules tend to ignore extremely negative opinions. Therefore, intuitively,
they are less susceptible to manipulation: if a voter v ranks a candidate c lower that the
majority of other voters, v cannot manipulate against c by moving her to the bottom of
their ranking. In this section we will show that these rules are also very interesting from
the distance rationalizability point of view: it turns out that they essentially coincide with
the class of rules that are `1-votewise rationalizable with respect to M.

We will first need to generalize a result from [12]. to pseudodistances and weak com-
patibility.

Proposition 3.3. Any voting rule that is pseudodistance-rationalizable with respect to a
consensus class K is weakly compatible with K.

Proof. Consider a K-consensus E = (C, V ) with winner c and a (K, d)-rationalizable voting
rule R, where d is a pseudodistance. We have d(E,E) = 0, so d(E,E) ≤ d(E,E′) for any
election E′. Therefore, c ∈ R(E).

Now, we can characterizeM-scoring rules that are (pseudo)distance-rationalizable with
respect to M.

Proposition 3.4. Let α = (α1, . . . , αm) be a normalized scoring vector. The rule M-Rα
is `1-votewise distance-rationalizable with respect to M if and only if α1 = 0, αj > 0 for
all j 6= 1. Further, M-Rα is `1-votewise pseudodistance-rationalizable with respect to M if
and only if α1 = 0.
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Proof. Suppose first that α1 6= 0. Since α is normalized, there exists a j 6= 1 such that
αj = 0. Consider a preference profile in which some candidate c is ranked first by everyone,
and some other candidate w is ranked in the j-th position by everyone. Clearly, c is the
majority winner, but under M-Rα w is a winner, and c is not. Thus, by Proposition 3.3
no such rule can be pseudodistance-rationalizable with respect to M.

Now, suppose that α1 = 0. Consider the pseudodistance dα, an election E = (C, V ),
a candidate c ∈ C, and a voter v ∈ V that ranks c in the j-th position. By Lemma 2.2,
min{dα(v, u) | u ∈ P(C, c)} = 2αj This implies that in E for any candidate c ∈ C his
M-Rα-score is twice the distance to the nearest M-consensus with winner c. Hence, the
rule M-Rα is (M, d̂α)-rationalizable.

Clearly, dα is not necessarily a distance. Indeed, if we have αj = 0 = α1 for some j 6= 1,
the distance between a vote v and the vote obtained from v by swapping the candidates
in the first and the j-th position is 0. This argument also shows that in this case M-Rα
is not distance-rationalizable. Indeed, if all voters rank c first and rank w in the j-th
position, then both c and w are winners underM-Rα, even though c is the unique majority
winner. Now, suppose that αj 6= 0 for all j 6= 1. It may still happen that αj = αk for some
j, k ∈ {2, . . . ,m}, in which case dα is still a pseudodistance. However, in this case we can set
ε = min{|αj − αk| | αj 6= αk} and let d′α(u, v) = 0 if u = v and d′α(u, v) = min{dα(u, v), ε}
otherwise. It is not hard to see that d′α is a distance; in particular, we have d′α(u, v) 6= 0 for
u 6= v by construction, and the triangle inequality is satisfied by our choice of ε. Further,
consider a vote v that ranks c in the j-th position, j > 1, and the nearest (with respect to
dα) vote u that ranks c first. We have dα(v, u) = 2αj > 0, so d′α(u, v) = dα(u, v). Therefore,
the argument showing thatM-Rα is (M, d̂α)-rationalizable applies to d̂′α as well, and hence
M-Rα is `1-votewise distance-rationalizable.

We remark that our proof generalizes to scoring rules and U , thus answering a question
left open in [10], where the authors ask whether scoring rules with αi = αj for i, j > 1
can be distance-rationalized (rather than pseudodistance-rationalized). Further, in [10] the
authors consider only monotone scoring rules, i.e., rules that satisfy—in our notation—
α1 ≤ · · · ≤ αm, while our result holds for all scoring vectors.

The following lemma explains how to find an M-consensus that is nearest to a given
election with respect to a given `1-votewise distance.

Lemma 3.5. Let R be a voting rule that is (M, d̂)-rationalized. Let E = (C, V ) be an
arbitrary election where V = (v1, . . . , vn) and let E′ = (C,U) be an M-consensus such that
d̂(E,E′) is minimal among all n-voter M-consensuses over C. Let c ∈ C be the consensus
winner of (C,U). Then, for each i = 1, . . . , n, either ui ∈ arg minx∈P(C,c) d(x, vi) or ui = vi.

Combining Lemma 3.5 with the argument in the proof of Theorem 4.9 in [12], we
can show that the converse of Proposition 3.4 is also true: any voting rule that can be
pseudodistance-rationalized via M and a neutral `1-votewise pseudodistance is, in fact, an
M-scoring rule. Also, any M-scoring rule is obviously neutral. We can summarize these
observations in the following theorem.
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Theorem 3.6. Let R be a voting rule. There exists a neutral `1-votewise pseudodistance d̂
such that R is (M, d̂)-rationalizable if and only if R can be defined as an M-scoring rule
M-R(α(i)) such that α(i)

1 ≤ α
(i)
j for all j > 1 and all i ∈ N.

The discussion above suggests that using the majority consensus to rationalize a voting
rule is similar to using the unanimity consensus, except that we only take into account the
best “half-plus-one” votes. In fact, it turns out that under very weak assumptions we can
translate a votewise rationalization of a rule with respect toM to a votewise rationalization
of that rule with respect to U .

Definition 3.7. Let N = (Ni)∞i=1 be a family of functions where for each i, i ≥ 1, Ni is
a mapping from Ri to R. We define a family NM = (NMi )∞i=1 as follows. For each i ≥ 1,
NMi is a mapping from Ri to R given by

NMi (x1, . . . , xi) = Nb i
2
c+1(|xπ(1)|, . . . , |xπ(b i

2c+1)|),

where π is a permutation of [1, i] such that |xπ(1)| ≥ |xπ(2)| ≥ · · · ≥ |xπ(i)|.

For a family of symmetric norms N = (Ni)∞i=1 that are monotone in the positive orthant,
the family NM is also a family of norms, which we will call the majority variant of N .

Proposition 3.8. Let N = (Ni)∞i=1 be a family of norms, where each Ni is a symmetric
norm on Ri that is monotone in the positive orthant. Then the family NM = (NM)∞i=1 is
also a family of symmetric norms that are monotone in the positive orthant.

Proof. Let us fix a positive integer n. We will first show that NMn is a norm. It is easy to see
that since Nbn

2
c is a norm, for every (x1, . . . , xn) ∈ Rn it holds that (a) NMn (x1, . . . , xn) ≥ 0,

(b) NMn (x1, . . . , xn) = 0 if and only if x1 = · · · = xn = 0, and (c) for each α ∈ R it holds
that NMn (αx1, . . . , αxn) = |α|NMn (x1, . . . , xn).

Let us now show thatNMn satisfies the triangle inequality. Let (x1, . . . , xn) and (y1, . . . , yn)
be two vectors in Rn. We need to show that NMn (x1 +y1, . . . , xn+yn) ≤ NMn (x1, . . . , xn) +
NMn (y1, . . . , yn). Let π, σx and σy be permutations of [1, n] such that |xπ(1) + yπ(1)| ≥ · · · ≥
|xπ(n) + yπ(n)|, |xσx(1)| ≥ . . . ≥ |xσx(n)|, |yσy(1)| ≥ . . . ≥ |yσy(n)|. Let h = bn2 c+ 1. We have

NMn (x1 + y1, . . . , xn + yn) = Nh(|xπ(1) + yπ(1)|, . . . , |xπ(h) + yπ(h)|)
≤ Nh(|xπ(1)|+ |yπ(1)|, . . . , |xπ(h)|+ |yπ(h)|)
≤ Nh(|xπ(1)|, . . . , |xπ(h)|) +Nh(|yπ(1)|, . . . , |yπ(h)|)
≤ Nh(|xσx(1)|, . . . , |xσx(h)|) +Nh(|yσy(1)|, . . . , |yσy(h)|)
= NMn (x1, . . . , xn) +NMn (y1, . . . , yn),

where the second inequality follows by triangle inequality for Nh, and the third one follows
by Nh’s symmetry and monotonicity in the positive orthant. As a result, NMn is a norm.

By construction, M-Nn is both symmetric and monotone in the positive orthant. This
completes the proof.

11



As an immediate corollary we get the following result.

Corollary 3.9. Let N be a family of symmetric norms that are monotone in the positive or-
thant and let d be a distance over votes. Let R be a voting rule that is (M, d̂N )-rationalized.

Then R is (U , d̂NM)-rationalized.

This discussion illustrates that when a rule can be rationalized in several different ways,
the right choice of a consensus class plays an important role, as it may greatly simplify the
underlying norm and hence the distance. This is why it pays to keep a variety of consensus
classes available and search for best distance rationalizations possible. Corollary 3.9 also
has a useful application: Paper [11] shows that STV3 cannot be rationalized with respect
to S, C or U by any neutral N -votewise distance, where N is a family of symmetric norms
monotone in the positive orthant. Corollary 3.9 allows us to extend this result to M, thus
showing that STV cannot be rationalized by a “reasonable” votewise distance with respect
to any of the standard consensus classes.

Theorem 3.10. For three candidates, STV (together with any intermediate tie-breaking
rule) is not distance-rationalizable with respect to the majority consensus and any anony-
mous neutral N -votewise distance, where N is monotone in the positive orthant.

4 Homogeneity

Homogeneity is a very natural property of voting rules. It can be interpreted as a weaker
form of another appealing property, namely, consistency. Recall that a voting rule R is said
to be consistent if for any two elections E1 = (C, V1) and E2 = (C, V2) withR(E1)∩R(E2) 6=
∅ it holds thatR(C, V1+V2) = R(E1)∩R(E2), where V1+V2 denotes the concatenation of V1

and V2. Thus, loosely speaking, homogeneity imposes the same requirement as consistency,
but only for the restricted case V1 = V2. Now, consistency is known to be hard to achieve: by
Young’s theorem [20], the only voting rules that are simultaneously anonymous, neutral and
consistent are the scoring rules (or their compositions). In contrast, we will now argue that
for many consensus classes and many values of p ∈ N∪{+∞}, the rules that are `p-votewise
rationalizable with respect to these classes are homogeneous. We start by showing that this
is the case for `p, p ∈ N, and consensus classes S and U . We then provide a complete
characterization of all homogeneous rules that are `1-votewise distance rationalizable with
respect to M, assuming that the underlying distance on votes is neutral. Next, we show
that combining `∞ with S, U or M results in homogeneous rules, too. However, for C this
is not the case, and we conclude the section by discussing the homogeneity (or lack thereof)
of the rules that are votewise rationalizable with respect to C.

Theorem 4.1. For any distance d on votes, the voting rule R that is (K, d̂p)-rationalizable
for K ∈ {S,U} and p ∈ N is homogeneous.

3We skip the description of STV due to space constraints, but we mention that STV is one of the very
few nontrivial election systems that are in practical use in real-life political systems.
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Proof. Let us consider the case of U and some `p-votewise distance d̂p first. LetR be (U , d̂p)-
rationalizable and let E = (C, V ) be an election with C = {c1, . . . , cm} and V = (v1, . . . , vn).
Let s be an arbitrary positive integer. We will show that R(E) = R(sE).

Let c be a candidate in R(E) and let (C,U), where U = (u1, . . . , un), be a U-consensus
witnessing this fact. For the sake of contradiction assume that c /∈ R(sE). Let d be some
R-winner of sE and let (C,W ) be a U-consensus witnessing this fact. It is easy to see that
we can pick W so that it is of the form sW ′, where W ′ = (w1, . . . , wn). Since c is not a
winner of sE, it holds that(

n∑
i=1

s (d(vi, ui))
p

) 1
p

>

(
n∑
i=1

s (d(vi, wi))
p

) 1
p

.

Since c is a winner of E, we also have(
n∑
i=1

(d(vi, ui))
p

) 1
p

≤

(
n∑
i=1

(d(vi, wi))
p

) 1
p

.

However, it is easy to see that these two inequalities are contradictory, and hence c ∈ R(sE).
Using the same reasoning we can show that any winner of sE must be a winner of E.

For the consensus class S we can use essentially the same argument as for U . Indeed,
in the case of S we simply have u1 = u2 = · · · = un and w1 = w2 = · · · = wn, and the rest
of the argument goes through without change.

In contrast, M-Borda, i.e., the rule obtained by combiningM with d̂swap, is not homo-
geneous.

Example 4.2. Let R be M-Borda rule which is rationalized by M and d̂swap. Consider
the following election.

v1 v2 v3 v4 v5 v6
b a c c c d
a b b b d a
d d a a a b
e e e e e e
c c d d b c

It can be verified that in this election b is an M-Borda winner, but if we replace each
voter by two identical ones, the winner is c. A simple calculation shows that to become a
majority winner a needs four swaps, b needs three swaps, c needs four swaps, and d needs
five swaps. Thus, b is a winner according to M-Borda. However, if we replace each voter
by two identical ones, it turns out that b needs five swaps to become a majority winner,
but c requires only four (and, in fact, is the M-Borda winner of the election).
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For M, the conclusion of Theorem 4.1 is no longer true. However, we can fully charac-
terize homogeneous rules that can be rationalized via M and a neutral `1-votewise pseu-
dodistance (recall that by Theorem 3.6 all such rules are necessarily M-scoring rules). For
convenience, we state the following theorem for scoring vectors that satisfy α1 ≤ · · · ≤ αm;
it is not hard to show that this can be done without loss of generality.

Theorem 4.3. A voting rule M-Rα with a normalized scoring vector α = (α1, . . . , αm)
that satisfies α1 ≤ · · · ≤ αm is homogeneous if and only if αm = 1 or αdm

2
e = 0.

Proof. Suppose first that αm = 1. Then there exists some k, 1 ≤ k < m, such that αi = 0
for i ≤ k, αi = 1 for i > k. Consider an election E = (C, V ) with V = (v1, . . . , vn) and fix
an integer s > 1. If there are candidates ranked in top k positions by a majority of voters,
these candidates form the set of winners both in E and in sE. Otherwise, each candidate
has a strictly positive score under M-Rα. Moreover, in this case the M-Rα-score of each
c ∈ C is simply the difference between bm2 c+ 1 and the number of voters that rank c in top
k positions. Hence the winners in both E and sE are the candidates that are ranked in top
k positions by the maximum number of voters.

Now, set h = dm2 e and suppose that αh = 0. Again, consider an election E = (C, V )
with V = (v1, . . . , vn) and an integer s > 1. If m is odd or αh+1 = 0, then by the pigeonhole
principle there is at least one candidate c ∈ C that is ranked in top h positions by a majority
of voters. In this case, the sets of winners in both E and sE consist of all such candidates.
It remains to consider the case m = 2h, αh+1 = 1. If there exists a candidate c ∈ C
that is ranked among the top h positions by more than half of the voters, then the same
argument as in the previous case shows that M-Rα(E) =M-Rα(sE). On the other hand,
if no candidate is ranked among the top h positions by more than half of the voters, then
we see—again by the pigeonhole principle—that each candidate is ranked among the top h
positions by exactly n

2 voters (note that this case is possible only if n is even). Thus, the
M-score of each candidate is of the form αj , j > h. Further, each candidate’s score remains
the same in E and in sE. Thus, E and sE have the same sets of winners under M-Rα.

It remains to argue that in all other cases, i.e., if αm > 1 and αh > 0, the rule M-Rα
is not homogeneous. For readability, we will first consider the case α3 > 1 (note that this
implies α2 = 1). This will be done in the following lemma. Later, we will show how to use
ideas from this proof for the general case.

Lemma 4.4. If α3 > 1 then the rule M-Rα is not homogeneous.

Proof. Recall that we have α1 = 0, α2 = 1. Set α = α3. We start by considering the case
m = 3; later, we will generalize our construction to arbitrary values of m. Suppose first
that α is a rational number, i.e., α = p

q , where p and q are relatively prime. We construct
an election E = (C, V ), where C = {a, b, c} and V consists of the following votes:

1. 2p+ q + 1 votes a � b � c,

2. 2q + p+ 1 votes b � c � a, and
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3. p+ q − 2 votes c � b � a.

We observe that |V | = 4(p + q), each of the candidates a and b gets p points as their
M-scores, and c gets p + q + 3 points (we use the fact that q ≥ 2). Thus, the M-score of
candidate c is higher than that of a and b, and hence both a and b are winners of E.

The reader can verify that if we consider the election 2E = (C, 2V ), then the M-scores
of candidates a and b are, respectively, (2q − 1)α = 2p − α and 2p − 1. Since α > 1, it
cannot be the case that both a and b are winners of 2E. Thus, in this case M-Rα is not
homogeneous.

Now, if α is irrational, consider its continued fraction expansion α = (a0, a1, . . . ), and
the successive convergents hi

ki
, i = 0, 1, . . . , where h0 = a0, k0 = 1, h1 = a1h0 + 1, k1 = a1,

and hi = aihi−1 + hi−2, ki = aiki−1 + ki−2 for i ≥ 2. We know that for even values of i we
have hi

ki
< α and |α − hi

ki
| < 1

kiki+1
. Also, it is not hard to show that for any N > 0 there

exists an even value of i such that ki+1 > N . Thus, we pick an even i such that ki+1 >
2

α−1
(recall that α > 1). We obtain

0 < α− hi
ki
<

1
kiki+1

<
α− 1
2ki

.

Now, set p = hi, q = ki, let ε = α − p
q , and use the same construction as above. In E,

the M-score of a is qα, the M-score of b is p < qα, and the M-score of c exceeds that
of a and b, so b is the unique winner. On the other hand, in 2E the M-score of a is
(2q − 1)α = 2p + 2qε − α, while the M-score of b is 2p − 1. We have ε < α−1

2q , so a has a
lower M- score than b, and hence b cannot be the winner of 2E. Thus, in this case, too,
our rule is not homogeneous.

Finally, it is easy to see that for the case of m > 3 it suffices to modify the above
construction by addingm−3 dummy candidates that each voter ranks last (in some arbitrary
order).

We will now consider the general case. Since we have αm > 1, the scoring vector can be
written as

(0, . . . , 0︸ ︷︷ ︸
x

, 1, . . . , 1︸ ︷︷ ︸
y

, α, . . . , α︸ ︷︷ ︸
z

, αx+y+z+1, . . . , αm)

for some α > 1 and x, y, z ≥ 1. If x = y = 1, the condition of Lemma 4.4 is satisfied, so we
can assume that this is not the case. Also, since αh 6= 0, we have x < h.

We will now modify the construction of the election E = (C, V ) from the proof of
Lemma 4.4 as follows. We set C = {a, b, c} ∪ D, where D = {d1, . . . , dm−3}. If α is a
rational number, we set α = p

q , where p and q are relatively prime; otherwise, we construct
p and q as in the proof of Lemma 4.4.

We replace each voter in V with a voter that grants the same number of points to a, b,
and c as the replaced voter. Thus, we construct

1. 2p+ q+ 1 voters that rank a in the 1-st position, b in the (x+ 1)-st position and c in
the (x+ y + 1)-st position,
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2. 2q+ p+ 1 voters that rank b in the 1-st position, c in the (x+ 1)-st position and a in
the (x+ y + 1)-st position, and

3. p+ q − 2 voters that rank c in the 1-st position, b in the (x+ 1)-st position and a in
the (x+ y + 1)-st position.

The candidates in D are ranked in an arbitrary order among the remaining positions in
these votes.

We also construct additonal voters so as to ensure that the candidates in D are not
among the winners of E. Set s = 3p + 2q. For each candidate d ∈ D we create s pairs
of voters with the following preferences. In each pair, the first voter ranks a in the 1-st
position and b in the (x+y+1)-st position, and the second voter ranks b in the 1-st position
and a in the (x+ y + 1)-st position. Both of these voters rank d in the (x+ 1)-st position.
Finally, the voters in each pair rank the candidates in (D \ {d}) ∪ {c} in each of the votes
in the opposite order in the remaining positions. Since x < h, this ensures that no voter in
D ∪ {c} is ranked in the top x positions by both voters in the pair. Altogether, we have
4p+ 4q + 2s(m− 3) voters.

Since both a and b are ranked in the first position by exactly one voter in each newly
constructed pair, these new votes do not affect the M-scores of a and b. Indeed, it is easy
to see that a has qα points and b has p points. Similarly, the M-score of c is still at least
p+ q + 3. Finally, the M-score of any d ∈ D is at least s+ 1− 2(p+ q) > p by our choice
of s. Thus, for the resulting election E we have M-Rα(E) = {a, b} if α is rational and
M-Rα(E) = {b} if α is irrational. On the other hand, as in the proof of Lemma 4.4, in
2E the M-score of a is (2q − 1)α, the M-score of b is 2p − 1, and (2q − 1)α < 2p − 1, so
M-Rα(2E) 6=M-Rα(E).

We have demonstrated that many voting rules that are `1-votewise distance rationaliz-
able with respect to M are not homogeneous. However, homogeneity appears to be easier
to achieve if we use the `∞-norm instead of `1. For example, Simplified Bucklin has been
shown to be (M, d̂∞ser)-rationalizable [12] and it can be shown to be homogeneous. Indeed,
this follows from a more general result stating that `∞-votewise rules are homogeneous as
long as they are rationalized via a consensus class that satisfies a fairly weak requirement.

Definition 4.5. A consensus class K is split-homogeneous if the following two conditions
hold:

(a) If U is a K-consensus then for every positive integer s it holds that sU is a K-consensus
with the same winner;

(b) If U and W are two profiles, with n votes each, such that U + W is a K-consensus,
then at least one of U and W is a K-consensus with the same winner as U +W .

It turns out that combining a split-homogeneous consensus class with an `∞-votewise
distance produces a homogeneous rule.
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Theorem 4.6. For any split-homogeneous consensus class K and any pseudodistance d on
votes, the voting rule that is rationalized via K and d̂∞ is homogeneous.

Proof. We will prove that for any election E = (C, V ) we have R(E) = R(2E); the general
case is similar. Let c be a winner of E and let U be the consensus profile that witnesses
this. Then for each U ′ ∈ K we have

k = d̂∞(V,U) ≤ d̂∞(V,U ′). (1)

Due to the nature of `∞-metric we have

d̂∞(2V, 2U) = d̂∞(V,U) = k, (2)

and 2U is a consensus profile by condition (a) of Definition 4.5. Suppose that c ∈ R(U) =
R(2U) is not a winner of 2E. Then there exist a profile X + Y ∈ K, |X| = |Y | = n, such
that d̂∞(2V,X + Y ) < k. Since our distance is an `∞ one, we have

d̂∞(V,X) < k and d̂∞(V, Y ) < k.

However by condition (b) either X ∈ K or Y ∈ K which contradicts (1) and (2).

It is not hard to see that the consensus classes S, U and M are split-homogeneous.
Thus, we obtain the following corollary.

Corollary 4.7. For any K ∈ {S,U ,M} and any pseudodistance d on votes, the voting rule
that is rationalized via K and d̂∞ is homogeneous.

In contrast, the Condorcet consensus is not split-homogeneous.

Example 4.8. Consider the following election E = (C, V ) with C = {a, b, c, d, e} and
V = (v1, . . . , v12):

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

a b c d e c e a b c d c
b c d e a a d e a b c a
c d e a b b c d e a b b
d e a b c d b c d e a d
e a b c d e a b c d e e

Voters v1, . . . , v5 form a Condorcet cycle, and voters v7, . . . , v11 are obtained from voters
v1, . . . , v5 by reversing their preferences. Voters v6 and v12 are identical and rank c first. It
is not hard to verify that c is the Condorcet winner in E. On the other hand, in elections
E1 = (C, V1) and E2 = (C, V2), where V1 = (v1, . . . , v6) and V2 = (v7, . . . , v12), c is not a
Condorcet winner both in E1 and in E2.

Indeed, we can construct an `∞-votewise distance that combined with C yields a non-
homogeneous rule.
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v1 v2 v3 v4 v5 v6
c a c b a c
↓ b a ↓ ↓ ↓
b c b a b a
↓ ↓ ↓ ↓ ↓ ↓
a ↓ ↓ c c b
↓ ↓ ↓ ↓ ↓ ↓

Table 1: Election E = (C, V ) from the proof of Proposition 4.9.

Proposition 4.9. There exists a distance d on votes such that the rule rationalized by C
and d̂∞ is not homogeneous.

Proof. We first define two additional types of swap operations for preference orders. A
forward distance-two swap of candidate c transforms this preference order as follows: the
candidate ranked two positions higher than c, is moved from his current position and placed
directly below c. If c were ranked first or second, a forward distance-two swap is not defined.
For example, if C = {a, b, c, d, e} and the preference order is a � b � c � d � e, then the
result of a forward distance-two swap of candidate c will be b � c � a � d � e. A backward
distance-two swap is defined similarly.

It is easy to see that a single forward distance-two swap can be reversed by applying a
single backward distance-two swap and the other way round.

We can now define our distance d. Let us fix some candidate set C = {c1, . . . , cm}.
For each two preference orders u and v over C we define d(u, v) to be the minimal number
of swaps of adjacent candidates and distance-two swaps of candidates needed to transform
vote u into vote v. It is easy to see that d indeed is a distance because it counts the number
of reversible operations that transform one preference order into the other. As before, d̂∞

is the `∞-votewise extension of d to a distance over elections.
Let R be a voting rule that is (C, d̂∞)-rationalized. We will now build an election

E = (C, V ) such that R(E) 6= R(2E). We set C = {a, b, c, x1, . . . xt} where t is a sufficiently
large integer. (After reading our description of the votes in V it will become clear what we
mean by sufficiently large.) The set of voters V will contain six voters, v1, . . . , v6, whose
preference orders are presented in Table 1. Note that in this table we only showed how
candidates in {a, b, c} are ranked. Remaining candidates are ranked in the places of arrows,
in such a way that (a) each candidate in {a, b, c} is preferred to each candidate xi, 1 ≤ i ≤ t,
by a majority of voters, and (b) one needs at least three swaps or distance-two swaps to
change the relative order of two candidates from {a, b, c} that are separated by an arrow.

We have the following results of head-to-head contests in E: four voters prefer a to b,
a and c are tied, and b and c are tied. Thus, a single swap of a and c in vote v3 makes a a
Condorcet winner of the election. On the other hand, it is easy to see that being allowed one
(possibly distance-two) swap per vote, it is impossible to make either b or c the Condorcet
winner. Thus, a is the unique R-winner of E.
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In 2E, similarly, a single swap (within one of the copies of v3) suffices to make a the
Condorcet winner. However, now also a single swap per vote suffices to make c a Condorcet
winner. Indeed, in one copy of v2 we transform a � b � c into a � c � b and in the other
into b � c � a. These two transformations allow c to break a tie with both a and b, and
become the Condorcet winner.

The combination of C and an `1-votewise distance does not necessarily lead to a homo-
geneous rule either: it is well known that the Dodgson rule is not homogeneous (see, e.g., [4]
for a recent survey of Dodgson rule deficiencies), yet it is (C, d̂swap)-rationalizable. In fact,
we are not aware of any homogeneous voting rule that is `1-votewise distance-rationalizable
with respect to C. In contrast, we can construct a homogeneous rule that is `∞-votewise
distance-rationalizable with respect to C by replacing `1 with `∞ in the rationalization of
the Dodgson rule. We will call the resulting rule Dodgson∞; the next section will explain
the name of the rule. To prove that Dodgson∞ is homogeneous, we will first explain how to
determine the winners under this rule. It turns out that, in contrast to the Dodgson rule
itself, Dodgson∞ admits a polynomial-time winner determination algorithm.

Proposition 4.10. Given an election E = (C, V ), the problem of computing the (C, d̂∞swap)-
score of a given candidate c ∈ C is in P.

Proof. Consider the following algorithm:

1. Set k = 0.

2. If c is a Condorcet winner of E then return k.

3. For each vote where c is not ranked first, swap c and its predecessor.

4. Increase k by 1.

5. Go to Step 2.

Suppose that c’s (C, d̂∞swap)-score is k. Since our algorithm does not stop until it finds
a Condorcet consensus, it will not stop before step k. On the other hand, there exists
a Condorcet consensus U with winner c such that d̂∞swap(E,U) = k. Note that we can
assume that U has been obtained from E by shifting c upwards, and, moreover, c has been
shifted by k positions in at least one vote, and by at most k positions in all remaining votes.
Now, consider an election U ′ in which c has been shifted upwards by exactly k positions in
each vote or moved to the top position if its rank is smaller than k. Clearly, U ′ is also a
Condorcet consensus, and d̂∞swap(E,U ′) = k. Moreover, U ′ will be discovered at the k-th
step of our algorithm.

Since the algorithm terminates after at most |C| iterations, it is easy to see that it runs
in polynomial time. This completes the proof.

Using the algorithm given in the proof of Proposition 4.10, it is not hard to show that
Dodgson∞ is homogeneous.
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Proposition 4.11. Dodgson∞ is homogeneous.

Proof. Let E = (C, V ) be an election where V = (v1, . . . , vn) and let c be a candidate
in C. The algorithm in the proof of Proposition 4.10 finds the smallest value of k such
that after shifting a given candidate upwards by k positions in each vote, this candidate
becomes the Condorcet winner. Therefore, if two votes are identical before running the
algorithm, these votes remain identical in the resulting Condorcet consensus. This shows
that Dodgson∞-score of c is the same in E and in kE.

4.1 `1-Votewise Rules versus `∞-Votewise Rules

Inspired by Proposition 4.11, in this section we take a brief detour from the discussion of
homogeneity and monotonicity in votewise rules, and discuss the relationship between `1-
votewise rules and `∞-votewise rules. It turns out that in a certain weak sense, `∞-votewise
rules are approximations of the corresponding `1-votewise rules. The next theorem expresses
this “weak sense” precisely.

Theorem 4.12. For any consensus class K ∈ {S,U ,M, C} and any distance d on votes,
let R and R∞ be the voting rules rationalized via K and d̂ and d̂∞, respectively. Let
scoreRE (c) (respectively, scoreR

∞
E (c)) denote the (K, d̂)-score (respectively, (K, d̂∞)-score) of

a candidate c in an election E = (C, V ). Then for each election E = (C, V ) and each
candidate c ∈ C we have

scoreR
∞

E (c) ≤ scoreRE (c) ≤ |V | · scoreR
∞

E (c).

Proof. Consider an election E = (C, V ) with C = {c1, . . . , cm} and V = (v1, . . . , vn), and
fix a candidate c ∈ C.

We first claim that scoreRE (c) ≤ |V | · scoreR
∞

E (c). Let (C,W ), where W = (w1, . . . , wn),
be a K-consensus where i is a winner and such that scoreR

∞
E (c) = d̂∞(V,W ). By defini-

tion, we have scoreRE (c) ≤ d̂(V,W ) =
∑n

i=1 d(vi, wi) ≤ nmax{d(vi, wi) | 1 ≤ i ≤ n} =
nd̂∞(V,W ) = |V | · scoreR

∞
E (c), which proves the claim.

On the other hand, let (C,U), where U = (u1, . . . , un), be a K-consensus where c is
the winner and for which scoreRE (c) = d̂(V,U). By definition, it holds that scoreRE (c) =
d̂(V,U) =

∑n
i=1 d(vi, ui) ≥ max{d(vi, ui) | 1 ≤ i ≤ n} = d̂∞(V,U) ≥ scoreR

∞
E (c), and so

scoreR
∞

E (c) ≤ scoreRE (c). This completes the proof.

In other words, any `∞-votewise rule is a |V |-approximation of a corresponding `1-
votewise rule in the sense of Caragiannis et al. [5, 6]. For the majority consensus we can
strengthen the approximation guarantee from |V | to d |V |2 + 1e using the fact that we only
need the majority of the voters to rank a candidate first for him to be the M-winner.

Of course, these approximations are very weak as they depend linearly on the number
of voters; their appeal is in their generality. Further, since for the Dodgson rule its `∞-
variant is homogeneous and polynomial-time computable, an appealing conjecture is that
replacing `1 with `∞ in the rationalization of a voting rule is a general recipe for designing
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voting rules that are homogeneous and admit an efficient winner determination algorithm.
It is unlikely that this conjecture holds unconditionally, but it would be very interesting
to identify sufficient conditions for it to hold. In particular, it would be interesting to
determine whether the (S, d̂∞swap)-rationalizable rule, i.e. Kemeny∞ admits a polynomial-
time winner determination algorithm (briefly put, Kemeny is the rule that is rationalized
by S and d̂swap). Of course, there are much better approximation algorithms known for
Kemeny [1, 9, 14] and the value of resolving the above question lies in it enhancing our
understanding of Kemeny and relations between `1- and `∞-votewise rules.

5 Monotonicity

Monotonicity is a very desirable property of voting rules: it stipulates that campaigning in
favor of a candidate should not hurt him. While homogeneity seems to be essentially a func-
tion of the norm and the consensus class (as illustrated by Theorem 4.1 and Theorem 4.6,
which hold for any distance d on votes), monotonicity seems to be most closely related
to the properties of the distance on votes. Therefore, in this section we propose several
notions of monotonicity for distances on votes that, combined with appropriate norms and
consensus classes, produce a monotone rule. We do not consider the Condorcet consensus in
this section: even a very well-behaved distance such as d̂swap may produce a non-monotone
rule when combined with C (recall that the resulting rule is Dodgson, which is known to
be non-monotone (see, e.g., [4]). Also, for simplicity, we focus on `1-votewise rules and
`∞-votewise rules.

Let C be a set of candidates and let d be a distance on votes. How can we specify a
condition on d so that voting rules rationalized using this distance are monotone? Consider
an election with a winner c, a vote y, a vote x ∈ P(C, c) and a vote z ∈ P(C, a) for some
a 6= c. It is tempting to require that for any vote y′ obtained from y by pushing c forward
it holds that d(y′, x) ≤ d(y, x) and d(y′, z) ≥ d(y, z). However, this condition turns out to
be so strong that no reasonable distance can satisfy it. Indeed, suppose that y ranks c in
position three or lower, and y′ is obtained from y by shifting c by one position. Then y
does not rank c in the first position, and our condition should hold for z = y′, implying
d(y, y′) ≤ 0, which is clearly impossible.

Thus, we need to relax the condition above. There are two ways of doing so. First,
we can require that when we move c forward in the vote, the distance to x declines faster
than the distance to z. Alternatively, instead of imposing this condition for all x ∈ P(C, c)
and z ∈ P(C, a), we can require that it holds for the closest vote that ranks c first, and
the closest vote that ranks a first, respectively. We will now show that both relaxations,
which we call, respectively, relative monotonicity and min-monotonicity, lead to meaningful
conditions that are satisfied by some natural distances, and, combined with appropriate
consensus classes, result in monotone voting rules. We consider relative monotonicity first.

Definition 5.1. Let C be a set of candidates. We say that a distance d on P(C) is relatively
monotone if for each c ∈ C, every two preference orders y and y′ such that y′ is identical
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to y except that y′ ranks c higher than y, and every two preference orders x and z such that
x ranks c first and z does not, it holds that

d(x, y)− d(x, y′) ≥ d(z, y)− d(z, y′).

As a quick sanity check, we note that the swap distance, dswap, satisfies the relative
monotonicity condition. Indeed, let d = dswap and let C be a set of candidates, c be a
candidate in C, and let y, y′, x, and z be as in the definition of relative monotonicity. In
addition, let k be a positive integer such that y′ is identical to y except in y′ candidate
c is ranked k positions higher. We need k swaps to transform y into y′ so d(y, y′) = k.
We first note that d(x, y) − d(x, y′) = k. This is so because the swap distance measures
the number of inverses between two preference orders. As x ranks c on top and y′ ranks
it k positions higher than y does (without any other changes), the number of inverses
between x and y′ is the same as that between x and y less k. By the triangle inequality
d(z, y) ≤ d(z, y′) + d(y′, y) = d(z, y′) + k, hence d(z, y)− d(z, y′) ≤ k and this completes the
proof.

Relative monotonicity of a distance on votes naturally translates to the monotonicity of
the resulting voting rule, provided we use `1 as a norm and either S or U as a consensus.

Theorem 5.2. Let R be a voting rule rationalized by (K, d̂), where K ∈ {S,U} and d is a
relatively monotone distance on votes. Then R is monotone.

Proof. Let E = (C, V ) be an election, where V = (v1, . . . , vn), and c ∈ C be a candidate
such that c ∈ R(E). Let E′ = (C, V ′), where V ′ = (v′1, . . . , v

′
n), be an arbitrary election

that is identical to E except one voter, say v′1, ranks c higher ceteris paribus. It suffices to
show that c ∈ R(E′).

To show this, we give a proof by contradiction. Let (C,U) ∈ K, where U = (u1, . . . , un),
be a consensus witnessing that c ∈ R(E), and let (C,W ), where W = (w1, . . . , wn), be
any consensus in K such that c is not a consensus winner of (C,W ). For the sake of
contradiction, let us assume that d̂(U, V ′) > d̂(W,V ′). If K is either U or S, then we know
that u1 ranks c first and that w1 does not rank c first. By relative monotonicity, this means
that

d(u1, v1)− d(u1, v
′
1) ≥ d(w1, v1)− d(w1, v

′
1). (3)

However, since d̂(U, V ′) > d̂(W,V ′) and V differs from V ′ only on the first voter, it holds
that

d(u1, v
′
1) +

n∑
i=2

d(ui, vi) > d(w1, v
′
1) +

n∑
i=2

d(wi, vi). (4)

If we add inequality (3) sideways to inequality (4), we obtain

d(u1, v1) +
n∑
i=2

d(ui, vi) > d(w1, v1) +
n∑
i=2

d(wi, vi).

That is, d̂(U, V ) > d̂(W,V ), which is a contradiction by our choice of U .
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However, relative monotonicity is a remarkably strong condition, not satisfied even by
very natural distances that are, intuitively, monotone.

Example 5.3. Consider a scoring vector α = (0, 1, 2, 3, 4, 5) that corresponds to the 6-
candidate Borda rule and a candidate set C = {c, d, x1, x2, x3, x4}. Consider the following
four votes:

x : c > d > x1 > x2 > x3 > x4,

z : x1 > c > x2 > x3 > x4 > d,

y : x1 > x2 > d > c > x3 > x4,

y′ : x1 > x2 > c > d > x3 > x4.

Note that y and y′ are identical except that in y′ candidate c is ranked one position higher,
and that c is ranked on top in x and is not ranked on top in z. We verify that dα(x, y) −
dα(x, y′) = 0 but dα(z, y)− dα(z, y′) = 2. Thus, dα is not relatively monotone.

Our second approach to monotone distances, i.e., min-monotonicity, captures the in-
tuition that dα in the example above should be classified as monotone. We first define
min-monotonicity formally.

Definition 5.4. Let C be a set of candidates. We say that a distance d on P(C) is min-
monotone if for every candidate c ∈ C and every two preference orders y and y′ such that
y′ is the same as y except that it ranks c higher, for each a ∈ C \ {c} we have:

min
x∈P(C,c)

d(x, y) ≥ min
x′∈P(C,c)

d(x′, y′),

min
z∈P(C,a)

d(z, y) ≤ min
z′∈P(C,a)

d(z′, y′).

We will now argue that for any non-decreasing scoring vector α the distance dα is min-
monotone.

Proposition 5.5. Let α = (α1, . . . , αm) be a normalized scoring vector. (Pseudo)distance
dα is min-monotone if and only if α is nondecreasing.

Proof. Let us fix some two distinct candidates c = ci and e = cj in C. Let y and y′ be two
votes that are identical, except that c is ranked on some position k in y and in y′ candidate
c is shifted to position k′, where k′ < k. By Lemma 2.2, it holds that minx∈P(C,ci) d(x, y) =
2|αk − α1| and minx′∈P(C,ci) d(x′, y′) = 2|αk′ − α1|. If α is nondecreasing then 2|αk − α1| =
2αk ≥ 2αk′ = 2|αk′−α1|. On the other hand, if α is not nondecreasing, then it is possible to
choose k and k′, where k′ < k, such that 2|αk−α1| < 2|αk′ −α1|. Thus, the first inequality
from the definition of min-monotonicity is satisfied if and only if α is nondecreasing. One
can analogously show that the same holds for the second inequality (in essence, the proof
works by arguing that either rank(y, e) = rank(y′, e) or rank(y, e) = rank(y′, e)−1, and then
showing that pushing a candidate back does not decrease his distance from being ranked
first if and only if α is nondecreasing).
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Proposition 5.5, combined with the proof of Theorem 4.9 of [12] gives the next corollary.

Corollary 5.6. A voting rule R is (U, d̂)-rationalizable for some min-monotone neutral
pseudodistance d on votes if and only if R can be defined via a family of nondecreasing
scoring vectors (one for each number of candidates).

In essence, Proposition 5.5 ensures that for every nondecreasing scoring vector α, Rα is
`1-votewise rationalizable with respect to U via a min-monotone distance over votes, and
the definition of min-monotonicity ensures that the scoring vector derived in the proof of
Theorem 4.9 of [12] is nondecreasing.

Min-monotonicity is also useful in the context of the majority consensus: forM, we can
show an analogue of Theorem 5.2 both for `1-votewise rules and for `∞-votewise rules.

Theorem 5.7. Let d be a min-monotone distance on votes, and let R be the voting rule
rationalized by (M, d̂N ), where N ∈ {`1, `∞}. Then R is monotone.

Proof. Let R and d̂ be as in the statement of the theorem. Let E = (C, V ) be an election
where V = (v1, . . . , vn) and let c ∈ R(E) be one of the winners of E. Let (C,U) be
a majority consensus witnessing that c is an R winner of E. Let E′ = (C, V ′), where
V ′ = (v′1, v

′
2, . . . , v

′
n), be an election where v′1 is identical to v1 except that it ranks c higher

and for each i, 2 ≤ i ≤ n, v′i = vi.
For the sake of contradiction, we assume that c is not an R winner of E′, but that some

candidate e ∈ C \ {c} is. Let (C,W ′), where W ′ = (w′1, . . . , w
′
n) be a majority consensus

witnessing that e is a winner of E′. Let us form two new M consensuses, U ′ and W .

1. U ′ = (u′1, . . . , u
′
n). For each i, 2 ≤ i ≤ n, u′i = ui. If u1 ranks c first then u′1 ∈

arg minx′∈P(C,c) d(x′, v′1), and otherwise u′1 = v′1.

2. W = (w1, . . . , wn). For each i, 2 ≤ i ≤ n, wi = w′i. If w′1 ranks e first then
w1 ∈ arg minz∈P(C,e) d(z, v1), and otherwise w1 = v1.

Thus, by Lemma 3.5 and min-monotonicity of d it is easy to see that:

d(u′1, v
′
1) ≤ d(u1, v1), (5)

d(w′1, v
′
1) ≥ d(w1, v1). (6)

Now, using the fact that V and V ′ agree on all voters but the first one, our choice of W ,
and the two above inequalities, we can see that the following inequality holds:

d̂(U, V ) = d(u1, v1) +
n∑
i=2

d(ui, vi) ≥ d(u′1, v
′
1) +

n∑
i=2

d(ui, vi)

> d(w′1, v
′
1) +

n∑
i=2

d(ui, vi) ≥ d(w1, v1) +
n∑
i=2

d(ui, vi) = d̂(W,V ).

However, this is a contradiction because by our choice of U , d̂(U, V ) is a minimal distance
between V and any majority consensus with n voters.
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However, it is not clear how to apply the notion of min-monotonicity in the context of
the strong unanimity consensus. The reason is that given a profile V of voters over some
candidate set C, finding an S-consensus closest to V requires finding a single preference
order u that minimizes the aggregated distance from V to this order. However, it need not
be the case that u is a preference order that minimizes the distance from some vote v ∈ V
to a preference order that ranks top(u) first.

Finally, we remark that we can combine both relaxations considered in this section,
obtaining a class of distances that includes both relatively monotone distances and min-
monotone distances.

Definition 5.8. Let C be a set of candidates. We say that a distance d on P(C) is relatively
min-monotone if for each candidate c ∈ C and each two preference orders y and y′ such
that y′ is identical to y except that y′ ranks c higher than y, for each candidate a ∈ C \ {c}
it holds that

min
x∈P(C,c)

d(x, y)− min
x′∈P(C,c)

d(x′, y′) ≥

min
z∈P(C,a)

d(z, y)− min
z′∈P(C,a)

d(z′, y′).

Proposition 5.9. Each distance on votes that is relatively monotone or min-monotone is
relatively min-monotone.

Proof. We show that each relatively monotone distance d is relatively min-monotone. Let
C be a set of candidates, c, a ∈ C, and let y, y′ ∈ P(C) be identical, except y′ ranks c higher
than y. Pick x̂ ∈ arg minx′∈P(C,c) d(x′, y), ẑ ∈ arg minz′∈P(C,a) d(z′, y′). Then

min
x∈P(C,c)

d(x, y)− min
x′∈P(C,c)

d(x′, y′) ≥ d(x̂, y)− d(x̂, y′) ≥

d(ẑ, y)− d(ẑ, y′) ≥ min
z∈P(C,a)

d(z, y)− min
z′∈P(C,a)

d(z′, y′).

Thus d is relatively min-monotone. We omit the easy second part of the proof due to space.

For U the proof of Theorem 5.2 extends to relatively min-monotone distances (and hence
to min-monotone distances).

Corollary 5.10. Any voting rule rationalized by U and d̂, where d is relatively min-
monotone distance on votes, is monotone.

6 Conclusions

We have discussed homogeneity and monotonicity of voting rules that are distance-rationalizable
via votewise distances, focusing on `p-votewise rules, p ∈ N ∪ {+∞}. A quick summary of
our results is given in Tables 2 and 3.
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S U M C
`1 Y (Th. 4.1) Y (Th. 4.1) Y/N (Th. 4.3) n (Dodgson)
`∞ Y (Th. 4.6) Y (Th. 4.6) Y (Th. 4.6) y (Prop. 4.11)/

n (Prop. 4.9)

Table 2: (Homogeneity) Y at the intersection of column K and row N indicates that for
any distance d on votes the (K, d̂N )-rationalizable rule is homogeneous. Y/N refers to a
dichotomy result, and y/n refer to examples of homogeneous/non-homogeneous rules.

S U M
`1 rel-mon rel-min-mon min-mon

(Th. 5.2) (Cor. 5.10) (Th. 5.7)
`∞ ? ? min-mon

(Th. 5.7)

Table 3: (Monotonicity) At the intersection of column K and row N , we indicate a sufficient
condition on d (relative monotonicity, min-monotonicity, relative min-monotonicity) for the
(K, d̂N )-rationalizable rule to be monotone.

Motivated by our goal, we obtained a number of results, that, while not directly related
to the primary topic of our study, contribute to the general understanding of votewise ra-
tionalizable rules. In particular, we identified a natural family of voting rules, which we
calledM-scoring rules. These rules constitute a (provably distinct) variant of scoring rules
that, when counting points for a given candidate, ignore the less favorable half of the votes.
We have shown that M-scoring rules have a natural interpretation in the context of dis-
tance rationalizability. By establishing a relationship between rules that are rationalizable
with respect to U and M, we resolved (in the negative) an open question about votewise
rationalizability of STV posed in [11]. Also, our study of monotonicity allowed us to refine
a result of [12] characterizing the class of scoring rules in terms of distance-rationalizability
(our Corollary 5.6).

Our work leads to several open problems. First, we are far from having a complete
understanding of homogeneity of the rules that are votewise distance-rationalizable with
respect to the Condorcet consensus; even less is known about the monotonicity of such
rules. Also, it would be interesting to know whether there are distances d 6= dswap for
which the winner determination for the (C, d̂∞)-rationalizable rule is easier than for the
(C, d̂)-rationalizable rule; the same question can be asked for the consensus class S. We are
also very much interested in finding less demanding, yet practically useful, conditions on
distances that lead to monotone rules.
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