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What’s 

going on 

inside?

What biocybernetic secrets hides the brain and the whole nervous system?!

GENESIS
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BRAIN

Internal associative representation of 
the data and fast associative processes allows 
the brain to quickly conclude and anticipate!



Brain – a biocybernetic structure 

forming knowledge and intelligence

Each brain can automatically and in the best-known way:

 memorize relations between data and form associations representing them, 

 automatically form and broaden knowledge on the basis of the incoming data,

 remember various patterns and generalize about them,

 store important relations between data,

 work and recall facts in an associative way,

 easily use related data and information,

 quickly and context-sensitive recall adequate pieces of information,

 automatically recognize similarities and use them in thinking processes,

 transfer properties and behavior among similar objects, 

 create new rules, methods, and algorithms based on the remembered ones.

Every event and experience of our lives is changing our brains to a certain extent, 
its way of working, and influencing future associations and actions! 

The dynamics and biocybernetic capabilities of our brains do not currently have
a decent cybernetic equivalent or model in computational intelligence!
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Brain – a dynamically changing 

biocybernetic structure

The brain is an unusual „computing” machine because it changes both its hardware 
and software as a result of the interaction with the data coming to it in the form of 
different stimuli. These changes concern:

 In the way of its further operation,

 In the process of further data processing,

 In its structure and properties of connections,

 In parameters of construction and functioning of neurons,

 In the previously memorized facts, rules, and objects,

 In the representation of various objects, actions, and phenomena,

 In the way of associating and remembering facts, rules, and routines.

The brain allows us to memorize, but not everything and not permanently.

Definitions and ways of understanding different objects can grow, narrow, update,
and even totally change throughout our lives.

The way it works is related to a nerve structure that allows it to act in an associative 
way and to selectively represent relations between data, objects, their groups, 
sequences, and classes.
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BIOLOGICAL AND ARTIFICIAL NEURON

Artificial neurons used today in computational intelligence are very poor models of biological neurons, 
distorting in their way of acting, plastic changes inside them, and the way of adaptation to incoming data:

X
Artificial neurons usually:
1. Are detached from the rest nervous system components as the senses and their receptors,

cerebrospinal fluid, glial cells and their non-neglectable functions in the nervous system.

2. Compute sums of weighted input signals without taking into account the automatic process of
restoring insufficiently stimulated neurons and refracted neurons to the resting state after some time.

3. Neglect and do not define or use their position in the network structure (except a few types of networks, e.g. SOM).

4. Diminish the significance of an activation threshold by bringing it to another weight with constant stimulation (bias),
except spiking neurons.

5. Change the natural ability of neurons to be activated into continuous and differential activation functions.

6. Do not take into account the different and variable size of neurons that affect its sensitivity and specialization.

7. Bring down synapses to an adaptive balance that can amplify input signals many times (biologically not plausible).

8. Do not take into account various periods of various internal neuronal processes taking place in biological neurons.

9. Are mostly connected on the each-to-each basis between layers, which usually prevents them from specializing 
in the selected input groups.

10. Do not make any automatic connection or functional changes during adaptation (learning) process, bringing them 
to nonlinear functions that can be combined in the artificial neural network creating complex approximators.
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ARTIFICIAL NEURON

 Input data x1 … xn typically simultaneously affect an artificial neuron.

 Previous states of artificial neurons have no influence on their current state, 
only current stimulation and weights w0k, w1k,…, wnk are taken into account.

 No temporal relationships between the states are considered.

 The response of an artificial neuron is immediate and calculated
after an activation function which value depends on
the weighted sum of current inputs x0k, x1k,…, xnk

and weights w0k, w1k,…, wnk.
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THE SENSES AND RECEPTORS

 The brain would not be able to develop without the senses and their receptors.

 The stimuli coming from the receptors form some stimulus combinations.

 Such combinations can be further associated and memorized.

 The created associations are used as a context for future associations and 
mental processes.

 They provide the nervous system with the necessary 
stimuli for its functioning, development, and adaptation.

 They stimulate the neurons with certain combinations of 
input stimuli, which we call training patterns.
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REASONS FOR THE ASSOCIATIVE REPRESENTATION 

OF DATA, OBJECTS, ACTIONS, AND FEATURES

Knowledge and intelligence allow us to quickly draw conclusions and make 
wise decisions thanks to the associations created and remembered in our minds.

The associative data representation is much richer and gives us far more possibilities 
than the most commonly used relational representation used in relational databases:

 Relational databases – allow us only for horizontal data binding thanks
to the primary and foreign keys representing relations between objects.

 Associative systems – allow us for both horizontal and vertical data binding combined 
with the aggregated representation of duplicates, which results in significant memory 
and computational time savings! Graph neural structures the with automatic vertical 
representation of data relationships replace a lot of time-consuming operations,
which we have to perform on a relational database!

DATA BINDING

ASSOCIATIVE
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swi

5,8 2,6

sle

5,0 2,3

5,4 3,0

6,3 3,3

R2

R1

R3

R4

IR
IS

  
P

A
T

T
E

R
N

S

6,7 3,0

6,0 2,7

6,0 2,2

4,9 2,5

R6

R5

R8

R9

5,9 3,2R7

pwi

4,0 1,2

ple

3,3 1,0

4,5 1,5

4,7 1,6

5,0 1,7

5,1 1,6

5,0 1,5

4,5 1,7

4,8 1,8

klasa

VERSI

VERSI

VERSI

VERSI

VERSI

VERSI

VIRGIN

VIRGIN

VERSI

6,0 3,0

5,7 2,5

6,5 3,2

R10

R12

R13

5,8 2,7R11

4,8 1,8

5,0 2,0

5,1 2,0

5,1 1,9

VIRGIN

VIRGIN

VIRGIN

VIRGIN

param

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php
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PASSIVE ASSOCIATIVE GRAPH DATA STRUCTURE - AGDS

Additional binding 
of similar values

Aggregated 
representation
of duplicated 

values in table 
records (entities)
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PASSIVE ASSOCIATIVE GRAPH DATA STRUCTURE - AGDS

The more data, the greater efficiency of these structures, cost-effectiveness
and lossless compression
of data representation.
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VERTICAL SIMILARITIES BETWEEN OBJECTS

The connections point out related objects and similar data:
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COMPARE STRUCTURES AND DRAW CONCLUSIONS

 What data relations can be simply read from these 
data structures and which must be found?

 What are the pros and cons of these structures?

 How do these structures affect the computational 
efficiency of operations on the stored data?

 Which structure is more suitable for efficient 
knowledge exploration and data mining?

TRANSFORMATION
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CONNECTION WEIGHTS IN THE AGDS STRUCTURES

The AGDS nodes representing neighboring (subsequent) values of each 
attribute 𝑎𝑘 are connected and the weight of this connection (edge)
is computed by the following formula:

𝑤
𝑣
𝑖

𝑎𝑘 ,𝑣
𝑗

𝑎𝑘 = 1 −
𝑣𝑖
𝑎𝑘 − 𝑣𝑗

𝑎𝑘

𝑟𝑎𝑘

where

𝑣𝑖
𝑎𝑘, 𝑣𝑗

𝑎𝑘 - are values represented by the neighboring attribute nodes, 

which are connected by an edge in the AGDS graph,

𝑟𝑎𝑘 = 𝑣𝑚𝑎𝑥
𝑎𝑘 − 𝑣𝑚𝑖𝑛

𝑎𝑘 - is the current range of values of the attribute 𝑎𝑘.

The weight of the connection from the value node 𝑣𝑖
𝑎𝑘 of the attribute 

𝑎𝑘 to the object node 𝑅𝑚 is determined after the number of 

occurrences 𝑁𝑖
𝑎𝑘 of this value (𝑣𝑖

𝑎𝑘) in all objects:

𝑤
𝑣
𝑖

𝑎𝑘 ,𝑅𝑚
=
1

𝑁𝑖
𝑎𝑘
=
1

𝑣𝑖
𝑎𝑘

These numbers (𝑁𝑖
𝑎𝑘 = 𝑣𝑖

𝑎𝑘 ) are stored in the individual value 

nodes of each attribute. This number is equal to the number or all 
connections of this value node to all object nodes if there are no 
duplicated objects in the table used to create the AGDS structure.
In the opposite direction, the weights of connections from the object 
nodes to the value nodes are always equal to one:

𝑤
𝑅𝑚,𝑣𝑖

𝑎𝑘 = 1
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CREATION OF AGDS FOR A SINGLE DATABASE TABLE

All elements can be quickly accessed through the param root node that has connections to all parameters etc. 
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THE TREE STRUCTURE USED IN PARALLEL COMPUTING

This tree-based graph gives you a very fast access to any data or relationships
between these related and linked data. You can also draw various conclusions very fast. 

𝑤6.3,6.5 = 1 −
6.3 − 6.5

6.7 − 4.9
= 0.  8
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ATTRIBUTE VALUE STRUCTURE IS BASED ON AVB-TREES

In the case of sequential (non-parallel) implementation of the AGDS structure, AVB-trees are used.

The AVB-trees are the simple modification of B-trees, which aggregate representation of duplicates.

The AVB-trees contain only unique attribute values for efficient access to them; duplicates are reduced.
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ATTRIBUTE VALUE STRUCTURE IS BASED ON AVB+TREES

The subsequent values (keys of AVB+trees) can be additionally connected to reproduce proximity between 
represented unique keys, however, we can also use the AVB-tree structure to quickly find them.
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ASSOCIATIVE INFERENCE USING AGDS STRUCTURES

Associative data structures AGDS can be now used for associative inference, which is based on moving
along the connections to the connected nodes and computing some values in these nodes on the basis
of the send values multiplied by weights of these connections. In such a way we get the information
about, e.g. similarity of objects represented by other nodes of the same kind or about the objects that
satisfy some given conditions defined by the represented attribute values. Let’s use our AGDS graph
created for 13 Irises for such inference looking for objects (Irises) Rx which are most similar to R2.

1. We start in the node R2 which assumes the similarity value x=1.0 because this node is 100% similar
to itself.

2. Next, we assign values x of the connected nodes representing the following values: 5.8, 2.6, VERSI, 
4.0, and 1.2 by multiplying the value coming from the node R2 with the connection weights, 
which are equal 1.0. So, as a result, we achieve x=1.0 for all these connected nodes.
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ASSOCIATIVE INFERENCE USING AGDS STRUCTURES

3. Subsequently, the values computed for these nodes are multiplied by next connection weights and 
send to the neighbor connected value nodes, for which we also compute their similarity values x. 

4. Similarly, we compute the similarity values x for connected object nodes with regards to 
the necessity to add the passed weighted values to the sums already stored in these nodes, 
e.g. for the node R3 we compute x = 1.0 * 0.2 + 0.72 * 0.2 + 0.7 * 0.2 = 0.48
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ASSOCIATIVE INFERENCE USING AGDS STRUCTURES

5. Finally, when we go through all the connected (associated) values nodes computing theirs values of 
similarities by multiplying the sender similarity values by connection weights. We also computed 
weighted sums for all object nodes, where these weights are the same
w = 1/5 = 0.2. The computed similarity values for the nodes Rx can be
used to compare and designate the most similar objects to the object R2:
R5 (78%), R3 (77%), R1 (75%), …

It is also worth noting that AGDS graphs are not neural structures, so we are not obligated to multiply 
the nodes similarity values by connection weights, but we can also use other formulas, e.g. we can 
subtract the complement of the connection weight value from the similarity value represented by the 
sender: x’ = x - (1 – w). 
Consequently, we get another measure of similarity represented by the value nodes and object nodes.

We can also use DASNG graph formulas to calculate weights between value nodes and object nodes
to emphasize the rarity of the value using the frequency of connections coming out from value nodes:
w = 1 / the number of outgoing connections.
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CONSTRUCTION OF B-TREES

B-trees are often used to created indices for attributes in relational databases. The construction of B-trees 
is a complex process that requires performing specific operations to restore assumptions and conditions: 
https://www.cs.usfca.edu/~galles/visualization/BTree.html

The addition of a new element to the B-tree consists of several steps:
1. Go from the root of the tree to one of its leaves after the following rules:

• Go to the left if the key is less or equal to the left key value of the parent node,
• Go to the right if the key is bigger than the right key value of the parent node,
• Go in the middle if the key is bigger than the left key value of the parent node and less or equal to the right key value of the

parent node.

2. When you get to the leaf, add the new key to it in order if it does not yet store two keys.
3. If it already contains two keys, divide this node into two nodes, leaving the smallest key in its left node, 

the biggest key in its right node, and pass the middle key to its parent node. If the parent node does not 
yet exist, create it. The parent node will be connected to these two child nodes.

4. If the parent node contains already two keys, the passed key is added in order and the parent node is 
also divided in the same way, creating two nodes and passing its middle key to its parent or creating it.

The operation of removal the keys from the B-TREE structure cannot violate the B-tree properties.

https://www.cs.usfca.edu/~galles/visualization/BTree.html
http://www.geeksforgeeks.org/b-tree-set-3delete/
http://www.geeksforgeeks.org/b-tree-set-1-introduction-2/
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


CONSTRUCTION OF AVB-TREES

AVB-trees are a simple modification of B-trees. AVB-trees aggregate the same (duplicated) values, represent 
them in a single node and count them up in order to know how many values have been aggregated to be able 
to remove the key representing several aggregated values correctly. Addition of a new key to the AVB-tree: 

1. Go from the root of the tree to one of its leaves after the following rules:
• Go to the left if the key is less to the left key value of the parent node,

• Go to the right if the key is bigger than the right key value of the parent node,

• Go in the middle if the key is bigger than the left key value and less than the right key value of the parent node.

• Increment the counter of the left or right key of parent node if the added element is equal to one of them, and stop the 
descent process to the leaves.

2. When you get to the leaf, and the element is not equal to any key in it, add the new key to it in order 
if it does not yet store two keys.

3. If it already contains two keys, divide this node into two nodes, leaving the smallest key in its left node, 
the biggest key in its right node, and pass the middle key to its parent node. If the parent node does not 
yet exist, create it. The parent node will be connected to these two child nodes.

4. If the parent node contains already two keys, the passed key is added in order and the parent node is 
also divided in the same way, creating two nodes and passing its middle key to its parent or creating it.

5. If the leaf contains a key that is equal to the added element, increment its counter.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


INSERTION OF THE KEY TO THE AVB-TREE

1. Start from the root and go recursively down along the edges to the descendants until the leaf is not achieved after the following rules:

a) Go to the left if the inserted key is less than the most left key in the node.

b) Go to the right if the inserted key is greater than the most right key in the node.

c) Go in the middle if the node contains two keys an the inserted key is greater than the left key and less then the right key.

d) Increment the counter of the key in the node that equals to the inserted keys.

2. When the leaf is achieved:

a) and if the inserted key is equal one of the keys in this leaf, increment the counter of this key.

b) else insert the inserted key to the keys stored in this leaf in the increasing order, initialize its counter to one, and go to the step 3.

3. If the number of all keys stored in this leaf is greater then two, divide this node into two nodes: let the new left leaf represent 
the left (least) key together with its counter, the new right leaf represent the right (greatest) key together with its counter, 
and the middle key together with its counter and the pointers the new leaves pass to the parent node if it exists, and go to the step 4; 
if the parent node does not exist, create it (a new root of the AVB tree) and let it represent this middle key together with its counter and 
create new edges for the passed pointers to the new leaves.

4. Insert the passed key together with its counter to the key(s) represented in this node in the increasing order: 
if the key comes from the left branch, insert it on the left side of the key(s); if the key comes from the right branch,
insert it on the right side of the key(s); if the key comes from the middle branch, insert it between the keys.

5. If the number of all keys stored in this node is equal to two, create two new edges for the passed pointers to the two divided nodes, 
where the edges are appropriately connected before and after the passed key in order instead of the edge that passed the key.

6. If the number of all keys stored in this node is greater then two, divide this node into two nodes: let the new left node represent 
the left (least) key together with its counter and connect the two leftmost edges to it; the new right node represent the right (greatest) 
key together with its counter and connect the two rightmost edges to it; and the middle key together with its counter and the pointers 
to the divided nodes pass to the parent node if it exists, and go to the step 4; if the parent node does not exist, create it (a new root of 
the AVB tree) and let it represent this middle key together with its counter, create new edges, and connect them to the divided nodes.

http://home.agh.edu.pl/~horzyk/index-eng.php
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INTERMEDIATE STEPS OF PASSING THE MIDDLE KEYS

The intermediate steps of passing the middle key together with its counter and pointers to the new edges of 
the divided leaves/nodes to the parent node after the division of a leaf or a node or the creation of anew root.
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http://home.agh.edu.pl/~horzyk/index-eng.php


COMPARISON OF THE B-TREES AND AVB-TREES

AVB-trees are smaller and more cost-effective.
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The AGDS for the IRIS data from ML Repository
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ATTRIBUTE VALUES ON THE LEFT and OBJECTS ON THE RIGHT
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REMOVAL OF 
REDUNDANCY

REMOVING OF REDUNDANCY (REDUCTION OF DUPLICATES)
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AGGREGATION 
AND REMOVAL 
OF DUPLICATES

AGGREGATION AND REMOVAL OF REDUNDANCY IN AGDS

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


CONSOLIDATED 
REPRESENTATION 
OF DUPLICATED 

OBJECTS

AGGREGATION OF DUPLICATED OBJECTS IN AGDS
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NO REDUNDANCY 
AND DUPLICATES

ELIMINATION OF REDUNDANCY IN AGDS REPRESENTATION
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FAST CORRELATION SEARCH

FAST SEARCH FOR RELATIONS AND CORRELATIONS

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


RELATIONS 
SEARCH

FAST SEARCH FOR RELATIONS BETWEEN OBJECTS
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FAST FINDING OF VARIOUS GROUPS AND CLASSIFICATION

SIMILARITIES DEFINE GROUPS
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DATA STRUCTURE 

AND EFFICIENCY OF DATA PROCESSING

The introduced associative graph data structures (AGDS) essentially reduce
the speed of data access and eliminates loops that have to be used on data 
organized in tables. Thus, the applied data structures have fundamental
importance in data mining and its efficacy. Appropriately organized data
can also facilitate various cognitive processes as well as intelligent inference.

In the AGDS structures, there is possible to:

 Storing always sorted data for all attributes at the same time,

 Lossless compression of data by removing any redundancy by eliminating
all duplicates of attribute values and objects,

 Linking attribute data through additional relationships not presented 
in tabular structures, mapping different vertical relationships, e.g. similarity, 
differences, order, minima, maxima, and thus also additional relationships 
between objects,

 Instantaneous data access (in constant time),

 Automatic grouping of similar data and objects is built-in this structure 
and accessible in constant time.

http://home.agh.edu.pl/~horzyk/index-eng.php
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REPLACING OPERATIONS BY THE ASSOCIATIVE STRUCTURE

The AGDS is not only another way of storing data in the graph structure, but it 
also replaces many operations and methods that have to be executed on tabular 
structures, looking for vertical relationships, e.g.:

 search for similar, different, correlated, inverse, neighbor, or duplicate objects,

 filter and search for various groups (e.g. clusters, classes) against given 
restrictions or constraints, selected attribute values, or their ranges,

 organize objects by all attributes simultaneously.

DEFINITION: We say that the structure replaces operations performer on 
another data structure when the computational complexity of the resulting data 

decreases to constant computational complexity O(1).

Generally speaking, if you have reached the computational goal in constant time 
(as in AGDS structures without loops) then your structure replaces more 

time-consuming operations that must be processed on another structure. 

Due to the fact that in computer science we lose most of the time for data 
search operations, the AGDS structure can accelerate many operations and 

applications several dozens, hundred, or even thousand Times depending on
the size of the browsed data! Intelligence demands such an efficiency!

http://home.agh.edu.pl/~horzyk/index-eng.php
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ACTIVE ASSOCIATIVE NEURONAL GRAPHS – AANG

 In the human brain, we find reactive neurons and active neuronal structures 
that not only quickly and effectively associate data but also are able to 
actively respond or react to incoming data from senses, i.e. receptors. 

 Despite the slow-acting neurons in relations to the clocking speed of modern 
processors, mental processes are rapidly overwhelmed by the constant 
computational complexity of neuronal associative and recall processes. 

 Such structures in the human brain do not have to go through the processes of 
crawling, searching, comparing, and exploring data in many nested loops,
nor passive tables are used for storing data as in relational databases.

 Biological processes of knowledge formation, data storage, information, and 
reasoning are based on plastic associative processes that reach for relevant data 
if they are fixed in them through learning, experience, introspection, inference,
or other cognitive processes in our minds.

 In addition, the human mind has the ability to compile various triggers from 
the memory of events regardless of the actual place and time of their occurrence. 
This ability allows you to create new cognitive contexts for next thought processes 
as well as provide creativity and generosity at the high mental, logical, emotional, 
and abstract levels. 

Modern computer science is very expensive in finding and exploring
large amounts of data. That is why we talk about BIG DATA PROBLEMS!
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ACTIVE ASSOCIATIVE NEURONAL GRAPHS – AANG

AGDS
passive

AANG
reactive

PASSIVE  DATA  STRUCTURES
are designed to store data

in their intact form

REACTIVE  DATA  STRUCTURES
react to new data and allow data

to interact with each other automatically
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The AANG constructed for all Iris data from ML Repository 

using AVB-trees for representation of all attribute values
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CREATION OF REACTIVE ASSOCIATIVE 

NEURONAL STRUCTURES

The ASSORT-2 algorithm automatically creates the basic associative neuronal structure for any table.
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REACTIVE ASSOCIATIVE NEURAL 

STRUCTURES ON SEQUENTIAL MACHINES

Buy in large, contemporary computers work sequentially, have sequential cores in processors, 
sequential memories and sequential ways of executing operations and programs. Brains are 
parallel, and all internal processes run simultaneously. When implementing reactive neuronal 
structures on contemporary computers, we have to keep in mind these limitations and use 
AVB-trees to efficiently organize and access attribute data represented by sensors in sensory 
fields.
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CREATION OF

ACTIVE ASSOCIATIVE NEURAL GRAPHS

Suppose we have objects o1, …, oN defined by the attributes a1, …, aK in such a way that 
each object is defined by a set of values of these attributes (K is a number of all attributes):

Let these values react to certain sensory fields, modeling the senses, having sensors, 
modeling the receptors, enabling them to react to these values at a certain intensity.

Determination of ranges of represented values by the input sensory fields is computed after:

Sensors in the sensory fields are created after the presentation of the stimulus that is not yet 
represented by any of the existing sensors, i.e. none of the existing sensors does not react 
enough, i.e. the distance between the presented and represented the value by this sensor is 
bigger than a defined certain minimum sensitivity:

In case, when one of the sensors recognizes a certain value of the stimulus with a certain force, 
then the new sensor is not created:

To the extreme (minimum and maximum) values of
external stimuli react extreme sensors:

http://home.agh.edu.pl/~horzyk/index-eng.php
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CREATION OF

ACTIVE ASSOCIATIVE NEURAL GRAPHS

Sensors react (respond) to external stimuli with a specific force depending on the proximity of
the stimulus value to the value represented by that sensor, for which it is the most sensitive. 
Extreme sensors                                          use the following formulas to compute their responses:

Value sensors           represent attribute values and calculate their responses on the sensory input 
stimulations         on the basis of the following formula:

The stimulated sensors          start to stimulate connected sensory neurons           with the 
computed strength          as long as the value           is presented at the input sensory field. 
This can lead to activation of the connected neurons after a certain period of time which
can be computed after:

http://home.agh.edu.pl/~horzyk/index-eng.php
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CREATION OF

ACTIVE ASSOCIATIVE NEURAL GRAPHS

Next, extreme neurons                                  can react to extreme values according to their 
stimulation by extreme sensors. Their reactions can be divided into three categories (ranges):

< 1    for non-extreme values

= 1    to the values equal to the current extremum (minimum or maximum)

> 1    to the values that are new extremum to the current one

Extreme neurons are connected to the value neurons representing extreme values. The 
connection weights are always equal the activation thresholds of the connected neurons:

The activation thresholds in this model are always equal one (θ = 1).

http://home.agh.edu.pl/~horzyk/index-eng.php
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CREATION OF

ACTIVE ASSOCIATIVE NEURAL GRAPHS

Sensory neurons react to stimulations coming from sensors         , neighbor sensory neurons           , 
and object neurons            according to the following formula:

And calculate their output value depending on the achievement of their activation thresholds:

While sensors can stimulate them for some time, charging them until they reach their activation 
thresholds which is determined by the following formula:

http://home.agh.edu.pl/~horzyk/index-eng.php
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CREATION OF

ACTIVE ASSOCIATIVE NEURAL GRAPHS

Sensory neurons are connected by synapses which weights 
are determined by:

𝑤
𝑅𝑣𝑖

𝑎𝑘 ,𝑅𝑣𝑗

𝑎𝑘 = 1 −
𝑣𝑖
𝑎𝑘 − 𝑣𝑗

𝑎𝑘

𝑟𝑎𝑘

Sensory neurons are connected to object neurons 
representing objects defined by values represented by these 
sensory neurons.

The weights of synaptic connections leading from sensory 
neurons to object neurons are determined by:

𝑤
𝑅𝑣𝑖

𝑎𝑘 ,𝑂𝑛
=
1

𝑣𝑖
𝑎𝑘

The weights of synaptic connections leading from object 
neurons to sensory neurons are equal their activation 
thresholds:

𝑤
𝑂𝑛,𝑅𝑣𝑖

𝑎𝑘 = 𝜃𝑅𝑣𝑖
𝑎𝑘 = 1
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CREATION OF

ACTIVE ASSOCIATIVE NEURAL GRAPHS

The stimulation of object neurons is determined by:

And their output value is computed as follows:

Where the neuron activation thresholds are initially equal to 
one:

𝜃𝑂𝑛 = 1

Thanks this, if there is presented an input combination
defining a known object on the sensory input fields,
the neuron representing this combination will activate 
at first. The other neurons representing similar combinations 
will activate later if the input combination is further 
presented on the input sensory fields of the AANG.

Neurons, which were activated (e.g. A1) are for some time in the refractory states (R), 
so they are not reactive to any stimulations, e.g. the one coming back from the neuron A2.

A1

A2

R
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CREATION OF

ACTIVE ASSOCIATIVE NEURAL GRAPHS

Sensory neurons should not only react to sensory stimuli of a specific intensity 
but also stimulate other connected sensory neurons with the most similar values. 

Hence, there is necessary the self-organizing capability of the AANG network. 

The sensory connective plasticity rule determines in which cases the plasticity results 
in the creation or reconfiguration of existing connections between sensory neurons.

The sensory connective plasticity rule between sensory neurons says that the sensory neuron         
will disconnect with the neuron           which stimulates it weaker than the connected sensor         :

Sensory neurons are thus programmed to require precisely two connections with the remaining 
sensory neurons or extreme neurons.

Disconnection thus triggers the neuronal process of connective plasticity,
which will look for other neurons that wish to connect at a given moment.

Therefore, if a new sensor and its new sensory neuron for a not yet represented new value 
in a given sensory field is created then this new sensory neuron will try to connect to 
these two disconnected neurons.

In result, the new sensory neuron representing the value           will join the others in an orderly 
way:
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CREATION OF

ACTIVE ASSOCIATIVE NEURAL GRAPHS
However, this plasticity is only possible in the sensory neuron stimulated simultaneously by 
the sensor and another previously activated sensory neuron.

Therefore, it is important to take into consideration and computation the time and the order of 
activations of the individual sensory neurons in time to make such plasticity.

The activation time of sensory neurons as a result of their stimulation by the connected sensors 
will vary depending on the similarity of represented values by sensors to the presented value 
on their input sensory fields:

The neuron, which activates first as a result of such sensory stimulation, sends a weighted 
signal to the two connected sensory (or extreme) neurons. Always only one of it will satisfy 
the connective plasticity condition:

and breaks its connection to this neuron because:

The presented algorithm is called the ASSORT-2 associative sort algorithm and is used for 
the automatic and incremental construction of the AANG neural network for any set of patterns.
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CREATION OF

ACTIVE ASSOCIATIVE NEURAL GRAPHS

We can get the following graph structure built by the ASSORT-2 algorithm:
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ASSORT  FOR  A  SELECTED  SUBSET  OF  IRIS  DATA

STEP 1. CREATION OF A NEW GRAPH

Create a new AANG graph for a set of objects stored in a tabular structure (table).
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ASSORT  FOR  A  SELECTED  SUBSET  OF  IRIS  DATA

STEP 2. CREATION OF SENSORY FIELDS IN THE GRAPH (INPUT INTERFACES FOR THE AANG)

Create new sensory fields for all known attributes defined in the transformed table.

A2: sepal width (swi)                         R=0.0A1: sepal length (sle)                                 R=0.0

A4: petal width (pwi)                         R=0.0A3: petal length (ple)               R=0.0 A5: class name
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5.1 1.9

Attributes

VIRGINICA

VIRGINICA

VIRGINICA

VIRGINICA

VIRGINICA

VERSICOLOR

VERSICOLOR

VERSICOLOR

VERSICOLOR

SORTED SUBSET 

OF IRIS 
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ASSORT  FOR  A  SELECTED  SUBSET  OF  IRIS  DATA

STEP 3. CREATION OF ASSOCIATIVE NEURONAL REPRESENTATION OF THE OBJECT (RECORD) R1

Create an object representation related to new sensory neurons and sensors using ASSORT 
the sensory connective plasticity rule, which connects new sensory neurons in order.

A2: sepal width (swi)                         R=0.0

5.8 2.6

A1: sepal length (sle)                                 R=0.0

A4: petal width (pwi)                         R=0.0

4.0 1.2

A3: petal length (ple)               R=0.0 A5: class name

VERSICOLOR

MIN MAX MIN MAX

MIN MAXMIN MAX

O1

SA1 
min

SA1 
5.8

SA1 
max

SA2 
2.6

SA2 
min

SA2 
max

SA3 
min

SA3 
4.0

SA3 
max

SA4 
1.2

SA4 
min

SA4 
max

SA5 
VER

swi

5.8 2.6

sle

5.4 3.0R2

R1

R3

R4 6.7 3.0

6.0 2.7

6.0 2.2

4.9 2.5

R6

R5

R8

R9

5.9 3.2

R7

pwi

4.0 1.2

ple

4.5 1.5

5.0 1.7

5.1 1.6

5.0 1.5

4.5 1.7

4.8 1.8

class name

VERSICOLOR

VIRGINICA

6.0 3.0

5.7 2.5

6.5 3.2

R10

5.8 2.7

R11

4.8 1.8

5.0 2.0

5.1 2.0

5.1 1.9

Attributes

VIRGINICA

VIRGINICA

VIRGINICA

VIRGINICA

VIRGINICA

VERSICOLOR

VERSICOLOR

VERSICOLOR

VERSICOLOR

SORTED SUBSET 

OF IRIS 
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ASSORT  FOR  A  SELECTED  SUBSET  OF  IRIS  DATA

STEP 4. CREATION OF ASSOCIATIVE NEURONAL REPRESENTATION OF THE OBJECT (RECORD) R2

Create a representation of another object (R2) in the AANG structure using already created sensors 
and sensory neurons, aggregating, not duplicating, representation of the same values (VERSICOLOR). 

A2: sepal width (swi)                         R=0.4

5.8 2.6

A1: sepal length (sle)                                 R=0.4

5.4 3.0

A4: petal width (pwi)                         R=0.3

4.0 1.2

A3: petal length (ple)               R=0.5

4.5 1.5

A5: class name

VERSICOLOR

MIN MAX MIN MAX

MIN MAXMIN MAX

O1 O2

SA1 
min

SA1 
5.4

SA1 
5.8

SA1 
max

SA2 
2.6

SA2 
3.0

SA2 
min

SA2 
max

SA3 
min

SA3 
4.0

SA3 
4.5

SA3 
max

SA4 
1.2

SA4 
min

SA4 
max

SA5 
VER

SA4 
1.5

swi

5.8 2.6

sle

5.4 3.0R2

R1

R3

R4 6.7 3.0

6.0 2.7

6.0 2.2

4.9 2.5

R6

R5

R8

R9

5.9 3.2

R7

pwi

4.0 1.2

ple

4.5 1.5

5.0 1.7

5.1 1.6

5.0 1.5

4.5 1.7

4.8 1.8

class name

VERSICOLOR

VIRGINICA

6.0 3.0

5.7 2.5

6.5 3.2

R10

5.8 2.7

R11

4.8 1.8

5.0 2.0

5.1 2.0

5.1 1.9

Attributes

VIRGINICA

VIRGINICA

VIRGINICA

VIRGINICA

VIRGINICA

VERSICOLOR

VERSICOLOR

VERSICOLOR

VERSICOLOR

SORTED SUBSET 

OF IRIS 
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ASSORT  FOR  A  SELECTED  SUBSET  OF  IRIS  DATA

STEP 5. CREATION OF ASSOCIATIVE NEURONAL REPRESENTATION OF THE OBJECT (RECORD) R3 

Presentation of further objects causes stimulation and activation of sensory neurons if they 
represent presented values or addition of new ones if the presented values are not yet represented. 

A2: sepal width (swi)                         R=0.4

5.8 2.6

A1: sepal length (sle)                                 R=0.6

5.4 3.06.0 2.7

A4: petal width (pwi)                         R=0.4

4.0 1.2

A3: petal length (ple)               R=1.1

4.5 1.5 1.65.1

A5: class name

VERSICOLOR

MIN MAX MIN MAX

MIN MAXMIN MAX

O1 O2 O3

SA1 
min

SA1 
5.4

SA1 
5.8

SA1 
6.0

SA1 
max

SA2 
2.6

SA2 
2.7

SA2 
3.0

SA2 
min

SA2 
max

SA3 
min

SA3 
4.0

SA3 
4.5

SA3 
5.1

SA3 
max

SA4 
1.2

SA4 
1.6

SA4 
min

SA4 
max

SA5 
VER

SA4 
1.5

swi

5.8 2.6

sle

5.4 3.0R2

R1

R3

R4 6.7 3.0

6.0 2.7

6.0 2.2

4.9 2.5

R6

R5

R8

R9

5.9 3.2

R7

pwi

4.0 1.2

ple

4.5 1.5

5.0 1.7

5.1 1.6

5.0 1.5

4.5 1.7

4.8 1.8

class name

VERSICOLOR

VIRGINICA

6.0 3.0

5.7 2.5

6.5 3.2

R10

5.8 2.7

R11

4.8 1.8

5.0 2.0

5.1 2.0

5.1 1.9

Attributes

VIRGINICA

VIRGINICA

VIRGINICA

VIRGINICA

VIRGINICA

VERSICOLOR

VERSICOLOR

VERSICOLOR

VERSICOLOR

SORTED SUBSET 
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ASSORT  FOR  A  SELECTED  SUBSET  OF  IRIS  DATA

STEP 6. CREATION OF ASSOCIATIVE NEURONAL REPRESENTATION OF THE OBJECT (RECORD) R4

There is visible the aggregated representation of the same attribute values by the same sensors 
and sensory neurons, e.g. 3.0 for the attribute A2: sepal width.

A2: sepal width (swi)                         R=0.4

5.8 2.6

A1: sepal length (sle)                                 R=1.3

5.4 3.06.76.0 2.7

A4: petal width (pwi)                         R=0.5

4.0 1.2

A3: petal length (ple)               R=1.1

4.5 1.5 1.65.0 1.75.1

A5: class name

VERSICOLOR

MIN MAX MIN MAX

MIN MAXMIN MAX

O1 O2 O3 O4

SA1 
min

SA1 
5.4

SA1 
5.8

SA1 
6.0

SA1 
6.7

SA1 
max

SA2 
2.6

SA2 
2.7

SA2 
3.0

SA2 
min

SA2 
max

SA3 
min

SA3 
4.0

SA3 
4.5

SA3 
5.0

SA3 
5.1

SA3 
max

SA4 
1.2

SA4 
1.6

SA4 
1.7

SA4 
min

SA4 
max

SA5 
VER

SA4 
1.5

swi

5.8 2.6

sle

5.4 3.0R2

R1

R3

R4 6.7 3.0

6.0 2.7

6.0 2.2

4.9 2.5

R6

R5

R8

R9

5.9 3.2

R7

pwi

4.0 1.2

ple

4.5 1.5

5.0 1.7

5.1 1.6

5.0 1.5

4.5 1.7

4.8 1.8

class name

VERSICOLOR

VIRGINICA

6.0 3.0

5.7 2.5

6.5 3.2

R10

5.8 2.7

R11

4.8 1.8

5.0 2.0

5.1 2.0

5.1 1.9

Attributes

VIRGINICA

VIRGINICA

VIRGINICA

VIRGINICA

VIRGINICA

VERSICOLOR

VERSICOLOR

VERSICOLOR

VERSICOLOR

SORTED SUBSET 
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ASSORT  FOR  A  SELECTED  SUBSET  OF  IRIS  DATA

STEP 7. CREATION OF ASSOCIATIVE NEURONAL REPRESENTATION OF THE OBJECT (RECORD) R5

Sometimes MIN or MAX sensors are also activated when the values presented on the sensory input 
fields are minimum or maximum in the range of given attributes.

A2: sepal width (swi)                         R=0.6

5.8 2.6

A1: sepal length (sle)                                 R=1.3

5.4 3.06.76.0 2.75.9 3.2

A4: petal width (pwi)                         R=0.6

4.0 1.2

A3: petal length (ple)               R=1.1

4.5 1.5 1.65.0 1.75.14.8 1.8

A5: class name

VERSICOLOR

MIN MAX MIN MAX

MIN MAXMIN MAX

O1 O2 O3 O4 O5

SA1 
min

SA1 
5.4

SA1 
5.8

SA1 
5.9

SA1 
6.0

SA1 
6.7

SA1 
max

SA2 
2.6

SA2 
2.7

SA2 
3.0

SA2 
3.2

SA2 
min

SA2 
max

SA3 
min

SA3 
4.0

SA3 
4.5

SA3 
4.8

SA3 
5.0

SA3 
5.1

SA3 
max

SA4 
1.2

SA4 
1.6

SA4 
1.7

SA4 
1.8

SA4 
min

SA4 
max

SA5 
VER

SA4 
1.5

swi

5.8 2.6

sle

5.4 3.0R2

R1

R3

R4 6.7 3.0

6.0 2.7

6.0 2.2

4.9 2.5

R6

R5

R8

R9

5.9 3.2

R7

pwi

4.0 1.2

ple

4.5 1.5

5.0 1.7

5.1 1.6

5.0 1.5

4.5 1.7

4.8 1.8

class name

VERSICOLOR

VIRGINICA

6.0 3.0

5.7 2.5

6.5 3.2

R10

5.8 2.7

R11

4.8 1.8

5.0 2.0

5.1 2.0

5.1 1.9

Attributes

VIRGINICA

VIRGINICA

VIRGINICA

VIRGINICA

VIRGINICA

VERSICOLOR

VERSICOLOR

VERSICOLOR

VERSICOLOR

SORTED SUBSET 

OF IRIS 
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ASSORT  FOR  A  SELECTED  SUBSET  OF  IRIS  DATA

STEP 8. CREATION OF ASSOCIATIVE NEURONAL REPRESENTATION OF THE OBJECT (RECORD) R6

The number and level of aggregations will grow together with the number of represented objects, 
e.g. 6.0 for the attribute A1 and 5.0 for the attribute A3), which reduces the cost of representation.

A2: sepal width (swi)                         R=1.0

5.8 2.6

A1: sepal length (sle)                                 R=1.3

5.4 3.06.76.0 2.72.25.9 3.2

A4: petal width (pwi)                         R=0.6

4.0 1.2

A3: petal length (ple)               R=1.1

4.5 1.5 1.65.0 1.75.14.8 1.8

A5: class name

VERSICOLOR VIRGINICA

MIN MAX MIN MAX

MIN MAXMIN MAX

O1 O2 O3 O4 O5 O6

SA1 
min

SA1 
5.4

SA1 
5.8

SA1 
5.9

SA1 
6.0

SA1 
6.7

SA1 
max

SA2 
2.2

SA2 
2.6

SA2 
2.7

SA2 
3.0

SA2 
3.2

SA2 
min

SA2 
max

SA3 
min

SA3 
4.0

SA3 
4.5

SA3 
4.8

SA3 
5.0

SA3 
5.1

SA3 
max

SA4 
1.2

SA4 
1.6

SA4 
1.7

SA4 
1.8

SA4 
min

SA4 
max

SA5 
VER

SA5 
VER

SA4 
1.5

swi

5.8 2.6

sle

5.4 3.0R2

R1

R3

R4 6.7 3.0

6.0 2.7

6.0 2.2

4.9 2.5

R6

R5

R8

R9

5.9 3.2

R7

pwi

4.0 1.2

ple

4.5 1.5

5.0 1.7

5.1 1.6

5.0 1.5

4.5 1.7

4.8 1.8

class name

VERSICOLOR

VIRGINICA

6.0 3.0

5.7 2.5

6.5 3.2

R10

5.8 2.7

R11

4.8 1.8

5.0 2.0

5.1 2.0

5.1 1.9

Attributes

VIRGINICA

VIRGINICA

VIRGINICA

VIRGINICA

VIRGINICA

VERSICOLOR

VERSICOLOR

VERSICOLOR

VERSICOLOR

SORTED SUBSET 

OF IRIS 

PATTERNS

STEP 8

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


ASSORT  FOR  A  SELECTED  SUBSET  OF  IRIS  DATA

STEP 9. CREATION OF ASSOCIATIVE NEURONAL REPRESENTATION OF THE OBJECT (RECORD) R7

Subsequent object aggregations enable automatic associations between objects,
e.g. the sensory neuron 4.5 for the attribute A3 links together objects R2 and R7,
and 1.7 for the attribute A4 links together objects R3 and R7.

A2: sepal width (swi)                         R=1.0

5.8 2.6

A1: sepal length (sle)                                 R=1.8

5.4 3.06.76.0 2.72.24.9 2.55.9 3.2

A4: petal width (pwi)                         R=0.6

4.0 1.2

A3: petal length (ple)               R=1.1

4.5 1.5 1.65.0 1.75.14.8 1.8

A5: class name

VERSICOLOR VIRGINICA

MIN MAX MIN MAX

MIN MAXMIN MAX

O1 O2 O3 O4 O5 O6 O7

SA1 
min

SA1 
4.9

SA1 
5.4

SA1 
5.8

SA1 
5.9

SA1 
6.0

SA1 
6.7

SA1 
max

SA2 
2.2

SA2 
2.5

SA2 
2.6

SA2 
2.7

SA2 
3.0

SA2 
3.2

SA2 
min

SA2 
max

SA3 
min

SA3 
4.0

SA3 
4.5

SA3 
4.8

SA3 
5.0

SA3 
5.1

SA3 
max

SA4 
1.2

SA4 
1.6

SA4 
1.7

SA4 
1.8

SA4 
min

SA4 
max

SA5 
VER

SA5 
VER

SA4 
1.5

swi

5.8 2.6

sle

5.4 3.0R2

R1

R3

R4 6.7 3.0

6.0 2.7

6.0 2.2

4.9 2.5

R6

R5

R8

R9

5.9 3.2

R7

pwi

4.0 1.2

ple

4.5 1.5

5.0 1.7

5.1 1.6

5.0 1.5

4.5 1.7

4.8 1.8

class name

VERSICOLOR

VIRGINICA

6.0 3.0

5.7 2.5

6.5 3.2

R10

5.8 2.7

R11

4.8 1.8

5.0 2.0

5.1 2.0

5.1 1.9

Attributes

VIRGINICA

VIRGINICA

VIRGINICA

VIRGINICA

VIRGINICA

VERSICOLOR

VERSICOLOR

VERSICOLOR

VERSICOLOR

SORTED SUBSET 
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ASSORT  FOR  A  SELECTED  SUBSET  OF  IRIS  DATA

STEP 10. CREATION OF ASSOCIATIVE NEURONAL REPRESENTATION OF THE OBJECT (RECORD) R8

Neuronal aggregates also allow for automatic grouping (clustering and classification) of objects 
against any combination of input values as well as similar values that are linked together.

A2: sepal width (swi)                         R=1.0

5.8 2.6

A1: sepal length (sle)                                 R=1.8

5.4 3.06.76.0 2.72.24.9 2.55.9 3.2

A4: petal width (pwi)                         R=0.6

4.0 1.2

A3: petal length (ple)               R=1.1

4.5 1.5 1.65.0 1.75.14.8 1.8

A5: class name

VERSICOLOR VIRGINICA

MIN MAX MIN MAX

MIN MAXMIN MAX

O1 O2 O3 O4 O5 O6 O7 O8

SA1 
min

SA1 
4.9

SA1 
5.4

SA1 
5.8

SA1 
5.9

SA1 
6.0

SA1 
6.7

SA1 
max

SA2 
2.2

SA2 
2.5

SA2 
2.6

SA2 
2.7

SA2 
3.0

SA2 
3.2

SA2 
min

SA2 
max

SA3 
min

SA3 
4.0

SA3 
4.5

SA3 
4.8

SA3 
5.0

SA3 
5.1

SA3 
max

SA4 
1.2

SA4 
1.6

SA4 
1.7

SA4 
1.8

SA4 
min

SA4 
max

SA5 
VER

SA5 
VER

SA4 
1.5

swi

5.8 2.6

sle

5.4 3.0R2

R1

R3

R4 6.7 3.0

6.0 2.7

6.0 2.2

4.9 2.5

R6

R5

R8

R9

5.9 3.2

R7

pwi

4.0 1.2

ple

4.5 1.5

5.0 1.7

5.1 1.6

5.0 1.5

4.5 1.7

4.8 1.8

class name

VERSICOLOR

VIRGINICA

6.0 3.0

5.7 2.5

6.5 3.2

R10

5.8 2.7

R11

4.8 1.8

5.0 2.0

5.1 2.0

5.1 1.9

Attributes

VIRGINICA

VIRGINICA

VIRGINICA

VIRGINICA

VIRGINICA

VERSICOLOR

VERSICOLOR
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ASSORT  FOR  A  SELECTED  SUBSET  OF  IRIS  DATA

STEP 11. CREATION OF ASSOCIATIVE NEURONAL REPRESENTATION OF THE OBJECT (RECORD) R9

Most aggregations occur where there are natural classes (e.g. VERSICOLOR or VIRGINICA), 
but in this model, the class can be defined by any aggregation of the same values or any range of 
them. The AANG graph allows to quickly process any grouping or filtration.

A2: sepal width (swi)                         R=1.0

5.8 2.6

A1: sepal length (sle)                                 R=1.8

5.4 3.06.76.0 2.72.24.9 2.55.9 3.2

A4: petal width (pwi)                         R=0.7

4.0 1.2

A3: petal length (ple)               R=1.1

4.5 1.5 1.65.0 1.75.14.8 1.8

A5: class name

VERSICOLOR 1.9VIRGINICA

MIN MAX MIN MAX

MIN MAXMIN MAX

O1 O2 O3 O4 O5 O6 O7 O8 O9

SA1 
min

SA1 
4.9

SA1 
5.4

SA1 
5.8

SA1 
5.9

SA1 
6.0

SA1 
6.7

SA1 
max

SA2 
2.2

SA2 
2.5

SA2 
2.6

SA2 
2.7

SA2 
3.0

SA2 
3.2

SA2 
min

SA2 
max

SA3 
min

SA3 
4.0

SA3 
4.5

SA3 
4.8

SA3 
5.0

SA3 
5.1

SA3 
max

SA4 
1.2

SA4 
1.6

SA4 
1.7

SA4 
1.8

SA4 
1.9

SA4 
min

SA4 
max

SA5 
VER

SA5 
VER

SA4 
1.5

swi

5.8 2.6

sle

5.4 3.0R2

R1

R3

R4 6.7 3.0

6.0 2.7

6.0 2.2

4.9 2.5

R6

R5

R8

R9

5.9 3.2

R7

pwi

4.0 1.2

ple

4.5 1.5

5.0 1.7

5.1 1.6

5.0 1.5

4.5 1.7

4.8 1.8

class name

VERSICOLOR

VIRGINICA

6.0 3.0

5.7 2.5

6.5 3.2

R10

5.8 2.7

R11

4.8 1.8

5.0 2.0

5.1 2.0

5.1 1.9

Attributes

VIRGINICA

VIRGINICA

VIRGINICA

VIRGINICA
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ASSORT  FOR  A  SELECTED  SUBSET  OF  IRIS  DATA

STEP 12. CREATION OF ASSOCIATIVE NEURONAL REPRESENTATION OF THE OBJECT (RECORD) R10

Aggregates can group and associate multiple objects, e.g. 5,0 for the attribute A3 naturally 
associates the objects R4, R6 and R10. Such associations can be found instantly in constant time.

A2: sepal width (swi)                         R=1.0

5.8 2.6

A1: sepal length (sle)                                 R=1.8

5.4 3.06.76.0 2.72.24.9 2.55.9 3.2

A4: petal width (pwi)                         R=0.8

4.0 1.2

A3: petal length (ple)               R=1.1

4.5 1.5 1.65.0 1.75.14.8 1.8

A5: class name

VERSICOLOR

5.7

2.01.9VIRGINICA

MIN MAX MIN MAX
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ASSORT  FOR  A  SELECTED  SUBSET  OF  IRIS  DATA

STEP 13. CREATION OF ASSOCIATIVE NEURONAL REPRESENTATION OF THE OBJECT (RECORD) R11

The built-in associative neural graph with the ASSORT algorithm can then serve to quickly 
and automatically infer the different relationships encoded in this associative structure!
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ASSORT  FOR  A  SELECTED  SUBSET  OF  IRIS  DATA

THE AANG HAS BEEN CREATED THANKS TO THE ASSORT ALGORITHM

The final associative neuronal graph structure represents all sorted objects simultaneously
for all attributes! Hence, we do not need to sort anything again…
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SAMPLE INFERENCE USING ASSOCIATIONS

THERE IS NO ACTIVE NEURON REACTION?

So far, the neurons have not yet reacted? Why? Maybe we were too short stimulating the network?

Remember that in artificial associative systems time is a computational factor, so let’s keep on stimulating. 
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WE HAVE TO STIMULATE SENSORS OR NEURONS IN ORDER TO USE AANG

We start to present a new pattern (object) of unknown class to the AANG, stimulating the 
appropriate sensory fields for a a specified period of time:
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SAMPLE INFERENCE USING ASSOCIATIONS

THIS TIME THE NEURON O2 WAS ACTIVATED

The O2 neuron was activated the fastest, indicating the most similar object to the pattern 
presented on the input of this network, but we still do not have an answer for its class.

WE HAVE TO STIMULATE THE NETWORK FURTHER

After a slightly longer period of time, neurons were activated
because their charging process was slower. 
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SAMPLE INFERENCE USING ASSOCIATIONS

ACTIVATION OF NEURONS IS THE RESPONSE OF THE AANG NETWORK

In this way, without the use of any inference, search, or comparison algorithm, we have received an 
answer coming from associations represented by the neurons of this neural network. 

ACTIVATED NEURONS AUTOMATICALLY STIMULATE THE OTHER CONNECTED NEURONS

The O2 neuron is connected to the neuron representing the VERSICOLOR class. The weight of this 
connection is equal to the activation threshold of that neuron, so it produces the correct response.
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THE AANG CREATED FOR ALL IRIS PATTERNS FROM ML 

REPOSITORY USING AVB-TREES TO REPRESENT ALL FEATURES
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WHAT CAN BE ACHIEVED WITH ASSOCIATIONS

Active associative neural graphs AANG enable us to:

 Actively interact data with each other through the use of neurons and a graph structure 
that integrates data, groups, and sequences that are properly consolidated. 

 Automatic recall relationships between data in the table.

 Sort objects using neurons with context-sensitive plasticity triggers for their actions, i.e.:

 creating new connections,

 breaking old connections,

 update of synaptic weights.

 Perform local implementation of all calculations performed during ASSORT sorting without 
the involvement of external algorithms to iterate on neurons or consolidate their results. 
The neurons unintentionally do the sorting, which results from their characteristic plasticity 
operations, known from the biological nervous system.

 Sort objects against all attributes simultaneously and simultaneously with linear 
computational complexity O (n) and without the need to create additional indices 
for relational databases to speed up the operations performed on them.

 Add new objects in parallel for all attributes while maintaining order with constant 
computational complexity O (1) for each of them.

 Automatic inference by stimulating associated data or objects.

 Automatic construction of intelligently concluding cognitive associative systems 
after the given constraints, conditions, or for the given value or their ranges.
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SPIKING NEURONS

Spiking neurons are models of biological neurons that fall into the third generation of neural 
network models, increasing the realism in neural simulations.

These models incorporate the concept of time into the operating
model of the previously used artificial McCulloch-Pitt’s model.

Artificial neurons do not fire even if they implement hard-switch
activation functions.

The fundamental problem is to propose the model that explains
how information is encoded and decoded by a series of trains of
pulses, i.e. action potentials. Thus, the fundamental question of
neuroscience is to determine if neurons communicate by a rate
or temporal code? Temporal coding suggests that a single
spiking neuron can replace hundreds of hidden units
on a sigmoidal neural network. Is that true?

http://icwww.epfl.ch/~gerstner/SPNM/SPNM.html
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SPIKING ASSOCIATIVE NEURONS

The spiking associative neuron is a functional model of biological neurons. This is a simplistic model 
in comparison to spiking neurons, but it does not emphasize or try to model biological platform
truly. It focuses on efficient modeling of time-dependent functional aspects that are responsible for 
the information processes that take place in biological neurons and their networks. This model also 
has some built-in routines that enable it automatically connect to other neurons according to some 
plasticity rules.
This model is reactive
to external stimulations
and internal processes:

charging activation

relaxing

absolute refraction

relative refractionresting

suppression
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HOW DO NEURONS CONCLUDE?

Active Associative Neural Graphs (AANGs) are able to combine inferences based on similarity 
and sequences based on the neuronal graph and its parameters. For now, let’s focus on the 
conclusions based on similarity. Let’s take a little clipping of this graph, assuming that the 
chosen neuron representing the object Oj can be externally stimulated for some time in order 
to find out other neurons of the same kind
in this graph, which are most similar to it.

The degree of similarity will be determined by the
time after which such neurons will be activated.

For ease of analysis, let us consider only one object
neuron Ok, which may potentially be indirectly
influenced by another object neuron Oj that is
externally stimulated for some period of time.

This period can be determined by the user in order
to perform analysis of the similarity between
these two objects represented by these neurons.

The interaction between neurons is possible
thanks to neuronal affinity associations fixed
in the associative neuronal graph.
These associations are represented by weighted
connections between sensory neurons Ri and Ri+1.
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HOW DO NEURONS CONCLUDE?

Each activation of the neuron Oj

stimulates and activates the neuron Ri

which stimulates the neighboring 
sensory neurons Ri+1 and Ri-1

with the force equal to the weights of 
these connections, i.e. 0.8 and 0.6, 
appropriately. Therefore, it is needed 
to stimulate these neurons twice, so 
that, with regards to relaxation, they 
achieve a total stimulus equal to their 
activation thresholds q = 1. This will 
allow them for activation and then to 
start stimulation of the connected 
neurons, e.g. the neuron Ok.
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HOW DO NEURONS CONCLUDE?

As we can notice,
the neuron Ok needs to be 
stimulated triple times through the 
connection coming from the neuron 
Ri+1 and weighted with 0.5 to reach 
the activation threshold q = 1.0.

When a neuron is not externally 
stimulated, the relaxation and 
refraction processes try to restore 
the resting state in it. 
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HOW DO NEURONS CONCLUDE?

The sensory neurons Ri+1 and Ri-1 are 
stimulated with different strength according 
to the weights (0.8 and 0.6) of connections 
coming from the neuron Ri. It induces 

different excitation levels in them and 
different activation moments. The neuron 
Ri+1 achieves this threshold earlier than the 
neuron Ri-1, so the neuron Ri+1 starts earlier 
to stimulate the neuron Ok than the neuron 
Ri-1 starts to influence the neuron Om. Thus, 
the neuron Ok will be activated earlier than 

the neuron Om. It implies greater similarity 
of the object represented by the neuron Ok

than by the neuron Om. This is consistent 
with intuition of the real similarity.
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HOW DO NEURONS CONCLUDE?

The small shift in activation of the neurons Ok and Om may seem to be insignificant or 
negligible, but this phenomenon is crucial for the working way of biological neural networks 
as well as of the introduced associative neural graphs (e.g. AANG, DASNG, ANAKG or AAS).

The difference in activation time of these neurons representing different objects informs us of 
weaker and stronger associations with these objects, i.e. less or greater similarity of them.

In general, these time differences determine cognitive processes in the human brain 
like mental, motor, or sensory responses… influencing the behavior of the whole network.

In this way, associative neurons automatically conclude, revealing their various relationships 
with other objects and data represented by other directly or indirectly connected neurons.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


HOW DO NEURONS CONCLUDE?

Looking for answers about similarities, groups of similar patterns to a given pattern, 
any subset of patterns, any given set of features, or any combination of their ranges, 
it is enough to stimulate the appropriate neurons or sensors, and just wait for 
activations of neurons, which activation moments determine the network answers.

The chronology of neuronal activity automatically points out similar objects 
or their groups (in clusterization problems), missing features or component objects 
(in cognition problems), or indicates which classes they belong to (in classification 
problems). Neurons can therefore automatically explore the knowledge from the 
relations represented by connections and from objects represented by other neurons.
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GENERALIZATION OF CONSIDERATIONS

This very simple (trivial) example does not 
introduce the full scope of the inference, 
applicability or possible combinations of 
neuronal activities in the whole network (graph)!

In the whole associative neural graph, such an 
externally stimulated and activated object 
neuron will simultaneously inference with 
several sensory neurons which will subsequently 
stimulate various object neurons. The activated 
object neuron can also have direct connections 
to other object neurons (representing 
associative succession or defining) and thereby
stimulate them. It is very tough to precisely, 
clearly, and sequentially describe all these 
parallelly running processes, it must be seen!

All these processes run parallelly in the brain, so 
the inference is very fast in comparison to the 
classic inference methods of computational 
intelligence or knowledge engineering, where  
you must repeatedly search through tables, their 
elements, transaction, join data together etc.
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DEEP ASSOCIATIVE NEURAL GRAPHS - DASNG

Using the knowledge of how associative neurons behave when representing data and objects, 
we can try to transform any relational database that represents horizontally related objects to 
the form of a deep associative neural graph DASNG.

The presented relational database consists of 4 tables containing data and one link table for 
representing many-to-many relationships (N:M type). Now, we can ask questions:

Which pupils have similar interests? OR Which pupils do live in apartments?
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DEEP ASSOCIATIVE NEURAL GRAPHS - DASNG

Deep associative neural graph DASNG represents all horizontal and vertical relations
which associate data and objects and can be automatically retrieved from the database.

They also aggregate the representation of all duplicates, occurring in a relational database:

DASNG
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WEIGHTS COMPUTATION FOR DASNG

Orderable sensory neurons are connected,
the connections are weighed, and the weights are:

𝑤
𝑅𝑣𝑖

𝑎𝑘 ,𝑅𝑣𝑗

𝑎𝑘 = 1 −
𝑣𝑖
𝑎𝑘 − 𝑣𝑗

𝑎𝑘

𝑟𝑎𝑘

The connections between the sensory and object 
neurons are weighted in the following way:

𝑤
𝑅𝑣𝑖

𝑎𝑘 ,𝑂𝑗
𝑇𝑛 =

1

𝑣𝑖
𝑎𝑘

𝑤
𝑂𝑗
𝑇𝑛 ,𝑅𝑣𝑖

𝑎𝑘 = 𝜃𝑅𝑣𝑖
𝑎𝑘 = 1

The weights of connections between neurons are computed after very simple formulas,
so they do not need to be stored or updated, but computed before using them:

The weights of synaptic connections between various object neurons are computed 
on the basis of the number of objects represented by the object neurons of 
the considered layer of the DASNG, which represents a single database table.
If the given object neuron of the considered layer is connected to M object 
neurons of another layer, then the weight is computed in the following way:

𝑤
𝑂𝑗
𝑇𝑛 ,𝑂𝑘
𝑇𝑚 =

1

𝑁𝑗,𝑇𝑚
𝑇𝑛
≅
1

𝑀
𝑤
𝑂𝑘
𝑇𝑚 ,𝑂𝑗

𝑇𝑛 =
1

𝑁𝑘,𝑇𝑛
𝑇𝑚
≅
1

𝑁

where 𝑁𝑘,𝑇𝑛
𝑇𝑚 = 𝑁 = 1 for the relations one-to-many (1:M) and the relations

many-to-many (N:M). The equation is precise when there are no duplicates of
the whole records in the database. We need to create separate lists of connections 
in each neuron to represent connections to neurons of various layers in order to 
easily compute the number of objects 𝑁𝑗,𝑇𝑚

𝑇𝑛 or the number of connections M.
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ACTIVATION THRESHOLDS OF NEURONS

Activation thresholds of neurons play a key role in McCulloch-Pitts’ neurons of the 
first generation, spiking neurons of the third generation and real (biological) neurons 
while they determine neuronal activity and to which combinations neurons react.

Moreover, activations of the neuron determine which combinations of input stimuli 
are represented by this neuron.

Therefore, it is very essential to be able to track the state coming from neuronal 
stimulations with regards to its activation threshold. During simulation, we have 
no possibility to check all neuronal states constantly, so we need to foresee and 
compute the predictable time when the neuron achieves its activation threshold.

ACTIVATION THRESHOLD
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ACTIVATION THRESHOLDS OF NEURONS

Activation thresholds of sensory neurons are always equal one in this model:

𝜃
𝑅𝑣𝑖

𝑎𝑘 = 1

Activation thresholds of object neurons are computed according to the following 
formula:

𝜃
𝑂𝑗
𝑇𝑛 =

1 𝑖𝑓  

𝑅𝑣𝑖

𝑎𝑘

𝑤
𝑅𝑣𝑖

𝑎𝑘 ,𝑂𝑗
𝑇𝑛 ≥ 1

 

𝑅𝑣𝑖

𝑎𝑘

𝑤
𝑅𝑣𝑖

𝑎𝑘 ,𝑂𝑗
𝑇𝑛 𝑖𝑓  

𝑅𝑣𝑖

𝑎𝑘

𝑤
𝑅𝑣𝑖

𝑎𝑘 ,𝑂𝑗
𝑇𝑛 < 1

This definition of activation thresholds allows for activation of an object neuron 
whenever it is stimulated by the whole defining combination of this neuron, 
or when it is stimulated by a sufficiently representative subset of rare or unique 
features defining this neuron, e.g. if a feature defines only one object neuron, 
then it is enough to recognize it when this feature appears.
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LINEAR  APPROXIMATION

The DASNG model uses a linear approximation of all processes that take place in 
Associative Spiking Neurons (ASNs) as it greatly simplifies and speeds up calculations:

Each neuron creates an internal neuronal process queue (IPQ) of successive 
processes sorted after the time of their beginning. New processes are added 
to this queue on the basis of stimuli coming from other neurons or a sensor.

This queue can be modified at any time as a result of the appearance of a new 
external stimulus, which are appropriately combined (added) with the charging 
or suppression processes already added to this queue. They can also interrupt 
the relaxation or relative refraction processes or the resting state of the neuron.
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INTERNAL NEURONAL PROCESS QUEUE (IPQ)

The use of the internal neuronal process queue (IPQ) is necessary because 
associative spiking neurons (ASN) operate over time, so subsequent stimuli
and processes must be managed and ordered in time:

Internal neuronal process queue is implemented as a sorter list relative to the start 
time of the pipelined and ordered processes.

Although neuronal processes may overlap in time (e.g. external stimuli), new 
processes are added or combined with the existing ones, or they replace them. 

As a result, we get a queue of sorter processes that come one after another and do 
not overlap in time. This way of operating this model significantly simplifies and 
speeds up all operations, and all results can be updated in the rare discrete moments.

In order to appropriately order parallel processes in time, we use global event queue 
(GEQ) which stores and orders all processes of all IPQs in the DASNG graph.
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CREATION OF INTERNAL NEURONAL PROCESS QUEUE

The neuronal process queue is created because of external stimuli that can come to 
the neuron at different moments and in a varying number depending on the number  
of neuronal connections and the activity of presynaptic neurons and sensors.
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INTERNAL NEURAL PROCESSES

Neuronal processes are thus defined as:

(process type, process start time, process duration, positive or negative process 
power, the pointer to the event representing this process in the global event queue.
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GLOBAL EVENT QUEUE - GEQ

Global Event Queue orders all events related to the neuronal processes in time.

Global Event Queue is responsible for running updating methods in the nodes of the 
DASNG graphs and switch between the subsequent processes, e.g.:

• After charging finishes, relaxation begins if a neuron is in the excitation state. 

• After the activation threshold is achieved, this neuron spikes and starts its 
absolute refraction process.

• After the absolute refraction process finishes, the relative refraction process
is automatically started.

• When the relaxation or relative refraction process finishes, neuron switches
to its resting state. 

The asynchronous parallelism model is based on the global DASNG event queue, 
which stores information about the predicted end time of the processes started in 
various neurons which are not in the resting state.

The event in this queue is represented by the pair (end time of the process, pointer),
where pointer indicates the DASNG element (e.g. neuron) in which the process is 
about to terminate. Such a process is the first in the internal process queue (IPQ) 
in this neuron, so we don’t need to look for it. Moreover, the IPQs typically consist of 
a few processes, so the operations on them are very fast!
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COMBINING PROCESSES WITH NEW STIMULI

An Internal Process Queue (IPQ) chronologically orders neuronal processes that 
represent internal changes of a neuron and external stimuli. It avoids collisions of 
overlapping external stimuli, which are transformed to subsequent processes:
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PROCESSES AND EVENTS

A neuronal process is defined as 𝑷𝒌 = 𝒓𝒌, 𝒕𝒌, 𝒅𝒌, 𝒔𝒌, 𝒑𝒌 , where:
𝒓𝒌 - specifies the type of the process: charging (CH), discharging (DC), relaxation (RX), 
relative refraction (RR), or absolute refraction (AR),

𝒕𝒌 - the starting time of the process,

𝒅𝒌 - the duration of the process (a given period of time),

𝒔𝒌 - the strength of the process = relative neuronal change after the finished process,

𝒑𝒌 - a pointer to an event in the global event queue (GEQ) that tracks the end of this 
neuronal process and launches the neuron update.

An event is defined as an ordered pair 𝑬𝒏 = 𝒕𝒏, 𝒑𝒏 , where:

𝒕𝒏 = 𝒕𝒌 + 𝒅𝒌 - is the end time of the process that should be finished and switched to 
another one or to a resting state, and the indicated neuron appropriately updated,

𝒑𝒏 - a pointer to the updated neuron which the current process should be finished.

All events from the entire neural network triggered by the internal neural processes 
are chronologically ordered in the global event queue (GEQ) after their end time.

Sometimes some events become to be outdated when an internal process queue is 
updated under the influence of new external stimuli. The outdated events 𝑬𝒏 are 
automatically removed from the GEQ by the processes which indicate them (𝒑𝒌), 
and usually swapped to new ones watching the ends of the new processes.
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ACHIEVEMENT OF THE SPIKING THRESHOLD

Some charging processes can achieve a spiking (activation) threshold or 
a resting state during their run, so it is necessary to check all charging processes
for such an eventuality before addition of a new process event to the GEQ:

If during the neuron charging process the condition 𝑿𝒕𝒔 + 𝒔𝒔 > 𝜽 is satisfied, then the 

time 𝒕𝑺𝑷 = 𝒕𝒔 + 𝒅𝒔 ∙
𝜽−𝒙𝒔

𝒔𝒔
of achievement of the neuron spiking (activation) threshold 

must be calculated to correctly set a watching event 𝑬𝒏 = 𝒕
𝑺𝑷, 𝒑𝒏 to the GEQ.

If during the neuron discharging process the condition 𝑿𝒕𝒔 + 𝒔𝒔 < 𝟎 is true, then the 

time of achievement of the neuron resting state must be calculated in the following 

way 𝒕𝑹𝑺 = 𝒕𝒔 + 𝒅𝒔 ∙
𝒙𝒔

−𝒔𝒔
, and the appropriate event 𝑬𝒏 = 𝒕

𝑺𝑷, 𝒑𝒏 put into the GEQ.

In the other cases, the state of the neuron is updated at the end of the charging or 
discharging process after:

𝑿𝒕𝒔 = 𝑿𝒕𝟎 + 𝒔𝟎 ∙
𝒕𝒔 − 𝒕𝟎
𝒅𝟎

If the neuron achieves it spiking threshold then the IPQ is cleared of all remaining 
processes and an absolute refraction process is added to the IPQ. During this process 
the neuron does not react to any further stimuli:

𝑷𝑨𝑹 = 𝑨𝑹, 𝒕
𝑺𝑷, 𝟏, −𝟐 ∙ 𝜽, 𝒑𝑨𝑹
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CREATING AND UPDATING THE PROCESS QUEUE 

AFTER THE EXTERNAL STIMULI

The processes in the IPQ are automatically added or removed for each
new stimulation 𝑺 = 𝒕𝒔, 𝒅𝒔, 𝒔𝒔 which overlap some processes in the IPQ:

S

t0 ts

d0

ds

s0 ss

P0

P1

INTERRUPTED

& UPDATED

Updated IPQ
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UPDATING THE PROCESS QUEUE 

DUE TO THE NEW EXTERNAL STIMULUS
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DURATION OF RELAXATION AND RELATIVE REFRACTION

The duration of the relaxation process 𝒅𝑹𝑿 depends on the current state of 
the neuron  X, its spiking threshold θ, and on the assumed maximum relaxation 
period pRX = 10:

𝒅𝑹𝑿 =
𝒑𝑹𝑿 ∙ 𝑿𝒕𝟎
𝜽

The duration of the relative refraction process 𝒅𝑹𝑹 depends on the state of 
the neuron X, its spiking threshold θ, and on the assumed maximum relative 
refraction period pRR = 5:

𝒅𝑹𝑹 = −
𝒑𝑹𝑹 ∙ 𝑿𝒕𝟎
𝜽
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TRANSFORMATION ORDER OF TABLES

During the transformation of the relational database, note that only the tables which all foreign keys 

are already represented in the DASNG structure can be transformed. On the other hand, they have to 

wait until all their foreign keys will be transformed during the associative transformation of other 

tables. So the sequence of transformed tables is important and the tables must be transformed in 

an appropriate order as we can see in the figure below and our sample tables. This associative 

transformation of database tables can be performed also to the passive AGDS structures.

1
1

1

23
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DEEP ASSOCIATIVE NEURAL GRAPHS - DASNG

For each attribute separately, the unique attribute values are represented by sensors and 
sensory neurons in this deep associative graph. Thanks to AVB-trees, we get access to all data 
usually in constant time.

DASNG
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DEEP ASSOCIATIVE NEURAL GRAPHS - DASNG

The unique records of each relational database table containing objects defined by several 
attribute values and/or foreign keys pointing out records of other tables are represented by
a separate layer in this deep associative neural graph. The number of such layers depends on 
the number of tables
in a given database.
Here we have two
such layers:

DASNG
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DEEP ASSOCIATIVE NEURAL GRAPHS - DASNG

In deep associative neural graphs, there is no need to use link tables representing
many-to-many relations (N:M), because they can be replaced by direct connections
between neurons representing related objects. Thus, the records do not need to be
joined as in 
databases:

DASNG
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DEEP ASSOCIATIVE NEURAL GRAPHS - DASNG

Now, try to answer the question: Which pupils have similar interests? using the DASNG which 
will response after stimulating appropriate sensors separately. The sensors will stimulate and 
activate the linked sensory neurons which will then                   stimulate and activate the 
appropriate object
neurons representing
the pupils who are
the answer to the
given question.

DASNG
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DEEP ASSOCIATIVE NEURAL GRAPHS - DASNG

We can also answer the second question: Which pupils do live in apartments? by stimulating 
the sensor „apartment”, which stimulates and activates its sensory neuron that stimulates 
the object neurons representing living conditions, which are activated after some time, 
and starts to stimulate
connected object
neurons representing
pupils living in the
apartments!

DASNG
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DEEP ASSOCIATIVE NEURAL GRAPHS - DASNG

Note that we can also stimulate various combinations of sensors representing the logical 
conjunction of selected features, which will result in stimulation and the fastest activation of 
those neurons which represent pupils interested in science AND living in apartments.

DASNG
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DEEP ASSOCIATIVE NEURAL GRAPHS - DASNG

In the case of logical alternative, we wait for the activity of additional pupil neurons longer, 
where the chronology of activations points out how strong the pupils satisfy the alternative, 
i.e. the activation moments represent the adaptation degree of pupils to the condition: 
pupils interested
in science OR
living in apartments:

DASNG
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DEEP ASSOCIATIVE NEURAL GRAPHS - DASNG

Sensors and neurons in such associative graphs can be and should be stimulated in parallel 
alike in the human brain in order to achieve responses and answers in constant time. 
Unfortunately, our contemporary computers and computational technology based on
the sequential Turing
machine model
forces us to simulate
parallelism using
sequential
operations.

DASNG
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EXPLORATION OF THE KWNOWLEDGE

We can use tables or deep associative neural graphs for data mining or knowledge exploration:

STIMULATION OF THE DASNG

and just waiting for answers…
SEARCHING THROUGH TABLES
using classic data mining approaches,

calculation of frequent patterns,

supports, linking and comparing

elements, using ECLAT transformation

and Apriori algorithm…

X
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