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Preface

Before we can proceed to discuss 
specific complex methods we have to introduce 
fundamental concepts, principles, and models

of computational intelligence
that are further used

in the complex 
deep learning models.
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Hebbian Learning Principle

It states that „when an axon of [neuronal] cell A is near enough to excite a [neuronal] cell B 
and repeatedly or persistently takes part in firing it, some growth process 
or metabolic change takes place in one or both cells such that A’s efficiency, 
as one of the cells firing B, B is increased”. [D. O. Hebb, 1949]

This principle assumes that a connection between neuronal cells is weighted and the weight 
value is a function of the number of times of presynaptic neuronal firing that passes through 
this connection, which takes part in firing the postsynaptic neuron.

This principle:

• is implicitly used in the most artificial neural networks today,

• is explicitly used in the LAMSTAR deep learning neural networks.

Because this principle is only half the truth about the changes in the efficiency of
the synapse between cells A and B and does not describe all important synaptic processes, 
this issue will be discussed and extended later.
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Hebb’s and Oja’s Learning Rule

Hebb’s learning rule defines the weight of the connections from neuron j to neuron i:

𝑤𝑖𝑗 = 𝑥𝑖 ∙ 𝑥𝑗

Generalized Hebb’s learning rule is defined for the postsynaptic response 𝑦𝑛:
∆𝒘 = 𝒘𝒏+𝟏 −𝒘𝒏 = 𝜂 ∙ 𝒙𝒏 ∙ 𝑦𝑛

Oja’s learning rule is a single-neuron special case of the generalized Hebbian algorithm 
that is demonstrably stable, unlike Hebb’s rule:

The change in presynaptic weights w for the given output response y of a neuron to its 
input x is:

∆𝒘 = 𝒘𝒏+𝟏 −𝒘𝒏 = 𝜂 ∙ 𝒘𝒏 𝒙𝒏 − 𝑦
𝑛
∙ 𝒘𝒏

where 𝜂 is a learning rate which can change over time, and n defines a discrete time 
iteration.
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McCulloch-Pitts Model of Neuron 

This model is also known as linear threshold gate using a linear step function 
because it merely classifies the set of inputs into two different classes.

This model uses hard-switch (step) activation function f which makes the neuron
active when the weighted

sum S of the input stimuli X
achieves the threshold θ.

Thus the output is binary.
𝒚 = 𝒇 𝑺 =  

𝟎 𝑺 < 𝜽
𝟏 𝑺 ≥ 𝜽

𝑺 =  

𝒌=𝟏

𝑲

𝐱𝒌 ∙ 𝐰𝒌

𝑿 = 𝐱𝟏, … , 𝐱𝒌
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Hard-Switch Perceptron

This model originally employs a step activation function, which serves as a hard-
switch between two states: {0, 1} or {-1, 1} according to the used function f:

The decision boarder
determined by
the perceptron

Bias is used instead of the threshold.
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Hard-Switch Perceptron Training

Supervised training of Hard-Switch Perceptron for a given training dataset consisting of 
training samples {(X1, d1), …, (XN, dN)}, where dn is the desired trained output value for 
the input training vector Xn, is defined as follows:

1. Randomly select small initial weights in the range of [-0.1, 0.1]

2. Stimulate the perceptron with the subsequent input training vector Xn, where n = 1, …, N.

3. Compute a weighted sum S and an output value yn = f(S).

4. Compare the computed output value yk with the desired trained output value dn.

5. If y n ≠ dn then Δwk += (dn – yn) · xk else do nothing for the online training algorithm
and compute Δwk = 1/N · n=1,…,N (dn – yn) · xk for the offline training algorithm

6. Update the weights wk += Δwk for all k=0,…,K 

7. If the average iteration error E = 1/N · n=1,…,N |dn – yn| is bigger than a user-specified 
error then start next iteration going to the step 2. The algorithm should also stop after 
processing some given maximum number of iterations.
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Single and Multi-Layer Perceptron

A group of perceptrons organized in a single layer can be used for 
the multi-classification which means the classification of input vectors
into a few classes simultaneously.

Such a group of perceptrons is called a single-layer perceptron network
which has a certain limitation of its adaptive capabilities.

For this reason, we usually use
a multi-layer perceptron (MLP),
i.e. the network that consists of
several layers containing a various
number of perceptrons.

The first layer is called input layer,
the last one is called output layer,
and all the layers between them
are hidden as shown in the figure:
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Soft-Switch Perceptron

This model employs a continuous sigmoid activation function, which serves as a 
soft-switch between two states: (0, 1) or (-1, 1) according to the used function f:
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Delta Rule for Neuron Adaptation

The delta rule uses the soft-switch neurons which activation functions are continuous
to allow its differentiation. The delta is defined as the difference between the desired 
and computed outputs: dn= dn – yn. This rule can be derivate as a result of the 
minimization of the mean square error function:

𝑸 =
𝟏

𝟐
 

𝒏=𝟏

𝑵

𝒅𝒏 − 𝒚𝒏
𝟐 𝒘𝒉𝒆𝒓𝒆 𝒚𝒏 = 𝒇 𝑺 𝑺 =  

𝒌=𝟎

𝑲

𝐱𝒌 ∙ 𝐰𝒌

The correction of the weight for differentiable activation function f is computed after:

∆𝐰𝒌= 𝜼 ∙ 𝜹𝒏 ∙ 𝒇′ 𝑺 ∙ 𝐱𝒌 𝒘𝒉𝒆𝒓𝒆 𝜹𝒏 = 𝒅𝒏 − 𝒚𝒏

where f’ is the differential of the function f.

When the activation function is sigmoidal then we achieve the following expression:
∆𝐰𝒌= 𝜼 ∙ 𝜹𝒏 ∙ 𝟏 − 𝒚𝒏 ∙ 𝒚𝒏∙ 𝐱𝒌 𝒘𝒉𝒆𝒓𝒆 𝜹𝒏 = 𝒅𝒏 − 𝒚𝒏
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MLP, BP, and CNN

The continuous, soft-switching nature of the sigmoid function allows it to be differentiable 
everywhere. This is necessary for several learning algorithms, 
such as Backpropagation or Convolutional Learning.

Because of limited adaptive capabilities of a single-layer perceptron network,
we usually use a multi-layer perceptron network (MLP) that consists of
a few layers containing a various number of perceptrons.

Multi-layer perceptron cannot use linear soft-switch activation function because each multi-
layer linear perceptron network can always be simplified to a single-layer linear perceptron 
network.

The MLP neural networks can be trained using Backpropagation Algorithm (BP), which 
overcomes the single-layer shortcoming pointed out by Minsky and Papert in 1969.

The BP algorithm is too slow to satisfy the machine learning needs, but it was rehabilitated 
later on (in 1989) when it became the learning engine of the far faster and the most popular 
Convolutional Deep Learning Neural Networks (CNN).
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Backpropagation Algorithm

The backpropagation algorithm (BP) includes two main phases:

1. The input propagation phase propagates
the inputs throughout all hidden layers to
the output layer neurons. In this phase,
neurons make summation of weighted inputs
taken from the neurons in the previous layer.

2. The error propagation phase propagates back
the errors (delta values) computed on
the outputs of the neural network. 
In this phase, neurons make summation of
weighted errors (delta values) taken from
the neurons in the next layer.

The computed corrections of weights are used to update weights after:

• the computed corrections immediately after their computation during the online training,

• the average value of all computed corrections of each weight after finishing the whole training cycle for all 
training samples during the offline (batch) training.

This algorithm is executed until the mean square error computed for all training samples is less than the desired 
value or to a given maximum number of cycles.
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Backpropagation Algorithm

First, the inputs x1, x2, x3 stimulate neurons in the first hidden layer.
The neurons compute weighted sums S1, S2, S3, S4, and output values
y1, y2, y3, y4 that become inputs for the neurons of the next hidden layer:

𝑺𝒏 =  
𝒌=1

3

𝐱𝒌 ∙ 𝐰𝒙𝒌,𝒏 𝒚𝒏 = 𝒇 𝑺𝒏
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Backpropagation Algorithm

Second, the outputs y1, y2, y3 ,y4 stimulate neurons in the second hidden 
layer. The neurons compute weighted sums S5, S6, S7, and output values
y5, y6, y7  that become inputs for the neurons of the output layer:

𝑺𝒏 =  
𝒌=1

4

𝐲𝒌 ∙ 𝐰𝒌,𝒏 𝒚𝒏 = 𝒇 𝑺𝒏
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Backpropagation Algorithm

Finally, the outputs y5, y6, y7  stimulate neurons in the output layer. 
The neurons compute weighted sums S8 and S9 , and output values
y8, y9  that are the outputs of the neural network as well:

𝑺𝒏 =  
𝒌=5

7

𝐲𝒌 ∙ 𝐰𝒌,𝒏 𝒚𝒏 = 𝒇 𝑺𝒏
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Backpropagation Algorithm

Next, the outputs y8, y9  are compared with the desired outputs d8, d9 and 
the errors δ8, δ9 are computed. These errors will be propagated back in order
to compute corrections of weights from the connected inputs neurons.

𝜹𝒏 = 𝒅𝒏 − 𝒚𝒏
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Backpropagation Algorithm

The errors δ8 and δ9  are used for corrections of the weights of the inputs 
connections y5, y6, y7, and propagated back along the input connections 
to the neurons of the previous layer in order to compute their errors δ5, δ6, δ7:

∆𝐰𝒌,𝒏= −𝜼 ∙ 𝜹𝒏 ∙ 1 − 𝒚𝒏 ∙ 𝒚𝒏∙ 𝒚𝒌

𝜹𝒌 =  
𝒏=8

9

𝜹𝒏 ∙ 𝐰𝒌,𝒏 ∙ 1 − 𝒚𝒏 ∙ 𝒚𝒏
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Backpropagation Algorithm

Next, the errors δ5, δ6, and δ7  are used for corrections of the weights of the inputs 
connections y1, y2, y3, y4, and propagated back along the input connections to the 
neurons of the previous layer in order to compute their errors δ1, δ2, δ3, δ4:

∆𝐰𝒌,𝒏= −𝜼 ∙ 𝜹𝒏 ∙ 1 − 𝒚𝒏 ∙ 𝒚𝒏∙ 𝒚𝒌

𝜹𝒌 =  
𝒏=5

7

𝜹𝒏 ∙ 𝐰𝒌,𝒏 ∙ 1 − 𝒚𝒏 ∙ 𝒚𝒏
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Backpropagation Algorithm

Finally, the errors δ1, δ2, δ3, δ4  are used for corrections
of the weights of the inputs x1, x2, x3: ∆𝐰𝒙𝒌,𝒏= −𝜼 ∙ 𝜹𝒏 ∙ 1 − 𝒚𝒏 ∙ 𝒚𝒏∙ 𝒙𝒌
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Initialization & Training Parameters

The number of hidden layer neurons should be higher rather than lower. 
However, for simple problems, one or two hidden layers may suffice.

The numbers of neurons in the following layers usually decreases. They can also be 
fixed experimentally or using evolutional or genetic approaches that will be discussed 
later during these lectures and implemented during the laboratory classes.

Initialization of weights is accomplished by setting each weight to a low-valued random 
value selected from the pool of random numbers, say in the range from -5 to +5,
or even smaller.

The learning rate  should be adjusted stepwise ( < 1), considering stability 
requirements. However, since convergence is usually rather fast when the error 
becomes very small, it is advisable to reinstate  to its initial value before proceeding. 

In order to avoid the BP algorithm from getting stuck (learning paralysis) at a local 
minimum or from oscillating the modification of learning rate should be employed.
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Overcome Training Difficulties of BP

In order to overcome training difficulties of backpropagation algorithm we can use:

• Bias - an extra constant input (say x0=1) that is weighted (w0,n) and somehow resembles     
the threshold used in hard-switch neuron models.

• Momentum – that usually reduces the tendency to instability and avoids fast fluctuations 
(𝟎 < 𝜶 < 𝟏), but it may not always work or could harm convergence:

∆𝐰𝒌,𝒏
𝒑

= 𝜶 ∙ ∆𝐰𝒌,𝒏
𝒑−𝟏

+ 𝜼 ∙ 𝜹𝒏 ∙ 𝒇′  

𝒌=𝟎

𝑲

𝐱𝒌 ∙ 𝐰𝒌 ∙ 𝐱𝒌 = 𝜶 ∙ ∆𝐰𝒌,𝒏
𝒑−𝟏

+ 𝜼 ∙ 𝜹𝒏 ∙ 𝟏 − 𝒚𝒏 ∙ 𝒚𝒏∙ 𝐱𝒌

• Smoothing – that is also not always advisable for the same reason:

∆𝐰𝒌,𝒏
𝒑

= 𝜶 ∙ ∆𝐰𝒌,𝒏
𝒑−𝟏

+ 𝟏 − 𝜶 ∙ 𝜹𝒏 ∙ 𝒇′  

𝒌=𝟎

𝑲

𝐱𝒌 ∙ 𝐰𝒌 ∙ 𝐱𝒌

= 𝜶 ∙ ∆𝐰𝒌,𝒏
𝒑−𝟏

+ 𝟏 − 𝜶 ∙ 𝜹𝒏 ∙ 𝟏 − 𝒚𝒏 ∙ 𝒚𝒏∙ 𝐱𝒌

where p is the training period (cycle) of training samples.
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Overcome Convergence Problems

To overcome convergence problems of the backpropagation algorithm we can:

• Change the range of the sigmoid function from [0, 1] to [-1, 1].

• Modifying the step size (learning rate  ) during the adaptation process.

• Start many times with various initial weights.

• Use various network architectures, e.g. change the number of layers or the number 
of neurons in these layers.

• Use a genetic algorithm or an evolutional approach to find a more appropriate 
architecture of a neural network.

• Reduce the number of inputs to overcome the curse of dimensionality problem.

• Use cross-validation to avoid the problem of over-fitting.
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Rectified Linear Units (ReLU)

We can also use Rectified Linear Units (ReLU)
to eliminate the problem of vanishing gradients.

ReLU units are defined as: f(x) = max(0, x)
instead of using the logistic function.

The strategy using ReLU units is based on training of robust features thanks to 
sparse (less frequent) activations of these units.

The other outcome is that the training process is also typically faster.

Nair, Hinton. Rectified Linear Units Improve Restricted Boltzmann Machines. ICML 2010
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K-fold Cross-Validation

Cross-Validation strategy allows us to use all available patterns for training and 
validation alternately during the training process.

„K-fold” means that we divide all training patterns into K disjoint more or less 
equinumerous subsets. Next, we train a selected model on K-1 subsets K-times and also 
test this model on an aside subset K-times. The validation subset changes in the course 
of the next training steps:
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K-fold Cross-Validation

We use different k parameters according 
to the number of training patterns:

• K is usually small (3  K  10) for 
numerous training patters. It lets us 
validate the model better if it is tested 
on a bigger number of training patterns.
It also reduces the number of training 
steps that must be performed.

• K is usually big (10  K  N) for less 
numerous training datasets, where N is 
the total number of all training patterns. 
It allows us to use more patterns for 
training and achieve better-fitted model.
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N-fold Cross-Validation

N-folds Cross-Validation is rarely used because the N-element dataset has to be 
trained N times. The following disadvantage is that we use only a single pattern 
in each step for
validation of 
the whole model.
Such a result is not
representative for
the entire collection
and the CI model.
This solution is
sometimes used for
tiny datasets.
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K-fold Cross-Validation

The way of selection of the test patterns in each training step should be representative 
and proportional from each class point of view regardless of the cardinality of classes!
We have to consider how the training data are organized in the training dataset:
• Randomly
• Grouped by categories (classes)
• Ordered by values of their attributes
• Grouped by classes and ordered by values of their attributes
• In an unknown way
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K-fold Cross-Validation

The test patterns can also be selected randomly with or without repetition:

The choice between various options should be made on the basis of
the initial order or disorder of patterns of all classes in the dataset
to achieve representative selection of the test patterns used for
the validated model.
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Rapid Miner K-fold Cross-Validation

This computational tool also supplies us with the ability to use Cross-Validation during MLP 
adaptation, so you can check and compare achieved results and try to get the better ones:
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Vanishing Gradient Problem

When using gradient-based learning strategies for many
layers (e.g. MLPs) we usually come across the problem of
vanishing gradients, because  derivatives are always
in range of [0, 1], so their multiple multiplications lead to
very small numbers producing tiny changes of weights
in the neuron layers that are far away from the output of 
the MLP network.

Hence, if we like to create a deep multilayer MLP topology,
we have to deal with the problem of vanishing gradient
problem. To overcome this problem, we should construct
the deep structure gradually. This will be one of the goals of 
our laboratory classes.
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Dropout Regularization Technique

We can also use regularization techniques called dropout.

This training strategy selects only these neurons which
are already the best adapted in various layers and
performs training only to these neurons and their 
weights. This technique prevents neural networks from
overfitting and also speeds up training. It also prevents
other neurons from spoiling their weights parameters
which can be useful for other training patterns.

Srivastava et al. Dropout: A simple way to prevent neural networks from overfitting.
JMLR 2014
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Deep Learning Strategies

Deep learning strategies assume the ability to:

• update only a selected part of neurons that respond best to the given input data,
so the other neurons and their parameters (e.g. weights, thresholds) are not updated,

• avoid connecting all neurons between successive layers, so we do not use all-to-all connection 
strategy known and commonly used in MLP and other networks, but we try to allow neurons to 
specialize in recognizing of subpatterns that can be extracted from the limited subsets of inputs,

• create connections between various layers and subnetworks, not only between successive layers

• use many subnetworks that can be connected in different ways in order to allow neurons from these 
subnetworks to specialize in defining or recognizing of limited subsets of features or subpatterns,

• let neurons specialize and not overlap represented regions and represent the same features or 
subpatterns.
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