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Recurrent Neural Networks

Recurrent Neural Networks (RNN) are a class of dynamic artificial neural networks where connections between 
units form directed cycles. This enables the network to be in one of many states and allows it to exhibit dynamic 
temporal behavior. Such networks can continuously process inputs until they find an attractor which makes the 
process to get stuck in it. The attractor can consists of a single state or a boundary cycle of states between which 
it jumps to infinity. There are many different recurrent neural networks: Hopfield Networks, Hamming Networks, 
Elman Networks, Jordan Networks, RTRN, BAM, MAM etc. A few o them can be used as associative memories.
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Hopfield Neural Networks

Hopfield Neural Networks is a form of recurrent neural networks. 
It consists of N binary threshold (hard switch) neurons which are 
placed in a single layer. The neurons typically take on output values 
-1 and 1, however they could also take on output values 0 and 1.

The output activation functions are usually modeled using sgn(…).

Each Hopfield NN always converges to a local minimum (attractor)
but some of these local minima are „wrong” and represent false 
patterns which were not been trained, rather than to one of 
the trained and stored patterns which also have their local minima.
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Hopfield Neural Networks

Each neuron in the Hopfield Network has:

• an input connection that provides the input data,

• an output connection that supplies the output data 
when the network converges to one of the attraction states, and

• N-1 connections to all the other neurons with the exception to itself.

Each neuron has a threshold 𝜃𝑖 which is usually implemented in a form of
a bias signal which stimulates each neuron with -1 or +1 input value.
Neurons are stimulated both by the external input stimuli and feedback 
internal stimuli coming from the other neurons in the network.

Consequently, the state of each neuron in t-th period is computed after:

𝑦𝑖
𝑡 𝑡 = 𝑠𝑔𝑛 𝑥𝑖 +𝒘𝒊

𝑻𝒚𝒕−𝟏 − 𝜃𝑖

Where 𝑥𝑖 is an input signal, 𝜃𝑖 is the threshold of the i-th neuron,

𝒘𝒊 is the weight vector (in which 𝑤𝑖𝑖 = 0, 𝑤𝑖𝑗 = 𝑤𝑗𝑖), and 𝒚 is the output 

vector computed in the previous phase t-1.

All weights are symmetric!
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Hopfield Neural Networks

Neurons in the Hopfield Network can work:

• synchronously (all neurons are updated in the same simulation time),

• asynchronously with a random choice of an updated neuron.

The recurrent computational process starts with the external input stimuli. 

This process typically finishes in one of the attractors when 𝑦𝑖
𝑡 𝑡 = 𝑦𝑖

𝑡 𝑡 − 1 .
The number of all attractors (including false ones) is usually not known.

The number of false attractors grows with the number of
trained patterns. Each attractor represents its attraction area,
which are illustrated under the chart of the red 3D function:
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Training of Hopfield Neural Networks

Hopfield Neural Networks can be trained using the generalize Hebb rule:

𝑤𝑖𝑗 =
1

𝑁
 

𝑚=1

𝑀

𝑥𝑖
𝑚𝑥𝑗
𝑚

but the number of patterns that can be trained in such a way is only 13.8% of 
the number of all neurons, so it is better to use the pseudoinverse method
which is based on solution of an equation system.

When X is a matrix of training vectors 𝑿 = 𝒙𝟏, 𝒙𝟐, … , 𝒙𝑴

and W is the weight matrix then the solution can be achieved by
the computation of weight parameters to satify the equation: 𝑾𝑿 = 𝑿.

It means that we have to solve the system of equations when training vectors 
are independent:

𝑾 = 𝑿𝑿+ = 𝑿 𝑿𝑻𝑿
−𝟏
𝑿𝑻

Where 𝑿+ is the pseudoinverse matrix of 𝑿.
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Recovering of training patterns

Hopfield networks can successfully recover biased training patterns or to make up 
their missing parts, but their capacity can be far away from your expectations:
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