Introduction to Keras

Adrian Horzyk
horzyk@agh.edu.pl

AGH University of Science and Technology
Krakow, Poland
Keras developed by François Chollet:

- Is an official high-level and high-performing API of TensorFlow used to specify and train different programs.
- Runs on top of TensorFlow, Theano, MXNet, or CNTK.
- Builds models by stacking layers and connecting graphs.
- Is actively developed by thousands of contributors across the world, e.g. Microsoft, Google, Nvidia, AWS.
- Is used by hundred thousands of developers, e.g. Netflix, Uber, Google, Huawei, NVidia.
- Has good amount of documentation and easy to grasp all concepts.
- Supports GPU both of Nvidia and AMD and runs seamlessly on CPU and GPU.
- Is multi-platform (Python, R) and multi-backend.
- Allows for fast prototyping and leaves freedom to design and architecture.
Keras:

- Follows best practices for reducing cognitive load
- Offers consistent and simple APIs.
- Minimizes the number of user actions required for common use cases.
- Provides a clear feedback upon user errors.
- More productive than many other frameworks.
- Integrates with lower-level Deep Learning languages like TensorFlow or Theano.
- Implements everything which was built in base language, e.g. TensorFlow.
- Produces models using GPU acceleration for various system like Windows, Linux, Android, iOS, Raspberry Pi.
Keras is based on Computational Graphs like:

Where “a” and “b” are inputs used to compute “e” as an output using intermediate variables “c” and “d”. Computational Graphs allow to express complex expressions as a combination of simple operations.
We can create various sequential models which linearly stack layers and can be used for classification networks or autoencoders (consisting of encoders and decoders) like:
Keras models can:

- Use multi-input, multi-output and arbitrary static graph topologies,
- Branch into two or more submodels,
- Share layers and/or weights.
We can execute Keras model in two ways:

1. **Deferred (symbolic)**
 - Using Python to build a computational graph, next compiling and executing it.
 - Symbolic tensors **don’t have a value** in the Python code.

2. **Eager (imperative)**
 - Here the Python runtime is the execution runtime, which is similar to the execution with Numpy.
 - Eager tensors **have a value** in the Python code.
 - With the eager execution, **value-dependent dynamic topologies** (tree-RNNs) can be constructed and used.
1. Prepare Input (e.g. text, audio, images, video) and specify the input dimension (size).

2. Define the Model: its architecture, build the computational graph, define sequential or functional style of the model and the kind of the network (MLP, CNN, RNN etc.).

3. Specify the Optimizers (Stochastic Gradient Descent (SGD), Root Mean Square (RMSprop), Adam etc.) to configure the learning process.

4. Define the Loss Function (e.g. Mean Square Error (MSE), Cross Entropy, Hinge) for checking the accuracy of the achieved prediction to adapt and improve the model.

5. Train using training data, Test using testing/validation data, and Evaluate the Model.
Install TensorFlow and Keras

To start working with TensorFlow and Keras in Jupyter Notebook, you have to install them using the following commands in the Anaconda Prompt window:

```bash
conda install pip  # install pip in the virtual environment
pip install --upgrade tensorflow  # for python 2.7
pip3 install --upgrade tensorflow  # for python 3.*
```

It is recommended to install tensorflow with parameter `-gpu` to use GPU unit and make computations faster:

```bash
pip install tensorflow-gpu
$ pip install Keras
```

If successfully installed check in Jupyter Notebook the version of the TensorFlow using:

```python
In [3]: import tensorflow as tf
print("TensorFlow version: " + tf.__version__)
```

TensorFlow version: 2.1.0
Implementing a CNN using Keras

We will try to create and train a simple Convolutional Neural Network (CNN) to tackle with handwritten digit classification problem using MNIST dataset:

Each image in the MNIST dataset is 28x28 pixels and contains a centred, grayscale digit form 0 to 9. Our goal is to classify these images to one of the ten classes using ten output neurons of the CNN network.
Simple CNN for MNIST classification

Train a simple ConvNet on the MNIST dataset. It gets more than 99% test accuracy after 12 epochs (but there is still a lot of margin for parameter tuning). Training can take a few minutes!

```
# Import Libraries
from __future__ import print_function
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K

# Define hyperparameters
batch_size = 128
num_classes = 10
epochs = 12

# Input image dimensions
img_rows, img_cols = 28, 28

# Split the data between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()

if K.image_data_format() == 'channels_first':
    x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
    x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
    input_shape = (1, img_rows, img_cols)
else:
    x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
    x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
    input_shape = (img_rows, img_cols, 1)
```
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')

Convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

Define the sequential Keras model composed of a few layers
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))

Compile the model using optimizer
model.compile(loss=keras.losses.categorical_crossentropy,
 optimizer=keras.optimizers.Adadelta(), metrics=['accuracy'])

Train the model, validate, evaluate, and present scores
model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs,
 verbose=1, validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
Results of CNN MNIST classification

Downloading data from https://s3.amazonaws.com/img-datasets/mnist.npz

11493376/11490434 [==================================] - 2s 0us/step

x_train shape: (60000, 28, 28, 1)
60000 train samples
10000 test samples

Train on 60000 samples, validate on 10000 samples

Epoch 1/12
60000/60000 [==================================] - 54s 900us/step - loss: 0.2651 - accuracy: 0.9186 - val_loss: 0.0572 - val_accuracy: 0.9807
Epoch 2/12
60000/60000 [==================================] - 58s 961us/step - loss: 0.0884 - accuracy: 0.9734 - val_loss: 0.0397 - val_accuracy: 0.9867
Epoch 3/12
60000/60000 [==================================] - 61s 1ms/step - loss: 0.0669 - accuracy: 0.9799 - val_loss: 0.0342 - val_accuracy: 0.9883
Epoch 4/12
60000/60000 [==================================] - 60s 1ms/step - loss: 0.0547 - accuracy: 0.9834 - val_loss: 0.0303 - val_accuracy: 0.9902
Epoch 5/12
60000/60000 [==================================] - 62s 1ms/step - loss: 0.0453 - accuracy: 0.9862 - val_loss: 0.0283 - val_accuracy: 0.9909
Epoch 6/12
60000/60000 [==================================] - 60s 992us/step - loss: 0.0406 - accuracy: 0.9878 - val_loss: 0.0287 - val_accuracy: 0.9901
Epoch 7/12
60000/60000 [==================================] - 60s 998us/step - loss: 0.0365 - accuracy: 0.9887 - val_loss: 0.0285 - val_accuracy: 0.9909
Epoch 8/12
60000/60000 [==================================] - 62s 1ms/step - loss: 0.0346 - accuracy: 0.9897 - val_loss: 0.0278 - val_accuracy: 0.9902
Epoch 9/12
60000/60000 [==================================] - 62s 1ms/step - loss: 0.0310 - accuracy: 0.9903 - val_loss: 0.0382 - val_accuracy: 0.9884
Epoch 10/12
60000/60000 [==================================] - 60s 995us/step - loss: 0.0308 - accuracy: 0.9906 - val_loss: 0.0277 - val_accuracy: 0.9913
Epoch 11/12
60000/60000 [==================================] - 63s 1ms/step - loss: 0.0295 - accuracy: 0.9908 - val_loss: 0.0259 - val_accuracy: 0.9919
Epoch 12/12
60000/60000 [==================================] - 60s 1ms/step - loss: 0.0271 - accuracy: 0.9916 - val_loss: 0.0271 - val_accuracy: 0.9919

Test loss: 0.027094655736458435
Test accuracy: 0.99190000267982483
Let’s start with powerful computations!

✓ Questions?
✓ Remarks?
✓ Suggestions?
✓ Wishes?
1. https://www.youtube.com/watch?v=XNKeayZW4dY
3. https://github.com/keras-team/keras/tree/master/examples
Let’s try to predict the price of a bottle of wine just from its description and variety using wide and deep networks using Keras.

We will use Wine dataset from kaggle.com:

- Starting with sequential model is easier, simply stacking the layers.
- Defining functional model allows for more flexibility and is best suited for models with multiple inputs or combined models.
- Wide models have sparse feature vectors with mostly zero values.
- Multi-layer deep networks are necessary for tasks working on images, speech recognition or other more complex training data.
This dataset has 12 attributes (offering a great opportunity for sentimental analysis and various text-related predictive models):

- **Country** (of origin)
- **Description** (a few sentences describing the wine test and smell)
- **Designation** (the year and the grapes it has been made from)
- **Points** (from 1 to 10)
- **Price** (for the bottle of wine)
- **Region_1** (country where the grapes were grown up)
- **Region_2** (more specific region that can be black)
- **Taster Name** (who tasted and graded the wine)
- **Taster Twitter Handle**
- **Title** (of the wine)
- **Variety**
- **Winery**
Sample Wine Data

Input sample:

Description:

- Powerful vanilla scents rise from the glass, but the fruit, even in this difficult vintage, comes out immediately.

- It’s tart and sharp, with a strong herbal component, and the wine snaps into focus quickly with fruit, acid, tannin, herb and vanilla in equal proportion.

- Firm and tight, still quite young, this wine needs decanting and/or further bottle age to show its best.

Variety: Pinot Noir

Output sample:

We’ll use:

- Prediction: Price — $45

- Python
- NumPy
- Pandas
- K
- TensorFlow
Google Colaboratory is a free Jupyter notebook environment that requires no setup and runs entirely in the cloud.

With Colaboratory you can write and execute code, save and share your analyses, and access powerful computing resources, all for free from your browser.
You can try to follow the use-case for the Wine dataset prediction.

```python
import os
import numpy as np
import pandas as pd
import tensorflow as tf

from sklearn.preprocessing import LabelEncoder
from tensorflow import keras

layers = keras.layers

# This code was tested with TensorFlow v1.7
print("You have TensorFlow version", tf.__version__)
```

Here are all the imports we’ll need to build this model!

Test presence of TensorFlow by printing the version

```bash
wget -q https://storage.googleapis.com/sara-cloud-ml/wine_data.csv
data = pd.read_csv("wine_data.csv")
```

Download the data and convert it to a Pandas Data Frame