
Recurrent Neural Networks and Long Short-Term Memory
for Learning Sequences and Natural Language Processing

AGH University of
Science and Technology

Krakow, Poland

Adrian Horzyk

horzyk@agh.edu.pl

COMPUTATIONAL INTELLIGENCE
DEEP LEARNING

http://home.agh.edu.pl/~horzyk/index-eng.php
mailto:horzyk@agh.edu.pl


Introduction

➢ Human thinking process does not start from scratch every second for each pattern 
as is usually processed in CNNs and classic artificial neural networks – what is their major 
shortcoming between others.

➢ We always take into account previous words, situations, and states of our brains, not 
throwing away all previous thoughts during e.g. speech recognition, machine translation, 
entity names recognition, sentiment classification, music generation, or image captioning.

➢ Our intelligence works so well because it is not started again and again for every new 
situation but incorporates the knowledge that is gradually formed in time. Thanks to it, 
all next intelligent processes take into account our previous experiences.

➢ Recurrent neural networks address this issue, implementing various loops, allowing 
information to persist, and gradually processing data in time (following time steps).

➢ We can into account previous state of the network, previous inputs and/or previous outputs 
during computations.

➢ This chain-like nature reveals that recurrent neural networks are intimately related to 
sequences and lists, and are the natural neural network architecture for such data.

t

http://home.agh.edu.pl/~horzyk/index-eng.php


Introduction to NLP and Words Representation

➢ Natural Language Processing (NLP) includes various tasks of language analysis, understanding, 
translation, generation, classification and clustering, so we need to operate on words.

➢ We usually use any kind of a word dictionary (a vocabulary of the processed language) and 
each word from the given vocabulary can be represented as a one-hot vector, which is the 
vector consisting of zeros except to the single position representing a given word equal to 1:

➢ The one-hot vectors are often used to represent a sequence of words on the inputs of
the recurrent neural networks as well as other types of neural networks.

No Dictionary

1 a

…

982 and

…

132847 word

…

171476 zyzzyva

and

0

…

1

…

0

…

0

word

0

…

0

…

1

…

0

a

1

…

0

…

0

…

0

zyzzyva

0

…

0

…

0

…

1

http://home.agh.edu.pl/~horzyk/index-eng.php


Sequential Data and Domains

Sequential patterns differ from static patterns because:

• successive data (points) are strongly correlated,

• the succession of data is crucial from their recognition/classification point of view.

A sequence can be defined using mathematical induction as an external vertex or 
an ordered pair (t,h) where the head h is a vertex and the tail t is a sequence:

http://home.agh.edu.pl/~horzyk/index-eng.php


Examples of Sequential Data

Examples of sequential data where context is defined by sequences of data:

ECG signals: Genes and Chromosomes:

Speech signals (sequences of letters, words, phonemes, or audio time data):

http://home.agh.edu.pl/~horzyk/index-eng.php


LEARNING SEQUENCES

Sequences usually model processes in time (actions, movements) and are 
sequentially processed in time to predict next data (conclusions, reactions).

Sequences can have variable length but typical machine learning models 
use a fixed number of inputs (fixed-size window) as a prediction context:

http://home.agh.edu.pl/~horzyk/index-eng.php


A standard network will not work!

When dealing with sequential data (like sentences of words):

➢ Inputs and outputs can usually be different lengths in different examples.

➢ The same words in the different examples do not share the same inputs and
features learned across different positions of text.

The standard networks that require to associate inputs with features will not work!

We need to find another neural network structure that can work with sequences of inputs 
(e.g. words) that can move the position in the sequences and take into account the context of 
previous inputs (e.g. words).

http://home.agh.edu.pl/~horzyk/index-eng.php


We will use recurrent neural networks to overcome the presented difficulties and to allow 
the network to share features and weights and use the context of previous sequence elements:

ෝ𝒚 𝒕 = 𝒈𝒚 𝑾𝒚𝒂 ∙ 𝒂
𝒕 + 𝒃𝒚

𝒈𝒚 is usually sigmoid

𝒂 𝒕 = 𝒈𝒂 𝑾𝒂𝒂 ∙ 𝒂
𝒕−𝟏 +𝑾𝒂𝒙 ∙ 𝒙

𝒕 + 𝒃𝒂

𝒈𝒂 is usually ReLU or tanh

In the above network, we put the subsequent elements (e.g. words) on the inputs of 
the subnetworks which share weights with the other subnetworks (in a nutshell, all these 
subnetworks are the same network), so the position of the element (word) in the sequence
can be different without harm in the representation of this word by the neural network.

Thanks to the connections to the next subnetwork, we can use the context of the processed, 

previous elements (words) represented by the outputs of previous subnetworks 𝒂 𝒕 .

Before we start, we should introduce what sequences or sequential data are in detail.

We will use recurrent neural networks

http://home.agh.edu.pl/~horzyk/index-eng.php


We often use a simplified notation to compute 𝒂 𝒕 and ෝ𝒚 𝒕 which stacks the weight matrices 
and also speed up computations a bit because we do not need to operate on two matrices and 

adding the multiplication results when computing 𝒂 𝒕 but multiplying only once in parallel:

𝒂 𝒕 = 𝒈𝒂 𝑾𝒂𝒂 ∙ 𝒂
𝒕−𝟏 +𝑾𝒂𝒙 ∙ 𝒙

𝒕 + 𝒃𝒂 = 𝒈𝒂 𝑾𝒂 ∙ 𝒂
𝒕−𝟏 , 𝒙 𝒕 + 𝒃𝒂

𝒈𝒂 is usually ReLU or tan

ෝ𝒚 𝒕 = 𝒈𝒚 𝑾𝒚𝒂 ∙ 𝒂
𝒕 + 𝒃𝒚 = 𝒈𝒚 𝑾𝒚 ∙ 𝒂

𝒕 + 𝒃𝒚

𝒈𝒚 is usually sigmoid

Simplification of the notation

http://home.agh.edu.pl/~horzyk/index-eng.php


Prediction of Sequence Elements

We can try to predict a next word in a sentence, more generally, a next 
element in a sequence, we usually use a few previous words, e.g.:

„I grew up in England. Thanks to it, I speak fluent …………” (English)

RNNs are capable of handling such long-term dependencies.

http://home.agh.edu.pl/~horzyk/index-eng.php


State Transition Function

The state transition function defining a single time step can be defined by 
the shift operator q-1:

• h0 – an initial step (at t=0) associated with the external vertex (frontier)

• ht = f(ht-1, xt) – t-step

• q-1 ht = ht-1 – unitary time delay

• ot – output (predicted value)

http://home.agh.edu.pl/~horzyk/index-eng.php


Unfolding Time and

Next Sequence Elements

The sequence can be modeled by a deep 
feedforward neural network which weights 
can be computed using backpropagation:

• ht – is the last state of the whole sequence,

• w – weights are shared between layers 
(are replicated, the same).

http://home.agh.edu.pl/~horzyk/index-eng.php


Encoding Networks

For a given sequence s, the encoding network associated to s is formed by 
unrolling (time unfolding) the recursive network through the input sequence s:

In linear dynamical 
systems we can define:

http://home.agh.edu.pl/~horzyk/index-eng.php


Variety of Sequential Transductions

Due to the solved task, we can distinguish various unfolded network structures for:

• Sequence classification (e.g. sentiment classification)

• IO transduction (conversion, transfer)

• Sequence generation (e.g. music generation)

• Sequence transduction (from one to another, e.g. sequence translation)

http://home.agh.edu.pl/~horzyk/index-eng.php


Unification of Various Sequence Tasks

We can easily unify all the presented tasks:

http://home.agh.edu.pl/~horzyk/index-eng.php


Shallow Recurrent Neural Networks

A shallow Recurrent Neural Network (RNN) defines a non-linear dynamical system:

where the functions f and g are non-linear functions (e.g. tanh), 
and h0 = 0 or can be learned jointly with the other parameters.

http://home.agh.edu.pl/~horzyk/index-eng.php


Additional Architectural Features of RNN

We can use additional short-cut connections between inputs and outputs:

http://home.agh.edu.pl/~horzyk/index-eng.php


Additional Architectural Features of RNN

We can use higher-order states and connections between them,
e.g. the 2nd order states:

http://home.agh.edu.pl/~horzyk/index-eng.php


Additional Architectural Features of RNN

We can use the output to convey contextual information of the next state:

http://home.agh.edu.pl/~horzyk/index-eng.php


Additional Architectural Features of RNN

We can also force the target signal (presented by a teacher):

http://home.agh.edu.pl/~horzyk/index-eng.php


Additional Architectural Features of RNN

We can create Bidirectional Recurrent Neural Networks (BRNN) 
for off-line processing or when the sequences are not temporal 
to predict not only next but also previous sequence elements:

http://home.agh.edu.pl/~horzyk/index-eng.php


Back-Propagation Through Time (BPTT)

The backpropagation algorithm can be adapted to sequential patterns:

http://home.agh.edu.pl/~horzyk/index-eng.php


Back-Propagation Through Time (BPTT)

The backpropagation algorithm can be adapted to sequential patterns:

http://home.agh.edu.pl/~horzyk/index-eng.php


Back-Propagation Through Time (BPTT)

The backpropagation algorithm can be adapted to sequential patterns:

http://home.agh.edu.pl/~horzyk/index-eng.php


Back-Propagation Through Time (BPTT)

The backpropagation algorithm can be adapted to sequential patterns:

http://home.agh.edu.pl/~horzyk/index-eng.php


Back-Propagation Through Time (BPTT)

The backpropagation algorithm can be adapted to sequential patterns:

http://home.agh.edu.pl/~horzyk/index-eng.php


Back-Propagation Through Time (BPTT)

The backpropagation algorithm can be adapted to sequential patterns:

http://home.agh.edu.pl/~horzyk/index-eng.php


Real-Time Recurrent Learning (RTRL)

Real-Time Recurrent Learning (RTRL) adapted to sequential patterns:

http://home.agh.edu.pl/~horzyk/index-eng.php


Real-Time Recurrent Learning (RTRL)

Real-Time Recurrent Learning (RTRL) computes partial derivatives 
during the forward phase:

http://home.agh.edu.pl/~horzyk/index-eng.php


Comparison of BPTT and RTRL

Both BPTT and RTRL compute the same gradients but in different ways.

They differ in computational complexity:

http://home.agh.edu.pl/~horzyk/index-eng.php


Deep Dilated Recurrent Neural Networks

http://home.agh.edu.pl/~horzyk/index-eng.php


Vanishing/Exploding Gradient Problems

In both BPTT and RTRL, we come across exploding and vanishing gradient problems:

Exploding gradients are a problem where large error gradients accumulate and result 
in very large updates to neural network model weights during training. This effects in 
instability of the model and difficulty to learn from training data, especially over long 
input sequences of data.

In order to robustly store past information, the dynamics of 
the network must exhibit attractors but, in their presence, 
gradients vanish going backward in time, so no learning with
gradient descent is possible!

To reduce the vanishing/exploding gradient problems, we can:

Modify or change the architecture or the network model:

• Long Short-Term Memory (LSTM) units

• Reservoir Computing: Echo State Networks and Liquid State Machines

Modify or change the algorithm:

• Hessian Free Optimization

• Smart Initialization: pre-training techniques

• Clipping gradients (check for and limit the size of gradients during the training of the network)

• Truncated Backpropagation through time (updating across fewer prior time steps during training)

• Weight Regularization (apply a penalty to the networks loss function for large weight values)

http://home.agh.edu.pl/~horzyk/index-eng.php


Long Short-Term Memory (LSTM)

Long Short-Term Memory networks are a special kind of Recurrent Neural 
Networks, containing four (instead of one) interacting layers and capable of 
learning long-term dependencies.

http://home.agh.edu.pl/~horzyk/index-eng.php


Cell State of LSTMs

The key to LSTM is the cell state represented by the horizontal line 
running through the top of the diagram. It is a kind of conveyor belt.

It runs straight down the entire chain, with only some minor
linear interactions.

The LSTM has the ability to remove or add information 
to the cell state, carefully regulated by structures called gates.

http://home.agh.edu.pl/~horzyk/index-eng.php


Gates of LSTMs

Gates are a way to optionally let information through.

They are composed out of a sigmoid neural net layer and 
a pointwise multiplication operation.

The sigmoid layer outputs numbers between zero and one, 
describing how much of each component should be let 
through. A value of zero means “let nothing through,” while 
a value of one means “let everything through!”

An LSTM has three of 
these gates, to protect 
and control the cell state.

http://home.agh.edu.pl/~horzyk/index-eng.php


Long Short-Term Memory (LSTM)

A simple LSTM cell consists of four gates:

• Forget gate (f) – whether and to what extend to forget (erase) the previous Ct-1 cell

• Input gate (i) – it controls writing to the cell and how strong the given input influence 
the output result and combines it with the previous cell output

• Output gate (o) – how much to reveal the cell and use for computing the output ht

http://home.agh.edu.pl/~horzyk/index-eng.php


Long Short-Term Memory (LSTM)

In the first step, the LSTM decides by a sigmoid layer called the “forget gate 
layer” what information is let to go throw away from the cell state. 

The forget gate (o) of a simple LSTM cell takes the decision about what must be 
removed from the ht-1 state after getting the output of the previous state, 
and it thus keeps only the relevant stuff. It is surrounded by a sigmoid function 
which crushes the input between [0, 1]. 

We multiply the forget gate with previous cell state to forget the unnecessary 
stuff from the previous state which is not needed anymore.

http://home.agh.edu.pl/~horzyk/index-eng.php


Long Short-Term Memory (LSTM)

In the next step, the LSTM decides what new information will be stored in the 
cell state: First, a sigmoid layer  called the input gate layer decides which values 
we shall update. Next, a tanh layer creates a vector of new candidate values, Ct, 
that could be added to the state. In the next step, we shall combine these two to 
create an update to the state.

The input gate (i) of a simple LSTM decides about the addition of new stuff from 
the present input to our present cell state scaled by how much we wish to add 
them.

The sigmoid layer  decides which values to be updated and tanh layer creates 
a vector for new candidates to added to the present cell state.

~

http://home.agh.edu.pl/~horzyk/index-eng.php


Long Short-Term Memory (LSTM)

In the third step, the LSTM updates the old cell state Ct−1 into the new cell state Ct. 
The previous steps already decided what to do, we just need to actually do it.

We multiply the old state by ft, forgetting the things we decided to forget earlier. 
Then we add it∗Ct. This is the new candidate values, scaled by how much we 
decided to update each state value.

We can actually drop the information about the old subject’s attribute and add 
the new information, as we decided in the previous steps.

http://home.agh.edu.pl/~horzyk/index-eng.php


Long Short-Term Memory (LSTM)

Finally, the LSTM decides what is going to the output based on our cell state, but 
will be a filtered version. First, a sigmoid layer  decides what parts of the cell 
state go to the output. Then, the cell state is put through tanh (to push the values 
to be between −1 and 1) and multiply it by the output of the sigmoid gate, so that 
only the parts are sent to the output.

The output gate (o) of a simple LSTM cell decides what to output from the cell 
state which will be done by the sigmoid function .

The input xt is multiplied with tanh to crush the values between (-1,1) and then 
multiply it with the output of sigmoid function:

http://home.agh.edu.pl/~horzyk/index-eng.php


Variants of LSTM

Peephole connections can be added to some or all the gates of the LSTM cells:

The forget gate can be coupled to forget only when we are going to put 
something in the place of the forgotten older state:

http://home.agh.edu.pl/~horzyk/index-eng.php


Gated Recurrent Unit (GRU)

The gated recurrent unit combines the forget and input gates into a single 
update gate and merges the cell state and hidden state together with some 
other minor changes. In result the GRU units are simpler than LSTM ones:

http://home.agh.edu.pl/~horzyk/index-eng.php


Long Short-Term Memory (LSTM)

LSTM is an extension of RNN that can deal with long-term temporal 
dependencies. It implements a mechanism that allows the networks
to “remember” relevant information for a long period of time:

http://home.agh.edu.pl/~horzyk/index-eng.php


Long Short-Term Memory (Vanilla LSTM)

Exploits a linear memory cell (state) that integrates input information through time:

• memory obtained by self-loop,

• gradient not down-sized by Jacobian of sigmoidal function ➔ no vanishing gradient!

3 gate units with sigmoid soft-switch control the information flow via multiplicative 
connections:

• input gate “on”: let input to flow in the memory cell,

• output gate “on”: let the current value stored in the memory cell to be read in output,

• forget gate “off”: let the current value stored in the memory cell to be reset to 0.

http://home.agh.edu.pl/~horzyk/index-eng.php


Long Short-Term Memory (Vanilla LSTM)

Peepholes connections of Vanilla LSTM allow directly controlling all gates to easier 
learn precise timings, supporting full backpropagation through time training:

http://home.agh.edu.pl/~horzyk/index-eng.php


Deep Grid and Convolutional LSTM Networks

Stacked LSTM (sLSTM) Convolutional LSTM (cLSTM)

Grid LSTM where cells are
connected between
network layers as well as
along the spatiotemporal
dimensions of the data:

http://home.agh.edu.pl/~horzyk/index-eng.php


Bibliography and Literature
1. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, 2016, 

ISBN 978-1-59327-741-3 or PWN 2018.

2. Holk Cruse, Neural Networks as Cybernetic Systems, 2nd and revised edition

3. R. Rojas, Neural Networks, Springer-Verlag, Berlin, 1996.

4. Convolutional Neural Network (Stanford)

5. Visualizing and Understanding Convolutional Networks, Zeiler, Fergus, ECCV 2014

6. Lectures of Alessandro Sperduti of Universita Degli Studi di Padova

7. Exploading Gradient Problem

8. LSTM cells from scratch and the code

9. Understanding LSTM

University of Science 
and Technology

in Krakow, Poland

Adrian Horzyk

horzyk@agh.edu.pl

Google: Horzyk

file:///C:/Users/Adrian/Downloads/bmm615.pdf
https://page.mi.fu-berlin.de/rojas/neural/neuron.pdf
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
https://arxiv.org/abs/1311.2901
http://==deeplearning.math.unipd.it=DL4SEQWCCI18.pdf
https://machinelearningmastery.com/exploding-gradients-in-neural-networks/
https://hackernoon.com/understanding-architecture-of-lstm-cell-from-scratch-with-code-8da40f0b71f4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
mailto:horzyk@agh.edu.pl
http://home.agh.edu.pl/~horzyk/index-eng.php

