
COMPUTATIONAL
INTELLIGENCE

Unsupervised Learning
and Self-Organizing Maps 

SOM

Adrian Horzyk

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php
http://www.agh.edu.pl/en/
http://www.agh.edu.pl/en/


Unsupervised Learning

Unsupervised learning is a kind of adaptation algorithms (learning methods) that 
has not defined any goal of learning. We say that training data are unlabeled.

Training data contain only input data without:
• desired class information for classification tasks (supervised learning),

• desired function values for various regression and approximation tasks (supervised learning),

• expert judgment on the quality of the computed outputs (reinforcement learning).

Unsupervised learning is typically used for:
• initial features extraction in various deep learning algorithms and networks,

• clustering tasks which group training data into some number of clusters, sets, groups, etc.,

• anomaly detection, discriminating outliers, which are not grouped because of the lack of 
their similarity to the other samples.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


Clustering

Clustering is an operation which divides data into clusters (groups, subsets).
It is a task of grouping a set of objects after their similarities that can be variously 
defined and achieved by various algorithms that differ significantly in their notion 
of what constitutes a cluster and how to efficiently find them. The primary task is 
to define constraints and conditions which point out different groups of objects. 

We can distinguish various clustering methods, e.g.:

• K-means

• Mixture models

• Hierarchical clustering

• SOM

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


Clusters and Clustering

Clusters can be created using different models:

• centroid – represents each cluster by a single mean vector (e.g. k-means algorithm),

• connectivity – are based on distance connectivity (e.g. hierarchical clustering),

• density – defines clusters as connected dense regions in the data space (e.g. DBSCAN and OPTICS),

• bi-clustering – uses both cluster members and relevant attributes,

• grouping – does not provide a refined model for their results and just provide the grouping information,

• graph-based – looking for a clique, i.e. a subset of nodes in a graph such that every two nodes in this subset 
are connected by an edge can be considered as a prototypical form of the cluster (e.g. HCS clustering 
algorithm),

• statistical distribution – such as multivariate normal distributions (e.g. expectation-maximization algorithm).

Clusters can be hard/sharp or soft/fuzzy, i.e. each object belongs to each cluster to a certain degree.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


Self-Organizing Maps – SOM 

Self-Organizing Maps (SOM) introduced by prof. T. Kohonen are networks 
consisting of nodes that can resemble neurons. However, the connection
weights of these nodes do not weigh the input signals but try to reproduce 
them, and nodes compute the distance to the input vector, not a weighted sum!

The nodes are placed in the defined grid of nodes and have neighbors.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


Self-Organizing Maps – SOM 

Self-Organizing Maps (SOM) make the projection of an n-dimensional input data space into an m-dimensional 
output space, where m ≤ n. The dimension of the output data space is typically
equal 2 (m = 2), however, it is usually not the best choice, because the output
data space should not only group similar input patterns but also represent
relations between these groups. Consequently, m should not be less than
the number of the independent inputs! The lack of the ability to appropriately
represent relations between 3 independent variables representing RGB color is
noticeable in the 2D output space, in which not all similar colors lie side by side:

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


Competition of Nodes

In the Self-Organizing Maps (SOM), nodes compete with each
other using the strategy winner-takes-most.

The winner is a node which weight vector is the nearest to the
presented input vector. The distance between each weight vector

𝑾𝒊,𝒋 = 𝒘𝟏
𝒊,𝒋
, 𝒘𝟐
𝒊,𝒋
, … , 𝒘𝒏

𝒊,𝒋
and the input vector 𝑿𝒌 = 𝒙𝟏

𝒌, 𝒙𝟐
𝒌, … , 𝒙𝒏

𝒌

is typically computed using the Euclidean distance:

where weights are initially set using small random numbers.

The winner has right to change its weights at most towards the input data vector.
Its closest neighbors do fewer changes in their weights towards the input data vector.
Its more distant neighbors do still fewer changes towards the input data vector.

𝒅 𝑿𝒌,𝑾𝒊,𝒋 𝒕 =  

𝒊=𝟏

𝑰

 

𝒋=𝟏

𝑱

 

𝒌=𝟏

𝒏

𝒙𝒌
𝒌 −𝒘𝒌

𝒊,𝒋
𝒕
𝟐

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


Learning Algorithm of SOM

1. Create an output grid of nodes, which number should be much less than the number of training samples.

2. Initialize weights with small random numbers that should be less than the input data but greater than 0:
𝒙𝒊
𝒎𝒂𝒙−𝒙𝒊

𝒎𝒊𝒏

𝟏𝟎𝟎
≤ 𝒘𝒊 ≤

𝒙𝒊
𝒎𝒂𝒙−𝒙𝒊

𝒎𝒊𝒏

𝟏𝟎
where 𝒙𝒊

𝒎𝒊𝒏, 𝒙𝒊
𝒎𝒂𝒙 are the minimum and maximum feature values

3. Take the subsequent or random input samples and compute the output values for all nodes.

4. Fix the closest node to the subsequent input sample

„winner”: 𝒂, 𝒃 = 𝒂𝒓𝒈 𝐦𝐢𝐧
𝒊,𝒋
𝒅 𝑿𝒌,𝑾𝒊,𝒋 𝒕

5. Update the weights of this node with the biggest
learning rate, and do the same also to its direct
and indirect neighbors with the decreasing strength.

6. Narrow down the sphere of neighbors and slightly
reduce the learning rate.

7. Go back to the step number 3 and do it until each training
sample is not represented by any of the grid nodes.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


Training Parameters

During the SOM training, the radius of the updated nodes 𝝈 𝒕 is still smaller and smaller, starting from 
the given initial radius 𝝈𝟎 which can initially cover even

the total grid of all neurons: 𝝈 𝒕 = 𝝈𝟎 ∙ 𝒆
−
𝒕

𝜶

We also update the learning rate that represents the adaptation
strength of the weight vector according to the training step:

𝜸 𝒕 = 𝜸𝟎 ∙ 𝒆
−
𝒕

𝜶 where 𝜸𝟎 is the initial learning rate 𝜸𝟎 = 1, and 𝜶 = 1000 is the constant of narrowing.

Consequently, weights are updated after the following formula:

𝑾𝒊,𝒋 𝒕 + 𝟏 = 𝑾𝒊,𝒋 𝒕 + 𝜹 𝒕 ∙ 𝜸 𝒕 ∙ 𝑿𝒌 −𝑾𝒊,𝒋 𝒕

Where parameter 𝜹 𝒕 is winner distance-dependent and is equal:

𝜹 𝒕 = 𝒆
−
𝒅 𝑵𝒊,𝒋 𝒕 ,𝑵𝒂,𝒃 𝒕

𝟐

𝟐∙𝝈𝟐 𝒕 where 𝑵𝒊,𝒋 𝒕 is a neuron placed at the coordinates (i,j) in a 2D output space.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


Grids, Neighborhood, and Distance

We can consider various grids and variously defined neighborhood:

The distance between the winner and other nodes are usually computed after:

𝒅 𝑵𝒊,𝒋 𝒕 , 𝑵𝒂,𝒃 𝒕 = 𝒊 − 𝒂 + 𝒋 − 𝒃

or

𝒅 𝑵𝒊,𝒋 𝒕 , 𝑵𝒂,𝒃 𝒕 = 𝒊 − 𝒂 𝟐 + 𝒋 − 𝒃 𝟐

Rectangular Grid Hexagonal Grid

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


Tips and Tricks for Better Results

Self-Organizing Maps (SOM) can be better adapted to represent compact groups 
of samples and suitable distances between groups reproducing their similarity if:
Weights will be correctly initialized by small random numbers.

The dimension of the output SOM space will not be less than the number of the independent input variable.

There will be used grids with the bigger number of neighbors:

The number of nodes cannot be less than the expected
number of clusters (groups) but should be significantly less than the number of training samples,
e.g. sqrt(number of all training samples) to force each node to represent at least several training samples
on average.

We usually start with the output dimension equal two, but we should start from the dimension equal 
the number of independent input variables, and gradually increase this dimension until the winners 
representing the same groups of neurons get more or less the same distance in various instances of SOM 
networks starting from different initial weights.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


Implementation and Presentation

Start with the Iris data and the 2D grid 4x4 or 5x5 neurons.

Associate one independent color from RGB color space with each class, e.g.:

• Setosa – Red

• Versicolor – Green

• Virginica – Blue

For each node create a three element table, which elements will separately count up the number of 
patterns of the above-mentioned classes to compute the final color of the node after the number of 
representatives of the given class divided by the number of all samples which won in this node:

e.g. R = 255 * ( 7 / 10 ), G = 255 * ( 2 / 10 ), B = 255 * ( 1 / 10 ).

Such computed colors can be used in the graphical interface of this method to represent nodes.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


Deep networks using SOM and MLP

Self-Organizing Maps (SOM) are willingly used in an initial unsupervised feature 
extraction process because the SOM nodes represent groups of similar objects:

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


Bibliography and References

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/lectures/ahdydci.php

