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Support Vector Machines

Prof. V. Vapnik in 1998 created a new approach to shaping 
the neural network structure and defining the learning problem. 
He tried to eliminate the well-known disadvantages of MLP and 
RBF neural networks that minimize the non-linear error functions:

 The minimized function is usually multimodal with respect to 
the optimized parameters and has many local minima 
in which the learning process often stuck depending 
on the starting point that is typically defined by random weights.

 Learning algorithms are usually unable to effectively control 
the complexity of the neural network structures, 
which has a significant impact on the generalizability of 
the constructed solutions based on neural networks.
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Essence of SVM

 The essence of the proposed change is to perform the learning process 
on the basis of weight selection, during which the separation margin 
between objects of the chosen and all other classes is maximized. 

 This margin is defined between the most difficult separable objects 
(points of space), which define the so-called support vectors.

 SVM networks form a specific two-layer neural structure that uses 
different types of activation functions (linear, polynomial, radial, or 
sigmoidal). 

 There is used a learning technique based on square programming,
which is characterized by only one global minimum. 

 SVM networks are mainly dedicated to classification issues, 
where objects of one class are separated by the greatest possible 
margin from the objects of the other classes. 

 It can be also adapter to some regression tasks.
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Discrimination and Classification Problems

K-NN – Voronoi regions Decision Tree – rectangle regions

MLP – non-linear hyperplanes RBF – radial regions
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The widest separation margin

The SVM method is designed to determine the widest margin of separation of objects of 
various classes. It discriminates objects of one selected class from objects of all other classes:
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How to separate and discriminate?

Support Vectors

The goal is to maximize the margin separating objects (training patterns) of each 
class through determination of the optimal hyperplane that discriminates objects of 
one class against the objects of other classes. 

This method takes into account only these objects which are most difficult to 
separate and discriminate, i.e. the objects that are close to objects of other classes.

The produced model should simplify representation, reduce the number of 
calculations, and supply us with satisfactory generalization.

SVM discrimination
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Suppose that we have a set of learning pairs:

𝑥𝑖 , 𝑑𝑖 for 𝑖 = 1,2, … , 𝑝

where 𝑥𝑖 – input vector (training pattern, object)

𝑑𝑖 ∈ −1;+1 – discrimination pointer:
𝑑𝑖 = +1 – is used for the discriminated class,
𝑑𝑖 = −1 – is used for all other classes.

Assuming that it is possible to separate classes
of objects of 𝑑𝑖 = +1 class from the objects of
𝑑𝑖 = −1 l class linearly, it is possible to determine 
the equation of the hyperplane that separates
these patterns: 𝑦 𝑥 = 𝑤𝑇𝑥 + 𝑏 = 0

where w – weight vector, x – input data vector, b – polarization

Thus, we can define decision-making inequalities:

If 𝑤𝑇𝑥 + 𝑏 ≥ 0 then 𝑑𝑖 = +1 (for our discriminated class)

If 𝑤𝑇𝑥 + 𝑏 ≤ 0 then 𝑑𝑖 = −1 (for the other classes)

On this basis we define inequality: 𝑑𝑖 𝑤
𝑇𝑥 + 𝑏 ≥ 1

If this inequality is true for pairs 𝑥𝑖 , 𝑑𝑖 that define support vectors,
which determine the hyperplane position and the width of the separation margin. 
Therefore, it is necessary to calculate b and w to determine the decision.

Support Vector Machine – SVM

Support Vectors

𝒚
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Crossing Separation Limits

Sometimes, it is impossible to use such a separation margin, 
especially for problems that are non-linearly separable
where some pairs 𝑥𝑖 , 𝑑𝑖 lie within the separation margin zone.
This can be expressed using the following inequality:

𝑑𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ 1 − 𝛿𝑖

where 

𝛿𝑖 ≥ 0makes this separation margin smaller:

If 0 ≤ 𝛿𝑖 < 1 then 𝑥𝑖 , 𝑑𝑖 lies on the right
side of the separation hyperplane, so the
decision about classification will be correct.

If 𝛿𝑖 = 1 then 𝑥𝑖 , 𝑑𝑖 lies exactly on the
hyperplane, so the classification will be
undetermined.

If 1 < 𝛿𝑖 then 𝑥𝑖 , 𝑑𝑖 lies on the wrong side of
the separation hyperplane, so the classification will be incorrect.

When determining the decision boundary,
the value 𝛿𝑖 should be minimized as far as possible.

𝒚

𝜹𝒊 𝜹𝒊

𝜹𝒊
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Width of Separation Margin

Support Vectors

The width of the separation margin can be 
determined as Cartesian product of the weight
vector and the difference of two support
vectors belonging to the opposite classes:

𝜌 = 𝑥+ − 𝑥− ∙
𝑤

𝑤
=
2

𝑤
= 2 ∙ 𝑟 𝑥𝑆𝑉

Because the distance between the support
vectors and the hyperplane are defined as:

𝑟 𝑥𝑆𝑉 =
𝑦 𝑥𝑆𝑉

𝑤
=  

1

𝑤
𝑓𝑜𝑟 𝑦 𝑥𝑆𝑉 = 1

−1

𝑤
𝑓𝑜𝑟 𝑦 𝑥𝑆𝑉 = −1

In order to maximize the margin of separation between the support vectors of 

different classes 𝜌 =
2

𝑤
it is necessary to minimize 𝑤 , which is equivalent 

to minimizing the expression 
1

2
𝑤 2 with some linear constraints resulting 

from the defined decision inequality.

In such cases, we use Lagrange multipliers to find the extrema of a multivariate 
function subject to the defined constraints, so we minimize the Lagrange function.

𝒚
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Minimization of Lagrange Function

Determination of the Lagrange function for the problem of maximizing separation margin:

min
𝑤

1

2
𝑤 2 + 𝜗 

𝑖=1

𝑝

𝛿𝑖

subject to the defined constraints:
𝑑𝑖 𝑤

𝑇𝑥𝑖 + 𝑏 ≥ 1 − 𝛿𝑖
𝛿𝑖 ≥ 0

where 𝜗 – is the weight with which testing errors are weighted in comparison to 
the separation margin, determine the complexity of the network, which is selected 
by the user in an experimental manner, using e.g. cross-validation. 
Finally, we get the following Lagrange function:

𝐿 𝑤, 𝑏, 𝛼, 𝛿, 𝜇 =
1

2
𝑤𝑇𝑤 + 𝜗 

𝑖=1

𝑝

𝛿𝑖 − 

𝑖=1

𝑝

𝛼𝑖 𝑑𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 − 1 − 𝛿𝑖 − 

𝑖=1

𝑝

𝜇𝑖𝛿𝑖

where 𝛼𝑖 is a Lagrange multiplayer vector with non-negative values corresponding to 
the particular functional constraints, 𝜇𝑖 is a Lagrange multiplayer vector corresponding to 
the inequality constraints imposed on the variables 𝛿𝑖.

Lagrange’s minimization solution consists in determining the saddle point 
on the basis of the partial derivatives relative to multipliers.
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Minimization of Lagrange Function

Conditions of optimal solution are determined by the following relationships:

𝜕𝐿 𝑤, 𝑏, 𝛼, 𝛿, 𝜇

𝜕𝑤
= 0 → 𝑤 = 

𝑖=1

𝑝

𝛼𝑖𝑑𝑖𝑥𝑖

𝜕𝐿 𝑤, 𝑏, 𝛼, 𝛿, 𝜇

𝜕𝑏
= 0 →  

𝑖=1

𝑝

𝛼𝑖𝑑𝑖 = 0

𝜕𝐿 𝑤, 𝑏, 𝛼, 𝛿, 𝜇

𝜕𝑤
= 0 → 𝜇𝑖 = 𝜗 − 𝛼𝑖

Which now we substitute in the Lagrange function:

𝐿 𝑤, 𝑏, 𝛼, 𝛿, 𝜇 =
1

2
𝑤𝑇𝑤 + 𝜗 

𝑖=1

𝑝

𝛿𝑖 − 

𝑖=1

𝑝

𝛼𝑖 𝑑𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 − 1 − 𝛿𝑖 − 

𝑖=1

𝑝

𝜇𝑖𝛿𝑖

=
1

2
 

𝑖=1

𝑝

𝛼𝑖𝑑𝑖𝑥𝑖 

𝑗=1

𝑝

𝛼𝑗𝑑𝑗𝑥𝑗 + 𝜗 

𝑖=1

𝑝

𝛿𝑖 − 

𝑖=1

𝑝

𝛼𝑖 𝑑𝑖  

𝑗=1

𝑝

𝛼𝑗𝑑𝑗𝑥𝑗 𝑥𝑖 + 𝑏 − 1 − 𝛿𝑖 − 

𝑖=1

𝑝

𝜇𝑖𝛿𝑖

=
1

2
 

𝑖=1

𝑝

𝛼𝑖𝑑𝑖𝑥𝑖 

𝑗=1

𝑝

𝛼𝑗𝑑𝑗𝑥𝑗 + 𝜗 

𝑖=1

𝑝

𝛿𝑖 − 

𝑖=1

𝑝

𝛼𝑖𝑑𝑖𝑥𝑖 

𝑗=1

𝑝

𝛼𝑗𝑑𝑗𝑥𝑗 + 𝑏 

𝑖=1

𝑝

𝛼𝑖𝑑𝑖 +  

𝑖=1

𝑝

𝛼𝑖 1 − 𝛿𝑖 − 

𝑖=1

𝑝

𝜗 − 𝛼𝑖 𝛿𝑖

=
1

2
 

𝑖=1

𝑝

𝛼𝑖𝑑𝑖𝑥𝑖 

𝑗=1

𝑝

𝛼𝑗𝑑𝑗𝑥𝑗 + 𝜗 

𝑖=1

𝑝

𝛿𝑖 − 

𝑖=1

𝑝

𝛼𝑖𝑑𝑖𝑥𝑖 

𝑗=1

𝑝

𝛼𝑗𝑑𝑗𝑥𝑗 + 𝑏 

𝑖=1

𝑝

𝛼𝑖𝑑𝑖 +  

𝑖=1

𝑝

𝛼𝑖 − 

𝑖=1

𝑝

𝛼𝑖𝛿𝑖 − 𝜗 

𝑖=1

𝑝

𝛿𝑖 + 

𝑖=1

𝑝

𝛼𝑖𝛿𝑖

= 

𝑖=1

𝑝

𝛼𝑖 −
1

2
 

𝑖=1

𝑝

 

𝑗=1

𝑝

𝛼𝑖𝛼𝑗𝑑𝑖𝑑𝑗𝑥𝑖𝑥𝑗
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Dual Problem

At the saddle point, the quotient of the Lagrange multiplier 𝑑𝑆𝑉 and the corresponding 
boundary constraints 𝛿𝑆𝑉 with the support vector 𝑥𝑆𝑉 is equal to zero (𝑑𝑆𝑉𝛿𝑆𝑉 = 0), 
because 𝛿𝑆𝑉=0, so the relation:

𝑑𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ 1 − 𝛿𝑖

at the point of support vector comes down to :

𝑤𝑇𝑥𝑖 + 𝑏 = ±1

This helps to determine the value 𝑏 :

𝑏 = ±1 − 𝑤𝑇𝑥𝑖
So we got a dual problem defined as:

max
𝛼
𝑄 𝛼 = 

𝑖=1

𝑝

𝛼𝑖 −
1

2
 

𝑖=1

𝑝

 

𝑗=1

𝑝

𝛼𝑖𝛼𝑗𝑑𝑖𝑑𝑗𝑥𝑖𝑥𝑗

For the defined constraints for 𝑖 = 1,2, … , 𝑝 defined as follows:

0 ≤ 𝛼𝑖 ≤ 𝜗  

𝑖=1

𝑝

𝛼𝑖𝑑𝑖 = 0

The solution of the dual problem allows us to find the desired hyperplane: 

𝑦 𝑥 = 

𝑖=1

𝑝

𝛼𝑖𝑑𝑖𝑥𝑖
𝑇𝑥𝑗 + 𝑏
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Conclusions and Remarks

The complementary variable 𝛿𝑖 nor Lagrange multipliers associated with it
do not appear in the formulation of the dual problem.

Multipliers must meet the basic condition that the product of multipliers 
and values of the constraints’ function for each pair of learning data is equal to zero. 

If the constraint is satisfied with the excess for the non-support vectors, 
then the multipliers must be equal to zero. Non-zero multiplier values exist for
the support vectors, so they determine support vectors which number is denoted
as 𝑁𝑆𝑉 ≤ 𝑝, and therefore the equation of the optimal-weighted linear SVM network 
defines a hyperplane dependent on the support vectors:

𝑦 𝑥 =  

𝑖=1

𝑁𝑆𝑉

𝛼𝑖𝑑𝑖𝑥𝑖
𝑇𝑥𝑗 + 𝑏

Most of the classification problems are not linearly separable,
so there is necessary to use the non-linear projection of original data
into another functional space where the patterns become linearly separable
and it is possible to use hyperplane to separate vectors.

There is necessary to use non-linear transformation
with a sufficiently high dimension 𝐾 of the feature space 𝐾 ≥ 𝑁.
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Non-linear SVM

For non-linearly separable tasks, we do the linear projection of each pattern from its 

N-dimensional feature space to the K-dimensional feature space 𝝋𝒋 𝒙 , 𝑗 = 1,2, … , 𝐾. 

As a result of this non-linear transformation, the hyperplane equation will be defined by 
the following formula:

𝑦 𝑥 = 𝑤𝑇𝜑 𝑥 + 𝑏 = 

𝑗=1

𝐾

𝑤𝑖 𝝋𝒋 𝒙 + 𝑏 = 0

where 𝑤𝑖 denotes the weights of connections from the neuron of non-linear activation 

function 𝝋𝒋 computed on the input vector x to the output linear neuron.

Finally, we get a two-layer neural network structure containing one hidden layer:

𝝋𝟏

𝝋𝑲

𝒙𝟏

𝒙𝑵

+ 𝒚

𝒘𝟏

𝒘𝑲
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Non-linear SVM Network

We get the solvation of the original problem by substituting the variable 𝑥𝑖 by 𝜑𝑖 𝑥 :

max
𝛼
𝑄 𝛼 = 

𝑖=1

𝑝

𝛼𝑖 −
1

2
 

𝑖=1

𝑝

 

𝑗=1

𝑝

𝛼𝑖𝛼𝑗𝑑𝑖𝑑𝑗𝐾 𝑥𝑖 , 𝑥𝑗

where 𝐾 is called a kernel function, defined as follows:

𝐾 𝑥𝑖 , 𝑥𝑗 = 𝜑
𝑇 𝑥𝑖 𝜑 𝑥𝑗

The solution to this problem is achieved by determination of the weight values:

𝑤 = 

𝑖=1

𝑝

𝛼𝑖𝑑𝑖𝜑 𝑥𝑖

𝑏 = ±1 − 𝑤𝑇𝜑 𝑥𝑖
Obtaining the output for the non-linear SVM:

𝑦 𝑥 = 𝑤𝑇𝜑 𝑥 + 𝑏 =  

𝑖=1

𝑁𝑆𝑉

𝛼𝑖𝑑𝑖 𝐾 𝑥𝑖 , 𝑥 + 𝑏 = 0

For the kernel function candidates 𝐾, we can select functions satisfying the 
condition of Mercator’s theorem, e.g. Gaussian functions, polynomial, splines, 
and even sigmoidal functions with certain restrictions. 
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Non-linear Functions of SVM Kernel

The most commonly used kernel functions include:

 Linear functions:
𝐾 𝑥𝑖 , 𝑥 = 𝑥

𝑇𝑥𝑖 + 𝛾

 Polynomial functions:
𝐾 𝑥𝑖 , 𝑥 = 𝑥

𝑇𝑥𝑖 + 𝛾
𝑝

 Gaussian functions:
𝐾 𝑥𝑖 , 𝑥 = 𝑒𝑥𝑝 −𝛾 𝑥 − 𝑥𝑖

2

 Sigmoidal functions:
𝐾 𝑥𝑖 , 𝑥 = 𝑡𝑔ℎ 𝛽𝑥

𝑇𝑥𝑖 + 𝛾

Where 𝛽, 𝛾 are the fixed constants, and 𝑝 is the degree of the polynomial.

The SVM radial base function network is very similar to the RBF network,
although the way it is created and weights are computed differs. 

Similarly, with the use of sigmoidal functions, we get a MLP double layer network. 
If you want to use SVM network to discriminate more than two classes of patterns, 
you have to construct a few SVM networks, which will discriminate patterns of 
each class from the others separately. In the end, results are added and combined.
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Striving for Correctness of SVM

The penalties for failing constraints are often used, which forces the network to optimize 
for the adapted constants. Kuhn-Tucker’s optimality conditions for the optimization 
problem formulated for SVM are as follows:

𝛼𝑖 𝑑𝑖 𝑤
𝑇𝜑 𝑥𝑖 + 𝑏 − 1 − 𝛿𝑖 = 0
0 ≤ 𝛼𝑖 ≤ 𝜗
𝜇𝑖𝛿𝑖 = 0

𝛼𝑖 + 𝜇𝑖 = 𝜗
𝛿𝑖 ≥ 0

Depending on the Lagrange coefficients, we can consider three cases:

• 𝛼𝑖 = 0 – means that if 𝛼𝑖 + 𝜇𝑖 = 𝜗 then 𝜇𝑖 = 𝜗, so from the dependence 𝜇𝑖𝛿𝑖 = 0
comes up that 𝛿𝑖 = 0, hence the learning pair 𝑥𝑖 , 𝑑𝑖 meets the restriction with 
the excess, so without reducing the width of the separation margin.

• 0 < 𝛼𝑖 < 𝜗 – means that 𝜇𝑖 = 𝜗 − 𝛼𝑖, hence also 𝛿𝑖 = 0, 
hence the learning pair 𝑥𝑖 , 𝑑𝑖 defines the support vector,
which lies exactly on the separation margin.

• 𝛼𝑖 = 𝜗 – means that 𝜇𝑖 = 𝜗 − 𝛼𝑖 = 0, so 𝛿𝑖 ≥ 0, which means that the learning 
pattern is within the separation margin causing narrowing of the separation margin 
or even on the wrong side 𝛿𝑖 > 1.
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Solving Dual Problem for Large Data Sets

 Regardless of the used kernel and the type of a task, the main 
computational problem in SVM networks is reduced to the quadratic 
programming task with linear constrains. 

 The problem is a huge number of optimized variables, i.e. the Lagrange 
multipliers, which causes memory and computational complexity 
problems. This eliminates the ability to use the classical quadratic 
programming approach, e.g. MINOS, OSL, LOQO, and Matlab.

 As an alternative, there is used the decomposition of learning set to 
a number of subsets and the strategy of active constraints resulting 
from equality, neglecting those inactive with a sigh of greater inequality.  
This allows to move a part of patterns from the active set to the inactive 
set in the subsequent iterations.

 There are also used different versions of the SMO algorithm of sequential 
programming, the Platt’s BSVM, or the suboptimal Joachims SVMLight

algorithm. 
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