
Computational
Intelligence
Project and

laboratory summary

Kamil Lelowicz
Łukasz Radzio

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie
AGH University of Science and Technology

Table of contest

» Introduction
» Laboratory classes – Kamil Lelowicz
» Laboratory classes – Łukasz Radzio
» Project

Introduction

» Computational Intelligence is usually used to recognize,
classify, predict in order to make decisions without human
assistance or help people in the decision processes.

» We can use Computational Intelligence methods in Big data
business which is one of hottest industries in the world today.

» 4.4 Zettabytes of data existed in the digital universe in 2013

» Only 0.5% of data was analyzed

https://www.emc.com/leadership/digital-universe/2014iview/executive-summary.htm

https://www.emc.com/leadership/digital-universe/2014iview/executive-summary.htm

Laboratory - Kamil Lelowicz

MLP with BP

» Standard algorithms for any supervised learning pattern
recognition process

» Few words about implementation in Python:

» Each neuron was implemented as a class

» The input and error propagation phase were implemented
recursively

» Sigmoidal functions were used

» Normalize input data

Result for Iris data
Best result:
98% for test set
100% for train set

Initialization of weights:
(-1.5, 1.5)

One hidden layer

Learning rate:
0.1

During the adaptation
process the learning
rate was modifying

Result for Wine data
Best result:
98% for test set
99% for train set

Initialization of weights:
(-2, 2)

Two hidden layer

Learning rate:
0.2

During the adaptation
process the learning
rate was modifying

Simple Deep MLP

» Not all neurons between
successive layers are
connected

» Updating only a selected part
of neurons

» Using many subnetworks

http://home.agh.edu.pl/~horzyk/lectures/ci
/CI-DeepLearningStrategies.pdf

Result for Wine Data
Best result:
99% for test set
99.5% for train set

Initialization of weights:
(-2, 2)

One hidden layer

Learning rate:
0.3

During the adaptation
process the learning
rate was modifying

Deep SOM-MLP Classifier

» Kohonen’s SOM enable to represent multidimensional data in
fewer dimensions, i.e. two or three

» Type of unsupervised learning method

» We can use Self-Organizing Maps for feature extraction

Two -dimensional
representation of Wine dataset

Result for Wine data
Best result:
94% for test set
96% for train set

Initialization of weights:
(-2, 2)

Two hidden layer

Learning rate:
0.3

During the adaptation
process the learning
rate was modifying

AGDS

» A passive data structure, which make more faster
operation for example searching similar group of
elements, filtering by value or attribute

» We can substitute this operations by providing them
in O(1)

» To implement it I use ordered dictionaries and quick
sort algorithms

Laboratory – Łukasz Radzio

Laboratory part

1) Implementation of MLP – basic Python

2) MLP, SOM, Simple Deep – JAVA

3) AGDS – Python

Conclusion:

1) MLP works quite good on its own

2) SOM produces nice pictures from random noise, but does not help in
classification

3) Simple Deep as the name suggests is simple and useless (in case of
analyzed datasets)

4) AGDS simply works (as expected)

5) JAVA implementation is unscalable to bigger datasets

6) Serious algorithms should be implemented under GPU

Comparison of various
implementations of MLP - Iris

Experiments

Project

 Deep Convolutional Neural Networks

Main aim

Use deep
convolutional neural
network on gpu for
image recognition

Used technologies

» Python 3
» Theano framework
» Keras framework
» Cuda Toolkit (with

cuDNN)
» Opencv (for

visualization)

Quick guide how to install Theano with
GPU support on Windows

» Download and install Cuda Toolkit v8.0 link

» Download CuDNN v5.1 (nvidia website)

» Download and install VC 14.0 link

» Install Anaconda (or miniconda)

» Install packages from Anaconda (numpy, scipy, mkl-
service, libpython, m2w64-toolchain, nose, nose-
parameterized, pydot-ng, theano, pygpu)

» Configure .theanorc file in your home directory

https://developer.nvidia.com/cuda-toolkit
http://landinghub.visualstudio.com/visual-cpp-build-tools

.theanorc

Tips

» Theano-cache purge

» If the program stopped and no error reported, your
compiler will probably be different from the compiler
used to compile libgpuarray

» Not recommended ways simply don’t work

Comparison gpu and cpu

» Gpu is over 12 times
faster than cpu during
computing

» Nvida GT 650M is over 4
times faster than GT

820M

GPU-CPU comparison

Theano framework

- tensors (multidimensional arrays)

- computational graphs

- interface similar to numpy

- computations on GPU

- automatic differentiation

Theano framework – graph

Theano - convolution

Network topology

» Two convolutional layer with ReLu
activation function na MaxPooling

» One FC layer
» The last layer was softmax

Network topology

Graph of our network

Graph of our network

Keras code example

file:///E:/CI/prezentacja_keras.py

Theano code example

file:///C:/Users/Kamil/Documents/theanoTest/NN/lenet-mnist/theano_net.py

Data sets

» Mnist
» Cifar 10

Mnist

» Handwritten digits from 0 to 9 (black and
white)

» 28x28 pixels (784 inputs)
» Training set 50 000 examples
» Test set 10 000 examples
» Web page:

http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/

Mnist examples

Mnist really bad images

Cifar-10

» The CIFAR-10 is labeled subsets of the 80 million tiny images
dataset

» 10 classes (airplane, automobile, bird, cat, deer, dog, frog,
horse, ship, track)

» "Automobile" includes sedans, SUVs, things of that sort.
"Truck" includes only big trucks. Neither includes pickup trucks.

» 32x32 colour image (3072 inputs)

» 50000 training images

» 10000 test images

» Web page: https://www.cs.toronto.edu/~kriz/cifar.html

https://www.cs.toronto.edu/~kriz/cifar.html

Cifar - 10

Difference between images in one class

Achieved result in Mnist
database

» The training took half- day
» Best result on test set is 99.5%
» Comparison

http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html

Achieved result in Cifar-10
database

» The training took half- day
» Best result on test set is 77.6%
» It is very easy to overfit
» comparison

http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html

Learning process – cifar10 -
overfitting

Whole learning process MNIST

MNIST learning process
visualization

cross-entropy

Quadratic function

Cost functions

http://neuralnetworksanddeeplearning.com/chap3.html

Achievments

- implementation of convolutional neural
network in Keras

- implementation of convolutional neural
network in Theano

- visualization of results in openCV

- adaptation of mnielsen's repo to work under
python3 and gpu

- finding bug in theano code, issue

https://github.com/mnielsen/neural-networks-and-deep-learning
https://github.com/Theano/Theano/issues/5871

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42
	Slajd 43
	Slajd 44
	Slajd 45
	Slajd 46
	Slajd 47
	Slajd 48
	Slajd 49
	Slajd 50

