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Abstract

Sili con technology now allows us to build chips consisting of tens of milli ons of
transistors. As a result, more and more projects are constrained by the design time and
complexity rather than available chip resources. This thesis describes a (C++ based)
Automated Tool for generation 2-dimentional Convolers (2D FIR filters) implemented in
FPGAs (AuToCon). The AuToCon can automatically generates a VHDL description of a
wide range of convolers giving the list of parameters, such as: an input width, a convolution
kernel size, coefficient values, a pipelining option, etc.

A novel synthesis approach has been proposed: the AuToCon does not assume any cost-
relations between available memories, adders, multiplexers and flip-flops resources, these
values are input parameters to the AuToCon. Even different memory types can be freely
defined. Consequently, migration from one device family to another is rather effortless.
Furthermore, within the same FPGA, cost-relations between different resources might differ
and depend on the number of available resources (some resources might be already allocated
by other designs incorporated into the same FPGA). Therefore, the AuToCon generates
different circuits, i.e. allocates different resources, according to the cost-relations between the
FPGA resources.

FPGAs, in comparison to ASICs, can be quickly reconfigured, therefore design
functionali ty can be significantly improved by constant propagation through functional
reconfiguration. In the course of this work, different architectures have been studied: constant
coeff icient architecture, where coeff icient values are built -in the circuit. This architecture is
the most hardware efficient, however any coeff icient change requires the circuit to be
redesigned. The second solution is variable coeff icient option (usage of fully functional
multipliers) which consumes much more chip-area, but coeff icient can be changed without
restrictions. There is also a mid-way solution for which coeff icient is dynamically changed by
employing in-circuit reconfiguration.

The AuToCon considers a wide range of possible architectures, employing sophisticated
optimisation techniques such as exhaustive search, greedy algorithms, simulated annealing
and genetic programming. These techniques have been employed e.g. to optimise the adders
tree. As a result, the AuToCon does not only significantly reduces design time but also a
generated circuit is, in most cases, more hardware efficient than a hand-crafted counterpart
and comparable commercial solutions.

The greatest effort has been put into development of the AuToCon. Nevertheless this
thesis presents a wide range of novel architectural solutions and algorithms, such as: a novel
binary to Cannonic Sign Digit conversion algorithm, usage of different memory modules,
implementation of dual port memories for Dynamic Constant Coeff icient Multipliers and
adaptive systems, extensive usage of Multiplierless Multiplication in FPGAs, advance
optimisation techniques for LUT-based Multiplication, novel structure of Irregular Distributed
Arithmetic Convoler, and the algorithm which trade-offs between multiplierless and LUT-
based convolution.

In the course of this work, implementation of the convoler on different architectures,
such as general-purpose processors, DSPs, dedicated VLSI convolers and FPGAs, has been
presented. As a result, FPGA implementation usually outperforms the other solutions, and the
developed synthesis tool significantly reduces design time and hardware requirements of a
convoler. In conclusion, as convolution or similar operations (e.g. a sum-of-products) are
fundamental operations in most digital signal processing systems, this work might be a crucial
contribution in electronic digital designs.
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Glossary of terms

ALU – Arithmetic & Logic Unit

ASIC – Application Specific Integrated Circuit

AU – Address Unit

AuToCon – Automated Tool generating Convolers implemented in FPGAs

BR – Binary Representation

BSR – Block SelectRAM – large memory module (e.g. in Virtex 4kb DP RAM)

CCM – Configurable Computing Machine

CLB – Configurable Logic Block

CS – Constrained Search

CSD – Canonic Sign Digit

DAC – Distributed Arithmetic Convoler

DAWR – Don’ t Care Address Width Reduction

DEA – Direct External Access

DKCM – Dynamic Constant Coeff icient Multiplier

DKCM-D – DKCM with Dual Port RAM

DKCM-L – DKCM for which multiplexing is in logic (in CLB)

DKCM-P – DKCM for which two parallel set of RAMs are incorporated

DKCM-T – DKCM for which multiplexing is in tri-state buffers

DKLC – Dynamic Constant coeff icients LUT based Convoler

DMA – Direct Memory Access

DP – Dual Port (Memory)

DSP – Digital Signal Processor

DU – Data Unit

ES – Exhaustive Search

FIR – Finite Impulse Response (Filter)

FA – Full Adder

FF – Flip-Flop (usually D-type)

FPGA – Field Programmable Gate Array

GA – Genetic Algorithm

GAU – Global Address Unit

GP – Genetic Programming

GrA – Greedy Algorithm
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HA – Half Adder

HDL – Hardware Description Language

HLC – Hardware Loop Control

IDAC – Irregular Distributed Arithmetic Convoler

KCM – Constant Coeff icient Multiplier

KLC – Constant coeff icients LUT-based Convoler

LAF – Local Acceptance Function

LAU – Local Address Unit

LAWR – LSB Address Width Reduction

LC – LUT-based Convoler

LE – Logic Element – element which basically contains a single 4-input LUT (and an

associated flip-flop), roughly 1LE = ½ CLB Xili nx XC4000 = ¼ CLB Virtex

LHC – LUT based Hybrid Convoler

LM – LUT based Multiplier

LSB – Least Significant Bit

LUT – Look-Up Table (Memory)

MAC – Multiply and ACcumulate

MC – Multiplierless Convoler

MCSD – Modified Canonic Sign Digit conversion algorithm

MM – Multiplierless Multiplier

MMX – MultiMedia eXtension

MP – Master Processor

MS – Memory Sharing

MSB – Most Significant Bit

PFCU – Program Flow Control Unit

RAM – Random Access Memory

ROM – Read Only Memory

SA – Simulated Annealing

SIMD – Single Instruction-stream Multiple Data-stream

SCO – Similar Coeff icients Optimisation

SP – Single Port (Memory)

SS – Substructure Sharing

SSE – Streaming SIMD Extensions

TC – Transfer Controller
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TOC – Trade Off Coefficient – a coefficient for which estimated cost of the MC is

higher than for the IDAC

TSB – Tri-State Buffer

VC – Video Controller

VCM – Variable Coeff icient Multiplier (fully functional multiplier)

VHDL – Very (High Speed Integrated Circuit) Hardware Description Language

VLIW – Very Long Instruction Word

VLSI – Very Large Scale Integration
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Thesis:

3DUDPHWHULVHG� DXWRPDWHG� JHQHUDWLRQ� RI� FRQYROHUV� LPSOHPHQWHG� LQ
)3*$V� DOORZV� IRU� JHQHUDWLRQ� RI� FRQYROHUV� IRU� GLIIHUHQW� FRQYROXWLRQ
SDUDPHWHUV�� LQ� SDUWLFXODU�� LQSXW� GDWD� UDQJH�� FRQYROXWLRQ� NHUQHO� VL]H
DQG� FRHIILFLHQW� YDOXHV�� 6XFK� DQ� DXWRPDWHG� JHQHUDWLRQ� DOORZV� IRU
HIIHFWLYH� )3*$� XWLOLVDWLRQ� E\� H[SORLWLQJ� GHYLFH�VSHFLILF� IHDWXUHV� DQG
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WKH� QHHG� IRU� NQRZOHGJH� RI� ORZ�OHYHO� GHWDLOV�� DQG� VLJQLILFDQWO\
UHGXFLQJ�GHVLJQ�WLPH�
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1. Introduction

1.1. Convolution Operation

It is hard to enumerate aspects of electrical engineering where filtering is employed.

Examples of f iltering operations include noise suppression, enhancement of selected

frequency range, bandwidth limiti ng, etc. Analog filters suffer from sensitivity to noise,

nonlinearities, dynamic range limitations, inaccuracies due to variations in component values,

lack of f lexibili ty and imperfect repeatabili ty [Por97]. Consequently, digital filters (and FIR

filters - convolers) are getting more and more attractive. The major drawback of digital filters

is high computational requirements, especially for high frequency signals. Real time image

processing is an example of such a system. This thesis concentrates on image convolution

(two dimension FIR filtering), however similar conclusions can be drawn for 1D filters,

matrix multiplication, or partially on artificial neural networks, etc.

This thesis briefly reviews computing machines which implement convolution, and as

a result, Field Programmable Gate Arrays (FPGAs) seem to be one of the most suitable

architectural solutions [DeH98, Bos99]. Different architectural solutions can be adopted in

FPGAs, e.g. coeff icient values can be constant [Wia00b], variable [Wal64], or dynamically

changed [Woj98]. Consequently, a part of this thesis describes and compares different

solutions.

A two-dimensional convolution (or a 2D FIR filter) is specified as follows:

∑∑
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++++ ⋅=
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where: N, M – size of the convolution kernel (usually odd numbers), ay,x –input, by,x –output,

hi,j – coefficient of the convolution, D – common denominator.

In this thesis, the assumption is made that all variables in eq. 1.1 are integers, which

significantly simpli fies the architecture of the convoler. This assumption seldom confines the

filter characteristic which can be adjust by a proper change of coeff icient values and a value

of the common denominator  D. Furthermore the denominator D is assumed to be a power of

two, consequently the division is substituted by a bit-shift. In some solutions, even
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coeff icients hi,j are a power of two [Gon87, Tad92] and a multiplication can be substituted by

an addition. Examples of such filters are given in Figure 1-1.

a)  D=16
1 2 1
2 4 2
1 2 1

b)  D=1
-1 -2 -1
0 0 0
1 2 1

c)  D=1
1 1 1
1 -8 1
1 1 1

Figure 1-1. Examples of standard image processing convolution kernels which do not require
multiplication: a) low-pass b) Sobel gradient c) Laplacean edge detection

Convolution is frequently a computationally demanding operation. For example, for

image parameters: resolution 512×512 (NX= 512, NY= 512), number of frames NF= 25/s and

kernel size N×M= 3×3, real time image convolution [Wia98, Zam94, Zam95] requires LM=

NX⋅NY⋅NF⋅N⋅M= 58 982 400 multiplies and LA= NX⋅NY⋅NF⋅(N⋅M-1)= 52 428 800 additions per

second. Such the amount of operations is a challenge for nowadays’ architectures.

Furthermore, the parameters of the convolution can change; e.g. the size of the convolution

kernel 3×3 is one of the smallest and often larger kernels are adopted, e.g. 63×63. The image

resolution and the refresh rate might increase [Wia98], which significantly increases

computational requirements of the convoler.

Due to the high-performance requirements of the considered systems, the bit-parallel

approach has been adopted in this thesis. Nevertheless, there are bit-serial solutions as: serial

distributed arithmetic [Pei99, Min92], employing multiply-accumulate unit [Cho93], or bit-

serial FIR filters [Har90, Val98].

The given example of the real time image convolution is presented only to ill ustrate

implementation problems. Nevertheless, a convolution operation (or a very similar operation:

sum of products) is a fundamental operation which quick and eff icient implementation is a

crucial factor for variety of systems. For example, the developed system can be employed as a

part of an artificial neural network [Meh97, Tad93], matrix multiplication, etc. In conclusion,

there is great pressure to produce a faster and faster convoler to cope with new, more

computationally demanding requirements.

1.2. Design Automated Tools

Sili con technology now allows us to build chips consisting of tens of milli ons of

transistors. This technology promises new levels of system integration onto a single chip, but

also presents significant challenges to the chip designer [Kea98]. As a result, many ASIC

developers and sili con vendors are re-examining their design methodologies, searching for

ways to make effective use of the huge numbers of gates now available. These designers see
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current design tools and methodologies as inadequate for developing milli on-gate from

scratch, and new design strategies are under development such as high level synthesis [Ele98],

hardware/software codesign [Sta97], design reuse [Kea98], and core-based design [Rox00].

A core can be soft, firm or hard [Gup97]. A soft core consists of a synthesizable HDL

(Hardware Description Language) description that can be retargeted to different

semiconductor processes. A firm core is basically defined on gate level netlist that is ready for

placing and routing. A hard core includes layout and technology depending timing

information. Also a novel class of parameterised cores which produce a wide range of soft (or

in some cases firm) cores should be introduced. A parameterised core can automatically

generate a wide range of implementations [Luk96, Jam97, Jam99]. The parameterised core

solution is especially adequate for convolers for which a wide range of input parameters is

well defined. For reconfigurable computing such a core can be a part of a reconfigurable core

[Rox00]. Reconfigurable cores consist of a configuration data stream plus software to modify

the configuration data stream based on customisation required at run-time.

The Automated Tool for generation 2D convolers implemented in FPGAs (AuToCon)

is an example of a parameterised core. The AuToCon incorporates a C++ written program,

some VHDL-like templates [Jam97] and predefined VHDL files. More detailed description of

the system is included in Appendix A, and a similar design approach has been described in

[Jam97, Jam99, Jam00].  The hybrid solution of C and VHDL has been introduced

independently and almost at the same time by the author of this thesis [Jam97] and Bramer et.

al. [Bra97]; and proved to be an efficient way for generating parameterised libraries. The

major advantage of such a system is that parametric specification of structural VHDL is

achieved by the use of the C++ written program. This is an important factor as high-level

synthesis tools are still under development [Ele98], and a high-level synthesised circuit is

usually less hardware-eff icient than a corresponding lower-level counterpart. Furthermore, the

generated VHDL files are additional intermediate products which are not parameterised and

therefore easier to be analysed, which allows for better testing and understanding the

generated circuit. The generated VHDL files also significantly improve detecting design

errors, especially when developing the hybrid system. More detailed argument for the hybrid

solution is included in [Jam99, Jam00].

The AuToCon not only speeds up development time, but also the generated circuit

outperforms hand-crafted one or generated by comparable automated tools. This is satisfied as

novel architectural solutions have been introduced and advance search through different

solutions gives superiors results.
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1.3. Overview of the thesis

The structure of this thesis is as follows. Chapter 2 describes different architectural

solutions which can implement convolution operation. General-purpose processors, DSPs,

dedicated VLSI and FPGA solutions are overviewed and compared. In conclusion, according

to the author strong believe, FPGA solution is most promising, and therefore there will be a

strong demand for an automated tool that will generate a FPGA-based description of

convolers.

In most cases convolution coeff icient values are fixed, and multiplication is a basic

operation for convolution. Chapter 3 approaches a Constant Coeff icient Multiplier (KCM)

and different architectures performing the KCM, such as Multiplierless Multiplication (MM)

and LUT-based Multiplication (LM). Implementation results for these techniques together

with some architectural modification are included.

Chapter 4 studies multiplier architectures for which coeff icient change is a feasible

factor influencing circuit design. Therefore, the KCM and fully functional multiplier, and a

middle-way solution - Dynamic Constant Coeff icient Multiplier (DKCM) are investigated and

optimal multiplier architectures for different reconfiguration options studied.

Multiplication is basically a fundamental operation for convolution. However, there

are architectural solutions, e.g. the Distributed Arithmetic, for which multipliers are not

incorporated in the convolution. Alternatively, several multipliers combine with each other to

form a more optimised circuit. Chapter 5 describes not only these architectures but also

studies sophisticated algorithms which search for optimal solutions.

Addition is extensively employed during convolution, e.g. for multiplierless

multiplication or convolution, addition is the only arithmetic operation employed. Therefore

adders structure substantially influences the circuit area. Chapter 6 studies different

algorithms which optimise adders tree, including exhaustive search, greedy algorithm,

simulated annealing and genetic programming.
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2. Different machines implementing convolution

This chapter briefly describes possible architectures performing convolution operation,

especially 2D image convolution. At first, general-purpose processor and DSP solutions are

approached. Then an example of dedicated VLSI solution is studied, and finally FPGAs are

introduced. The major intention of this chapter is to present alternative solutions to FPGAs.

These solutions, according to the author believe, are more or less saturated, i.e. great increase

of the hardware complexity results in the insignificant computational speed-up. Conversely,

FPGAs have been rapidly developed recently (much quicker than the other architectures) and

therefore FPGA solutions are getting more and more attractive for implementation of

convolution (and other digital signal processes).

2.1. General purpose processors

Most commonly used general-purpose processor is a family of 8086 processors

[And95, Bre97]. These processors have complex architectures that are not optimal for

convolution, however, they are commonly used, and therefore can be quickly and easily

adopted as a convolution processor.

To ill ustrate the 2D convolution process on a general-purpose processor, an example

of C-language procedure is given in Listing 2-1.

Listing 2-1 can be further optimised by the following procedures:

1. the loops unrolli ng

2. rewriting the convolution procedure in the assembler language

3. rewriting the assembler language procedure with respect to the superscalar architecture of

the Pentium processor

4. employing MMX processor and its Single Instruction–stream Multiple Data-stream

(SIMD) [Fly66] architecture
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Listing 2-1. C-language procedure for the convolution

const int M= 3, N= 3; //  the size of the convolution kernel: M- horizontal; N- vertical
const int Nx= 512, Ny= 512; // image resolution: Nx- horizontal, Ny- vertical
const int D= 16; // the common denominator (see eq. 1.1)
BYTE a[Ny+1+N][Nx]; // the source image which has been enlarged to eliminate padding effect. The actual

image is from line 1+N/2 to Ny+N/2. The rest of image a is specified to minimise the padding effect.
BYTE b[Ny][Nx]; // the destination image
int w[N][M]={ 1,2,1, 2,4,2, 1,2,1} ; // coefficients of the convolution given in Figure 1-1a

void
convol2()
{ BYTE *pa= &a[0][Nx-M/2]; // the pointer to the source pixels (points top-left pixel of the conv. window)

BYTE *pb= &b[0][0];  // the pointer to the destination pixel
for(int y= 0; y<Ny; y++)  // for every line of the image
{ for(int x=0; x<Nx;  x++, pb++, pa++) // for every pixel in the line

{ register BYTE *pw=w[0]; // the pointer to the coefficients.
   register BYTE *pa1=pa; // pointer to the current source pixel
   register int sum= D/2; // accumulation result – initially D/2 to minimise division rounding error
   for(int i= 0; i<N; i++)  // vertical convolution
  { for(int j=0; j<M; j++) // horizontal convolution

sum+= *pw++ * * pa1++; // the kernel of the convolution
pa1+= Nx-M; // pa1 will point the first pixel in the next line

  }
  sum/= D; // division by the common denominator (D is a power of two so it is substituted by a bit-shit)
  *pb= (BYTE) sum; // conversion from int (4 bytes) to 1 byte variable, save the result.
}

}
}

2.1.1. Loop unroll ing

In most cases, the size of the convolution kernel is fixed and therefore the convolution

loops (loops: i and j in Listing 2-1– horizontal and vertical part of the convolution) can be

easily unrolled by writing down N×M times the multiplication and addition operations. The

loop instruction contains two assembler instructions:

• dec: decrement the loop counter

• jnz: conditional jump.

The loop unrolli ng causes not only fewer instructions to be executed but also fewer

processor stalls occur. The stalls are caused by the conditional jump instructions which

interfere with pipeline architecture of the processor [Mad95, Hwa93]. The pipelining causes

that every instruction is executed partially in subsequent clock cycles. For example, Pentium

75 executes an instruction in 5 stages [And95]:

1. fetching

2. decoding (stage 1)

3. decoding (stage 2)

4. execution

5. updating registers
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Instructions following a branch shall not be executed unless the branch is not taken. As

a result of pipelining, the branch is finally executed in the last stage, however the branch-

following instructions (which depend on whether the branch is taken or not) should be also

partially executed according to the pipeline scheme. Consequently in 80486 and older

processors, the instruction following a branch is not executed until the branch has been finally

executed. This caused the processor stalls. To improve Pentium processors performance,

branch prediction together with a Branch Prediction Buffer (BPB) [And95, Int97a] have been

introduced. Consequently, the processors can efficiently execute instructions following

branches to keep the instruction pipeline full [Int97b]. The drawback of the branch prediction

is that branches are predicted incorrectly with a certain probabili ty, p>0. Each misprediction

causes a restart of the pipeline, which has similar effects as not fetching the instructions until

the branch is finally executed.

To decrease misprediction ratio, Pentium 75 uses a two-bit up-down counter with

saturation to keep track of the direction a branch is more likely to take [Smt81, And95].

Taking into account the convolution process (Listing 2-1) and the above branch prediction

procedure, an assumption can be made that the processor will predict the loop to be executed

infinitely [Wia00a], therefore every loop-braking causes the processor stalls.

The penalty for misprediction is even greater for the latest processors, as the number of

pipeline stages has increased, e.g. Pentium Pro has 12 stages [Int97b]. This is confirmed by

implementation results presented in Table 2-1 where ta/tb= 1.42 for P75, and 2.22 for Athlon

800MHz; where: ta - calculation time without loop unrolli ng, tb - with loop unrolli ng. The 2-

bit up-down counter prediction scheme is rather primitive, and nowadays more sophisticated

branch prediction procedures have been demonstrated, e.g. by Evers et. al. [Eve98] where

branch prediction scheme can detect loops and an additional loop counter is included.

It should be noted that loop unrolli ng not only decreases the number of instructions to

be executed, eliminates branches and branch misprediction effects but also improves

instruction level parallelism, which will be approached in the next section.

2.1.2. Superscalar architecture

In a superscalar processor [Hwa93] multiple instructions pipelines are used. This

implies that multiple instructions are issued per cycle and multiple results are generated per

cycle. Superscalar processors are designed to exploit more instruction level parallelism in a

user program.

In Pentium 75 (P75), the superscalar architecture was introduced [And95] which

incorporates two parallel integer processing units:
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• Integer unit U

• Integer unit V

The number of parallel units has increased in the latest processors. For example,

Pentium Pro incorporates three-way superscalar architecture [Int97b], Pentium 4 incorporates

Rapid Execution Engine [Int00] for which the ALUs run two times the frequency of the

processor core.

Taking into account the P75, two integer instructions can be executed in a single clock

cycle. However, some instructions cannot be executed in parallel, e.g. ‘V’ unit cannot execute

shift instructions or two multiplication cannot be executed in parallel [And95, Int97a].

Besides, instruction-level parallelism is deteriorated by register contention, when e.g. the

result of a ‘U’ instruction which is currently executed, is input to a ‘V’ instruction.

In conclusion, all units of a superscalar processor are not fully exploited. Only

independent instructions can be executed in parallel without causing a wait state and therefore

a superscalar processor depends strongly on an optimising compiler to exploit parallelism.

As a result of the above conclusions, Listing 2-2b presents an assembler code which

better exploits the superscalar architecture of the P75 [Wia99a, Wia99b, Wia00a].

Nevertheless, optimised code (Listing 2-2b) is executed only 10% quicker (see Table 2-1 for

the P75) than non-optimised code (Listing 2-2a). This tiny improvement can be explained as

follows. The multiplication is a complex instruction which requires several clock cycles to be

executed and cannot be carried out in parallel. Besides non-optimised code can also exploit

the superscalar architecture of the processor. For convolution filters without multiplication,

the optimised code is executed 25% quicker.

To further exploit the superscalar architecture, speculative execution has been

introduced in the latest processors, which allows for out-of-order execution – a code is

internally optimised for a superscalar architecture of the particular processor. Consequently, a

programmer need not optimise a code every time the number of parallel units increases.

Nevertheless, for speculative execution and three parallel units, the calculation time is shorter

(up to 8%, see Table 2-1) for the two-way optimised code than for the non-optimised code.

This is because, probably, the speculative execution algorithm is not optimal, and the

optimised code is easier to be executed out-of-order. Besides the number of instructions in the

loop has been reduced from 37 to 35 for the optimised code.
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Listing 2-2. A fragment of a 3×3 convolution assembler code for a) scalar, b) superscalar
architecture

a)
// pixel 3 (top-right pixel in the convolution window)
xor edx,edx // clear edx
mov dl, byte ptr [ecx+2] // load data a (pixel 3)
imul edx,dword ptr [edi+8h]//multiply: pixel3 * w[0] [2]
add eax, edx  // accumulate the result of the multiplication
// pixel 4 (left middle pixel)
xor edx,edx // clear edx
mov dl, byte ptr [ecx+200h] // load pixel 4
imul edx, dword ptr [edi+0Ch] // edx= pixel4 * w[1] [0]
add eax, edx // accumulate the result of the multiplication

b)
xor edx, edx //start of calculation for pixel 3: clear
imul ebx, dword ptr [edi+4] //pixel2: ebx=pel2*w[0] [1]
mov dl, byte ptr [ecx+2] // pixel 3: dl=pel3
add eax, ebx // end of calculation for pixel2: eax+= ebx
imul edx, dword ptr [edi+8]  // pixel 3: edx=pel3*w[0] [2]
xor ebx, ebx // start calculation for pixel 4: clear
add eax, edx // end of calculation for pixel 3: eax+= edx
mov bl, byte ptr [ecx+200h] // pixel 4: bl= pel4

It has been observed that the average value of instructions executed in parallel is

around 2 for code without loop unrolli ng [Hwa93]. Even with loop unrolli ng, instruction-issue

degree in a superscalar processor has been limited to 2 to 5 in practice [Hwa93, Tul95]. Let

consider the case of the Pentium processors, it can be seen from Table 2-1 and Table 2-2 that

average number of instructions executed by the P300 and Athlon 800 in a single clock cycle is

up to the 2.3; for P166 it is about 1.17 (option without multiplication). It should be however

noted that the improvement for the P300 and Athlon 800 has been also achieved by reducing

the number of clock cycles required to perform multiplication. In conclusion, a superscalar

architecture quickly gets saturated, i.e. increasing the number of parallel units requires much

greater hardware expense but results in insignificant improvements.

An alternative solution is simultaneous multithreading, a technique permitting several

independent threads to issue instructions to a superscalar’s multiple functional units in a

single cycle [Tul95]. This techniques allows for better utili sation of superscalar units as

different threads can issue their instructions in such a way that register contention, memory

miss or conflict and even branch misprediction penalty is significantly reduced. For example,

while one thread waits for data transfer from external memory, others can issue their

instructions to keep all processing units busy.
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2.1.3. Very Long Instruction Word (VLIW)

The superscalar architecture requires complex instruction decoding, dispatching and

speculative execution units. An alternative solution is a VLIW [Hwa93] architecture for

which different fields of a long instruction word correspond to different functional units and

therefore decoding and dispatching instructions is much easier. Unfortunately, a VLIW code

has to be recompiled for a specified VLIW machine. Furthermore, for a superscalar processor,

code density is greater as the fixed VLIW format includes bits for non-executable operations,

while the superscalar processor issues only executable instructions.

The VLIW architecture is seldom employed in general purpose processors as tasks of

the processors are unspecified and therefore it is rather difficult to optimise functions of the

processors units. On the contrary, the convolution operation is well defined and requires

basically four (six - if processor does not support addressing with offset) different operations:

• load the coefficient (and increment the coeff icient pointer),

• load the input pixel (and increment the input pixel pointer),

• multiply,

• accumulate.

Consequently, these four (six) operations can be executed as a single VLIW instruction in

DSPs which are optimised for digital signal processing as it will be described in Section 2.2.

Crusoe processor by Transmeta adopted a novel solution [Kla00]. This processor has a

VLIW architecture which is able to perform 3 integer and one floating point operations in

parallel (see Figure 2-1).

FADD ADD LD BRCC

Floating
Point Unit

 Integer
ALU Unit

Load/Save
Unit

Branch
Unit

128 bits

Figure 2-1. Crusoe processor can execute up to four operations in parallel

In comparison to Pentium processor, Crusoe processor does not require the complex

decoding and dispatching module. Its structure is simpler, and therefore it consumes much

less power. Furthermore, Crusoe processor incorporates dynamic translation system, denoted
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as Code Morphing which complies the x86 instruction set into the host VLIW instruction set.

The processor can therefore run standard x86 programmes because code translation is

invisible to the external system. It should be noted that Pentium processors decode and

dispatch instructions every time they are executed. Conversely, Transmeta’s software

translates instructions once, saving the resulting translation in a translation cache [Kla00]. The

next time the (now translated) x86 code is executed, the system skips the translation step and

directly executes the existing optimised translation. As in most cases code is executed several

times in a loop, translation overheads have littl e influence on the system performance.

Furthermore, the translation is carried out only once and therefore it can implement a complex

algorithm which better optimises code than e.g. Pentium processor does. Besides, as an

application is executed, Code Morphing ‘ learns’ more about the program and improves it so it

will execute faster and faster. For example, aware of the branch history, the programs can

favour the most frequently taken path, or execute code from both paths and select the correct

result later if both paths are taken with equal probabili ty. It is important to note that Crusoe

hardware can achieve excellent performance because it has been designed specifically with

dynamic translation in mind.

New Pentium 4 processor adopted a similar but much simpler instruction decoding

solution. The hardware instruction decoder can decode maximum one instruction per clock

cycle. The decoded instructions are stored in an execution trace cache (TC) [Int00] and then

are executed directly from the TC. This removes decoding costs on frequently-executed code.

The TC can hold up to 12K µops and can deliver up to three µops per cycle.

2.1.4. SIMD

A single Instruction stream over Multiple Data stream (SIMD) [Fly72] architecture

allows a single instruction to be executed on several independent data simultaneously. This

significantly simpli fies the instruction decoding process, as only a single control unit is

required.

In Pentium processors, a MultiMedia eXtension (MMX) [Int97b] coprocessor has

been introduced which operates on 64 bit data and therefore can process eight independent 8-

bit-wide data simultaneously. In the case of the image convolution, input pixels are in 8-bit

unsigned format, however intermediate results are 16-bit wide, and therefore up to four data

can be processed simultaneously. Examples of MMX instructions are given in Figure 2-2.
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a)
MM0 S T U V

× × × ×
MM1 W X Y Z

= = = = =
MM0 S⋅W T⋅X U⋅Y V ⋅Z

b)
MM0 S T U V

× × × ×
MM1 W X Y Z

= = = = =
MM0 S⋅W+T⋅X U⋅Y+V⋅Z

Figure 2-2. Example of MMX instructions: a) multiplication PMULLW MM0, MM1,
b) multiply and accumulate (MAC) PMADDWD MM0, MM1

Additional computation power is obtained by superscalar architecture of the MMX

coprocessor, as two MMX instructions can be executed in parallel provided that different

MMX resources are employed.

Listing 2-3. Fragments of 3×3 convolution programs for different options and convolution
kernel given in Figure 1-1a

m)
beg:  // label for loop start
movd mm0, dword ptr [ecx] // load row 0
movd mm1, dword ptr [ecx+200h]  // load row 1
movd mm2, dword ptr [ecx+400h]  // load row 2

punpcklbw mm0, mm5 // convert byte to word
punpcklbw mm1, mm5 // mm5 – contains only zeros
punpcklbw mm2, mm5

pmaddwd mm0, mm6 // MAC; mm6= 0, 1,2,1
pmaddwd mm1, mm7 // mm7= 0,2,4,2
pmaddwd mm2, mm6

paddd mm0, mm1 // accumulating the MAC results
paddd mm0, mm2 // result in mm0
// integer units operations
movq [edi], mm0 // save register MMX to memory
movd eax, mm0 // load LSB half of the register MMX
add eax, [edi+4] // add LSB and MSB half of the register MMX
add eax, 8 // add 8 to reduce rounding error
inc esi // increment pointer to the destination
sar eax, 4 // division by 16 – prescaling
inc ecx // increment pointer to the source pixel
mov byte ptr [esi], al. // load the result to memory
dec ebp  // decrement the loop count
jnz beg // finish the loop?

n)
beg: // label for loop start
movd mm0, dword ptr [ecx] // load pixel (0,0)
punpcklbw mm0, mm7 // convert byte to word; mm7= 0

movd mm1, dword ptr [ecx+1] // load pixel (0,1)
pmullw mm0, mm6 // multiplication for pixel (0,0), mm6= 1,1,1,1
punpcklbw mm1, mm7 // convert byte to word, pixel (0,1)

movd mm2, dword ptr [ecx+2] // load pixel (0,2)
pmullw mm1, mm5 // multiplication for pixel (0,1); mm5= 2,2,2,2
punpcklbw mm2, mm7 // convert byte to word for pixel (0,2)
paddw mm0, mm1 // add products for pixels (0,0) and (0,1)
// continue for the rest of pixels
...
pmullw mm2, mm6 // multiplication for pixel (2,2), mm6= 1,1,1,1
paddw mm0, mm2 // the final result

paddw mm0, mm3 //add to reduce rounding error, mm3= 8,8,8,8
psrlw mm0, 4 // divide by 16
packuswb mm0, mm7 // convert the result from word to byte
add ecx, 4 // increment source pixels pointer
movd dword ptr [esi], mm0 // save the result
add esi,4 // increment the result pointer
dec ebp  // decrement the loop count
jnz beg // quit the loop?

Convolution operation can be carried out in two different ways [Wia00a]. In the first

one, given in Listing 2-3m only one result is obtained at the time. This solution exploits the

MMX multiply and accumulate (MAC) instruction (PMULLW), therefore it might seem that

this is the best solution. Unfortunately, input data format causes that every MAC operation

performs four multiplies (for every input row) but only three are used (for 3×3 kernel).

Besides two partial results are obtained in two halves of the MMX register, and therefore

integer units have to be used to carry out the final addition. The alternative solution is

presented in Listing 2-3n, for which four results are obtained simultaneously. This option
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performs multiply and add instructions independently, but input and output data match better

the convolution process. Consequently, MMX instructions are fully exploited (operate on four

independent data), and all i nstructions (except the loop instructions) employ only the MMX

unit. Summing up, the latest solution reduces calculation time in comparison to the former

solution (see Table 2-1). It should be noted that option n allows for saturating the result (e.g.

setting the output to the maximum value (255) if the result is overflowed (≥256)) during

conversion from the word (16-bit) to byte (8-bit) format.

New Pentium 4 can operate on 128-bit data using SSE2 instructions which are similar to

the MMX instructions [Int00]. Consequently, the speed-up by the use of SIMD instructions

will be even greater, and it seems that in the future, new releases of processors will be able to

process greater and greater data width in SIMD instructions.

2.1.5. Implementation results

Table 2-1 and Table 2-2 gives implementation results for different processors and

different options. The following convolution options have been implemented:

a) standard algorithm written in C language (Listing 2-1),

b) after unrolli ng the convolution kernel (loops i, j in Listing 2-1) written in C language,

c) li ke option b but program is written directly in assembler language,

d) li ke option c – after optimisation for the superscalar architecture,

e) li ke option c but without multiplication (only shifts are implemented, the convolution

kernel is given in Figure 1-1a),

f) li ke option e – after optimisation for the superscalar architecture,

g) li ke option f but input and output data pointers are not incremented in order to avoid cash

misses,

m) employing MMX coprocessor (Listing 2-3m),

n) employing MMX coprocessor, four pixels are calculated simultaneously (Listing 2-3n).

All options, except option g, have been referred in the previous sections. Therefore

only option g will be now approached. It can be seen from Listing 2-2 and Listing 2-3 that

approximately every second instruction communicates with memory and consequently

memory-transfer might be a bottleneck of the system. Fortunately, all tested processors

incorporate internal cache memory [Hwa93, And95], which significantly reduces external

memory transfers. Nevertheless, cache misses might still deteriorate the processor

performance [Wia00a]. In option g input and output data pointers are not incremented and

therefore the convolution operates only on 9 input and 1 output pixels which are in the cache
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memory. As a result, the convolution is corrupted, conversely the external memory transfer is

not required. Option g, in comparison to the corresponding option f, gives up to 10%

improvement. For the latest versions of the processors, however, the overhead of cache misses

increases (see Table 2-1). It should be noted that SSE instructions allow software controlled

data-perfecting, which can eliminate the cache misses.

Option a b c d e f g m n
Number of instructions

in the loop
- - 42 42 37 35 35 21 43/4

Time [ms]
486DX4 –100 670 465 460 435 147 134 131 - -

P75 587 414 403 366 95 70.3 67.6 - -
P166 247 175 169 159 45 32 30 60 26
P300 48.6 25.8 22.6 22.8 16.6 15.6 14.0 22.1 9.1

Athlon 800MHz 25.8 11.6 10.4 9.9 6 5.5 5 12.6 7.2

Table 2-1. Number of assembler instruction in the loop and calculation time for different
processors and options

Option a b c d e f g m n
486DX4 –100 256 177 175 166 56 51 50 - -

P75 168 118 115 105 27.2 20.1 19.3 - -
P166 156 111 107 101 28.5 20.3 19.0 38.0 16.5
P300 55.6 29.5 25.9 26.1 19.0 17.9 16.0 25.3 10.4

Athlon 800MHz 78.7 35.4 31.7 30.2 18.3 16.8 15.3 38.5 22.0

Table 2-2. Number of clock cycles required to calculate a single output pixel for different
processors and options

2.2. Digital Signal Processors (DSPs)

DSP architectures are optimised for digital data processing, e.g. for convolution,

therefore DSPs perform convolution in more eff icient way than general purpose processors

do. A DSP architecture and its influence on the convolution process is outlined for

TMS320C80 processor by Texas Instruments [Tex97]. The convolution process is performed

in a Parallel Processor (PP), which will be approached in the next section. Further in Section

2.2.2, the whole structure of the TMS320C80 is overviewed. Finally, a new DSP,

TigerSHARC by Analog Devices is briefly described.

2.2.1. Parallel Processors

The PP, shown in Figure 2-3, is a 32-bit integer processor which incorporates the

following units:

1. Data Unit (DU).
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2. Address Unit (AU).

3. Program Flow Control Unit (PFCU).

These units are optimised for the convolution, and as a result, all fundamental convolution

operations:

1. load the coefficient (executed by the AU)

2. increment coeff icient pointer (executed by the AU)

3. load the input pixel (executed by the AU)

4. increment input pixel pointer (executed by the AU)

5. multiply, (executed by the DU)

6. accumulate (executed by the DU)

7. control the loop (executed by the PFCU)

can be executed in parallel in a single clock cycle. The PP has also three buses, for

transferring a 64 bit VLIW instruction and two (local and global) 32-bit data in a single cycle.

Figure 2-3. The PP block diagram

2.2.1.1. Address Unit (AU)

The PP incorporates two address units: local address unit (LAU) and global address

unit (GAU) which operate independently of each other. Each of them is responsible for both

accessing memory and computing address locations. The data buses, local and global one, are

associated with the AU, which allows two data transfers to be carried out independently in a
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single clock cycle. Each AU has five address and three index registers and data path for

computing addresses.

Taking into account the convolution, each AU (global and local) allows for accessing

memory and simultaneously incrementing the address pointer either by 1 (load the next pixel

or the next coeff icient) or by NX-M+1 (load the pixel from the next line, where NX- horizontal

image size, M- convolution kernel horizontal size; NX-M+1 is stored in the index register).

Consequently, the LAU is responsible for feeding the data unit (DU) with coeff icient values,

and the GAU for feeding the DU with pixel values (or vice versa).

2.2.1.2. Data Unit (DU)

Data unit basically incorporates two paths: multiplier data path and ALU data path.

Consequently multiplication and addition are carried out in parallel, and are executed in a

single clock cycle. The multiplier can perform two simultaneous 8-bit by 8-bit multiplies

referred as a split multiply. Similarly, two 16-bit additions (a split addition) can be performed

in parallel in the ALU. These SIMD operations allow two results to be obtained

simultaneously, therefore, in theory, doubling the PP computation power. The ALU

instructions allow also for shifting and saturating, which speeds-up the final processing on the

convolution result.

2.2.1.3. Program Flow Control Unit (PFCU)

The PFCU has a VLIW architecture, which significantly simpli fies decoding and

dispatching process. The PFCU has a separate 64-bit instruction bus, and therefore fetching an

instruction does not interfere with the data paths. The PP incorporates three stages of

pipelining:

1. Instruction fetch

2. Address unit computation

3. Execute data unit operation and memory transfer.

The pipelining of the PP, unlike Pentium processors, must be considered in the

program code for every branch or other instructions changing order of a program flow. Two

delay-slot instructions following a branch must be legal operations. Listing 2-4 gives an

example of proper handling with a branch instruction. The branch instruction is executed in

the two delay slots therefore Instruction2 and Instruction3 are executed, although in Pentium

processors only Instruction1 is executed in the loop.
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Listing 2-4. Example of delayed branch

Branch1: Instruction1; the first instruction in the loop
br = Branch1; branch instruction, branch to the beginning of the loop
Instruction2; delay slot 1
Instruction3; delay slot 2
Instruction4; the instruction outside the loop

The delayed branch schedule in the PP eliminates a branch penalty and simpli fies the

processor architecture, as the branch prediction and pipeline flushing is not required. The

penalty of the delay branch solution is out-of-order program flow which must be considered

by a compiler or assembler language programmer. Besides, in some cases a result of the

conditional branch is known only after the last instruction of a loop has been executed

(Instruction3 in Listing 2-4). In this case two additional nop (no operation) instructions must

be inserted after the branch, and therefore the branch is executed with two-cycle penalty,

which has a similar result li ke for pipeline flushing.

The PP incorporates hardware loop control (HLC) which eliminates the loop overhead

completely, even the branch instruction is not included in the program code. The following

three sets of registers are employed to control up to three loops:

• Loop End Register: le2, le1 or le0 which points to the last instruction in the loop. During

each instruction fetch, the le is compared to the program counter (pc). When the le

matches the pc, the loop hardware action is invoked.

• Loop Start Register: ls2, ls1 or ls0 which points to the first instruction in the loop. The ls

register is copied over the pc when the loop hardware wants to branch back to the

beginning of the loop.

• Loop Counter Register: lc2, lc1 or lc0 contains a counter of the number of branches to the

start of the loop. The branch is taken provided that lc>0; the lc is decremented each time

the branch is taken.

• Loop Reload Register lr2, lr1 or lr0 contains an initialisation value for the associated lc.

This reinitialisation takes place after the last time through the loop. This prepares the loop

counter for the next time the loop is entered.

In conclusion, for the PP and the HLC, loop unrolli ng gives, basically, no additional processor

speed-up. The HLC is superior to the complex branch prediction solution implemented in the

general-purpose processors. It should be noted that the HLC gives very good result i f the
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loop-count is well -defined (as it is the case for the convolution), however in a general case,

unpredictable loop breaking often takes place, which makes the HLC useless.

To ill ustrate how the convolution is implemented in the PP, a fragment of the

convolution code is given in Listing 2-5. This code is executed in a single clock cycle.

Listing 2-5. Fragment of the convolution code for the PP

mult =m pixel * filter || ; Multipli cation
result += mult || ; Accumulate the product of the previous multiplication
filter =b *Ga_filt++ || ; Load the next coefficient and increment the coefficient address
pixel =ub *(La_pt++=offset1) ; Load the next pixel and increment the address to point the next line

input pixel

2.2.2. DSP TMS320C80

TMS320C80 incorporates (see Figure 2-4):

• Four Parallel Processors (PP) described in Section 2.2.1.

• Floating-point Master Processor (MP) which is a 32-bit RISC which primary role is to

perform the general-purpose computations necessary to direct the MP’s on-chip resources.

• Video Controller (VC) which provides the video interface to control two independent

frame systems.

• On-chip 50kB memory (organised into 2KB blocks) accessed by crossbar switching

architecture.

• Transfer Controller (TC) provides an interface between the TMS320C80 processors – the

MP, PPs, VC and external memory.

Figure 2-4. Block diagram of TMS320C80
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Each PP can perform two independent parallel data accesses to the on-chip shared RAMs and

one instruction fetch each cycle as each PP incorporates three ports:

• Instruction port accesses instructions from the PP’s instruction cache. Each PP has its own

2K-byte instruction cache for storing up to the 256 64-bit instructions. This amount of

cache memory is large enough to store the convolution program code.

• Global Port connects to any of the shared RAMs. If the access is attempted over the global

port to the address that is not in the on-chip RAM, a direct external access (DEA) request

is sent to the transfer controller. A DEA requires minimum 11 cycles for a load and 8

cycles for a store, therefore is not recommended unless only for a few bytes of data. For a

block transfer, the Transfer Controller should be programmed to execute a Pocket

Transfer which is performed in parallel with normal PP operations.

• Local Port connects a PP to any of four local RAMs. If a PP attempt a memory access

over the local port to an address that is not in its local RAMs, the access is diverted to the

global port and tried on the following cycle. This causes one cycle penalty.

Each memory block can be accessed only once in a clock cycle. Therefore, taking into

account the convolution operation, triple buffering technique should be employed [Tex97], for

which three separate RAMs are used for input pixels, output pixels and packet transfers

to/from the external memory. Table 2.3 ill ustrates this technique for which different memory

blocks are assigned for the different transfers, depending on the calculated output pixels. The

assignment is repeated in a cycle for every 6k output pixels.

Output Pixels [0, 2k) [2k, 4k) [4k, 6k)
RAM0 Input Data Output Data Packet Transfer
RAM1 Packet Transfer Input Data Output Data
RAM2 Output Data Packet Transfer Input Data

Table 2-3. Memory assignment for different time intervals (output pixels)

 The above algorithm, however, does not consider the input blocks overlapping (the

padding effect); e.g. for convolution kernel 5×5 and image size 512×512, to compute 1k

output pixels (2 image lines) more than 3k input pixels are required (additional 2 input image

lines before and after the corresponding destination pixels). Table 2-4 shows a modified

algorithm. Nevertheless, for a convolution kernel greater than 5×5, this algorithm cannot be

used, and more than three RAMs must be assigned to the PP and consequently another PP

might not be able to compute its own task.
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The convolution process can be easily performed in parallel, every PP and even MP

calculate a separate output pixel block. TMS320C80 incorporates four parallel processors and

each of them can calculate a separate part of the output image; as a result, the calculation time

is, in theory, four times shorter. However, the processors (PPs, MP and TC) synchronisation

is a key issue. Therefore TMS320C80 incorporated special interprocessor commands: reset,

halt, unhalt, task interrupt, message interrupt and instruction-cache reset.

Output Pix. [0, 1k) [1k, 2k) [2k, 3k) [3k, 4k) [4k, 5k) [5k, 6k)
RAM0 ID ID OD ID OD PT ID
RAM1 PT ID ID ID OD ID OD
RAM2 OD ID OD PT ID ID ID

Table 2-4. Memory assignment input blocks overlapping. Where: ID- Input Data, OD- Output
Data, PT- Pocket Transfer

According to [Tex97] each PP requires 11 cycles (8.5 cycles for split operation) to

perform 3×3 convolution. This for image size 512×512 and four parallel processors clocked

by 50 MHz gives convolution theoretical time 14.5ms (11.2ms for split operations).

Experimental result obtained by [Matrox] is 10.3ms.

Summing up, TMS320C80 is a very sophisticated processor which architecture is

optimised for convolution operation, thus it has been characterised hereby. Conversely, it is

rather difficult to be programmed, because of triple or even more buffering technique,

memory contentions, interprocessor synchronisation, etc. Besides it is clocked only by

50MHz (designed in 1995 and not developed since then). Consequently TMS320C80 is not

recommended for new designs.

2.2.3. TigerSHARC

Current DSP architectures are more or less similar to general-purpose processors and

TMS320C80. TigerSHARC ADSP-TS001 by Analog Devices [Ana99] is an example of such

a DSP. TigerSHARC is clocked by 150MHz and incorporates the following blocks (see

Figure 2-5):

• Two Compute Blocks (CB) that can operate either independently in parallel or as a SIMD

engine. The DSP can issue each cycle up to two compute instructions per CB, instructing

the ALU, multiplier or shifter to perform independent, simultaneous operations. Taking

into account the convolution, the multiplier block performs a single 32-bit MAC or quad

16-bit SIMD MACs (8 MACs in two CBs) in a cycle. Unfortunately, the multiplier does
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not support the byte operations, however, the ALU can operate on 8-bit arguments to

produce 16-bit results. The CBs operates in a very similar way like the PPs in

TMS320C80, however each CB has only one data bus (there are two data buses associated

with each PP in TMS320C80). Conversely, data bus is 128-bit wide, therefore instead of

four consecutive 32-bit data accesses, a single data access is performed.

• Two Integer ALUs (IALU, denoted as J-ALU and K-ALU in Figure 2-5) that provide

powerful address generation capabiliti es and perform move operations.

• Program Sequencer has a static superscalar architecture. The term "static superscalar" is

applied because instruction-level parallelism is determined prior to run-time and encoded

in the program. Therefore decoding instruction is easier than in Pentium processors but

the compiler or programmer has to respect instruction dependency caused either by

resources sharing or pipelining, etc. The DSP uses the following pipeline stages: three

instruction fetch (together with Instruction Alignment Buffer which incorporates

instructions FIFO buffer and dispatches instructions to the DSP units), a decode, integer,

operand access, execute1 and execute2. Consequently to reduce branch stalls caused by

the pipelining, the DSP incorporates Branch Target Buffer (BTB). This solution is similar

to Pentium processor, however, the branch prediction algorithm is much simpler in this

DSP – a branch is taken if the branch was also taken in the previous iteration of the loop.

• The TigerSHARC DSP contains three blocks of 2 Mbits each of on-chip, 128-bit wide

SRAM. The processor has also three 128-bit wide buses, each one connected to one of the

internal memories. Memories (and their associated buses) are a resource that must be

shared between the CB, the IALUs, the program sequencer and the external port. In

general, if during a particular cycle more than one unit in the processor attempts to access

the same memory, one of the competing units is granted access, while the other is held off

for further arbitration until the following cycle. However, because of the large bandwidth

available from each memory block (128-bit memory access) some bandwidth is available

for use by another unit.

• DMA peripheries. The most effective way to access external data in the TigerSHARC is

through the DMA. This runs in the background, allowing the core to continue processing

while new data is read in or processed data is written out.

The TigerSHARC offers powerful features, tailored to off-chip multi -processing systems.

However, li ke for TMS320C80, parallel processing complicates the design, programming and

may cause bus conflicts overhead.
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Figure 2-5. Block diagram of TigerSharc by Analog Devices

2.3. Dedicated VLSI Convolution Processors

An alternative architecture for performing convolution is a dedicated VLSI processor

where the convolution operation is built -in the sili con structure. Consequently, there is no

complex instruction decoding and large cache module. The architecture of the processor is

optimised only for the convolution operation. The typical structure of the VLSI processor is

given in Figure 2-6, and incorporates multipliers and adders to perform arithmetic operations,

and delay elements to feed the arithmetic block with proper data. Two different delays are

required:

• Pixel buffer – flip-flops to delay input signal by a single clock cycle (z-1
 blocks in Figure

2-6).

• Line buffer – First-In First-Out (FIFO) buffer to delay input signal by a whole image line

(in the considered solution, by 512 clock cycles).

Different vendors produce different VLSI convoler chips, e.g. HSP-48908 by Harris

[Har94], PDSP-16488 by Plessey [Ple90] or IMS-A110 by SGS Thomson [Tho90]. Detailed

description of these processors is outside the scope of this thesis, and is included in [Wia99a].

Hereby, only IMS-A110 will be further approached.
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Figure 2-6. VLSI architecture for 3×3 convolution

IMS-A110, which block structure is given in Figure 2-7, incorporates 3 arithmetic

blocks, 3 line buffers and asynchronous function block. Each arithmetic block performs up to

7 MACs; in total, 3×7 convolution kernel is supported. The coefficients word width is 8 bits.

Two banks of coeff icients are provided, thus in any instant one set of coefficients is in use,

and the other set can be altered. Three shift registers (line buffers) are 8 bit wide and each

programmable from 0 to 1120 clock cycles in length, therefore different resolutions of the

image can be processed on. IMS-A110 has also an advance post-processing block which

allows for shifting right with rounding, basic statistics monitor (e.g. maximum and minimum

output value), saturation, Look-Up Table (LUT) for 8-bit to 8 bit transformation [Cas96].

IMS-A110 is controlled via a host microprocessor interface, which is independent to the

image processing data path.
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Figure 2-7. Block Diagram of IMS A110
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IMS-A110 is clocked by 20 MHz (the chip was issued in 1990) which is rather

insignificant frequency. However, all operations are performed in parallel; hence for 3×3

convolution, 9 MACs are computed in each clock cycle. In consequence, computation power

of IMS-A100 is comparable to TMS320C80 which operates at 50 MHz. To increase the

convolution kernel, several IMS-A110 can be cascaded without any additional logic or time

overheads. There are other dedicated VLSI convolers [Wia00a] which can be clocked with

greater frequency, e.g. PDSP-16488 by Plessey [Ple90] clocked at 40MHz. IMS-A110 has

been described hereby because of its advance post-processing unit.

2.4. Field Programmable Gate Arr ays (FPGAs)

A FPGA [Xil99b, Alt99] convolution processor [Jam01d] is, similarly li ke the dedicated

VLSI processor, implemented according to the block diagram presented in Figure 2-6.

Nevertheless in Chapter 5 additional modifications of this circuit are presented, which

significantly reduces the hardware requirements of a FPGA-based convoler. For FPGAs, a

designer defines the structure of the convoler, therefore he has to be familiar with the digital

circuit design. Nonetheless, there are several tools which automatically generate arithmetic,

delay units or a memory interface, e.g. CoreGenerator by Xili nx [Xil99] or the AuToCon

[Wia00b, Wia01a]. Conversely, the designer can allocate FPGA’s resources up to his needs;

e.g. the size of the convolution kernel, multipliers and adders width, post-processing

operations, etc. For a dedicated VLSI processor, the designer is constrained by its pre-

designed functions.

For FPGAs further savings can be obtained. Instead of employing a fully-functional,

denoted as Variable Coeff icient Multiplier (VCM), the designer should employ a Constant

Coeff icient Multiplier (KCM), as the coefficient values usually do not change during a

calculation process. This causes significant hardware savings [Wia01a]. In some cases, a

coeff icient value is a power of two (e.g. for filters in Figure 1-1), thus the multiplication can

be substituted by an addition and a bit-shift. When coefficient values are relatively constant,

e.g. changed every image frame, a dynamic constant coefficient multiplier [Wia00b] should

be employed, which is a midway solution between the KCM and VCM. In addition, FPGAs

can be quickly reconfigured, and this allows for (dynamic) change of FPGAs functions, e.g.

reconfiguration of the FPGA every time a coeff icient is changed.

To ill ustrate the architecture of FPGAs, an example of Virtex family by Xili nx [Xil99] is

given hereby. Basically Virtex comprises of four major components:
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a) Input/Output Blocks (IOBs) which interface between chip internal and external signals.

b) Configurable Logic Blocks (CLBs), shown in Figure 2-8, perform logic and arithmetic

functions. Logic functions are performed mainly in 16×1 Look-Up Tables (LUTs),

allowing to carry out any 4 input function. Instead of logic, each LUT supports a 16×1-bit

synchronous RAM. Furthermore, the two LUTs can be combined to create a 16×2 or 32×1

RAM, or a 16×1 dual-port RAM. A storage element, which is usually configured as a D-

type flip-flop is associated with each LUT. This allows for efficient implementation of

pipelining. A ripple carry addition [Omo94] S= A+B is performed according to the

following equations:

si= ai ⊕ bi ⊕ ci-1 (2-1)





=
≠

= −

iii

iii
i baifa

baifc
c 1 (2-2)

Eq. 2-1 is performed in the LUT (OLUT= ai ⊕ bi) and the XOR gate (see Figure 2-8). The

multiplexing in eq. 2-2 is performed in CY multiplexer. It should be noted that carry logic

is produced in the dedicated and therefore very fast circuit. This allows for building very

fast and efficient adders in the FPGAs. The 16×1 LUT or RAM together with the

dedicated carry logic and the storage element is further denoted as a Logic Element (LE).

c) Block SelectRAMs (BSRs) of 4kbs each, have been introduced in Virtex FPGAs. The data

width of a BSR is programmable to 1, 2, 4, 8 or 16 bits. For convolution, the BSRs are

generally employed as a line buffers (see Figure 2-6). The BSR of 8-bit width is 512 in

depth, therefore ideally suits the 8-bit image data and 512×512 image resolution. BSRs

can be also employed as LUT memories in multipliers.

d) Programmable routing (PR) provides connections between IOBs, CLBs and BSRs. The

propagation time through the PR is comparable (or even greater) than the propagation

time through logic in CLBs. Therefore routing optimisation by a place-and-route software

is an important aspect of every design and therefore a great number of papers have studied

the subject e.g. [Nag98]. Routing delays increase with the decrease of free CLBs

resources, therefore it is not recommended to allocate more than 80-90% of available

CLBs. Furthermore, throughput of the convoler is strongly influenced by the FPGA logic

capacity and other functional units implemented in the same FPGA. This makes system

benchmarking more diff icult. The PR provides tri-state buffers, which allows multiplexing

to be performed outside CLBs. This multiplexing solution saves CLB resources, however,

is significantly slower than multiplexing in CLBs.
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Figure 2-8. Structure of the Virtex Slice = ½CLB

On average, 8×8 KCM occupies roughly 20 LE [Wia01a] and a 16-bit adder occupies

roughly 16 LEs. Virtex XCV3200E incorporates 104×156 CLB array which gives 64 896

LEs, enough to fit roughly 1800 a single clock cycle MACs. The clock frequency is up to the

130MHz [Xil00], which gives, in theory, 230 GMACs per second. Consequently, FPGAs

significantly outperform e.g. TigerSharc DSP which can perform, in theory, 1.2 GMACs or

Athlon 800MHz with 0.33 GMACs per second.

2.5. Conclusions

A general-purpose processor, in spite of its complex architecture, is the easiest

solution for implementation of convolution, because the processor and its development

environment are commonly available. Conversely, optimisation of the convolution code

requires assembler and system level programming which knowledge is limited. However the

primary drawback of the general-purpose processor is tasks sharing; the convolution operation

may interfere with other tasks and vice versa. Besides in spite of its rapid computational

speed-up observed in the history, the processor is still not able to process large convolution

kernels and image resolutions.

An alternative solution is a DSP. DSP architectures are optimised for the convolution

operation, however they evolve similarly li ke the architecture of the general-purpose

processors. DSPs incorporates cache memories, branch prediction, sophisticated pipelining,

SIMD instructions. Similarly li ke for general-purpose processors, complexity of DSPs
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increases rapidly. It should be noted that clock frequency for DSPs is significantly lower than

for the general-purpose processor.

A dedicated VLSI convolution processor initially seems to be the best solution

because the architecture of the processor is optimised only for the convolution operation.

Consequently, no complex instruction decoding, branch prediction and cache memory is

required. Conversely, the dedicated processor design is not flexible, for example, an increase

of the convolution kernel or the image resolution, etc., may make the processor useless.

Consequently, a dedicated processor often incorporates functions which are seldom

employed. For example, three IMS-A110 chips can be cascaded to support 7×7 convolution

kernel. Nevertheless, during system-development it might happen that 9×9 kernel is required,

this makes the design useless; or only a 3×3 kernel is needed therefore the design has two

chips overheads.

FPGAs are an option to the dedicated VLSI processors. FPGA’s architecture can be

quickly modified which is an important issue because not only the FPGA design is more

flexible but also design development and test are much quicker and easier. These are major

reasons why dedicated VLSI convolution processors are, nowadays, infrequently adopted.

Also manufacturing cost of the VLSI processors is often greater than for FPGAs, as for

example Xili nx Inc. introduced cheap Spartan family for ASIC replacement.

Comparing FPGAs to the general-purpose processors and DSPs it can be seen that the

architecture of the microprocessors begins to saturate; a significant increase of hardware

complexity results in a much less significant seed-up. Therefore in the future, further

development of the complex superscalar processors is unlikely. Instead many processors will

operate in parallel or a simultaneous-multithreading processor will be introduced. This

however will i ncrease the demand for the cache memory which occupies significant chip area.

Furthermore, parallel processing has several drawbacks like memory access contention,

multiple-threads synchronisation, etc. [Hwa94], which significantly complicates the

architecture and programming of parallel systems. Besides, obtained speed-up is often not

proportional to the number of additional parallel units. In the future, further increase of the

microprocessors computational power may be also confined by CMOS technology limits

[Won99]. Conversely, FPGAs are very scalable on highly concurrent tasks, esp. convolution.

Furthermore, taking into account the sili con area and throughput, the FPGAs significantly

outperform microprocessors [DeH98], and in the future the performance gap will further

increase. Microprocessors must confront overheating effect, which significantly constrains

design of the microprocessors. For FPGAs, however, this problem is much less significant,

and often, is not considered at all .
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Figure 2-9. History of Virtex family density grow, and number of MACs per second according
to Xili nx Inc.

It should be noted that FPGAs density increases very rapidly (about 10 times in two

years) and FPGAs expand much quicker than microprocessors do. According to Figure 2-9

FPGA convolution processors are capable of performing roughly 100 times more MACs per

second than DSPs do. In conclusion, FPGAs seem to be the most eff icient and prosperous

architecture for the future.

As a result, a great number of FPGA-based coprocessors have been developed in order

to implement computationally demanding operations on FPGAs [DeH98, Hut97, Lis97,

Kos97]. Reconfiguration techniques have been also proposed for microprocessors to improve

their eff iciency [Xu00], and Configurable Computing Machines (CCMs) [Kur00], relaying on

FPGAs, have been constructed. High performance of CCMs is achieved by (dynamically)

building custom computational operators, pathways, and pipeline suited to specific properties

of the task. Furthermore FPGAs are often used as a part of embedded systems, for which

application specific hardware together with software solutions are incorporated. Optimal

(automated) partitioning algorithms to hardware and software (denoted as codesign) is,

nowadays, a major issue for system designers [Dic98, Slo00].
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3. Constant Coeff icient Multiplication (KCM)

Multiplication is a fundamental operation performed in the convolution. The way a

multiplication is carried out in ASIC and FPGA designs initially seems to be very similar.

Both ASICs and FPGAs require the same algorithms to be implemented. For example the

structure of parallel-array multipliers [Was78] or Wallace tree multipliers [Wal64] for FPGAs

and ASICs are very similar. Nevertheless, the most important advantage of FPGAs over

ASICs is reconfiguration which allows for a change of the multiplication coefficient either by

the change of the multiplicand (an input to a fully functional multiplier denoted further as

Variable Coeff icient Multiplier VCM) or by the change of a Constant Coeff icient Multiplier

(KCM) circuit. The KCM, in comparison to the VCM, has much lower hardware

requirements [Cha96, Pet95, Wia01a], and therefore is recommended providing that a

coeff icient value is relatively constant during the calculation process [Wir97, Wia01a].

FPGAs implement logic cells as a Look Up Table (LUT) memory, therefore the

inherent way of performing multiplication seems the LUT based Multiplication (LM) for

which large LUT memory is split and combined with adders [Chap94, Chap96, Pet95,

Wia00b]. Conversely, ASIC solutions usually implement the KCM employing a

Multiplierless Multiplication (MM), where multiplication employs additions and subtractions

[Pir98, Par97]. Therefore, architecture of a multiplier for FPGAs and ASICs appears to be

different. However, after dedicated carry logic has been incorporated into FPGAs, a ripple

carry adder [Omo94] occupies half of the previous area and its speed has increased rapidly

[Xil96]. This improvement has not been considered to re-establish the actual relation between

the MM and LM architectures, and therefore the MM architecture has been overlooked.

Summing up, in this chapter, the LM and MM architectures and their cost/speed relations in

FPGAs are investigated.

Recently, large memory blocks, which primary intention is to store large amount of

data, have been introduced to FPGAs. In some applications, these memory blocks are not

occupied, which leads to a waste of chip area. However, these memory blocks can be used as

a part of a arithmetic unit very eff iciently, therefore a novel synthesis approach is hereby

proposed. This approach combines different memory blocks and finds the best architecture of

a multiplier according to the cost-relations between FPGA resources [Wia00b]. A similar
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approach has been proposed independently and almost at the same time for logic synthesis by

[Wil00], and is denoted as heterogeneous technology mapping.

In the first part of the chapter, the Multiplierless Multiplication (MM) employing the

Canonic Sign Digit (CSD) and Sub-structure Sharing (SS) methods, is investigated. As the

consequence of restrictions put on the FPGA dedicated adders (or subtractors) structure, a

modified algorithm for conversion from two’s complement to CSD representation is derived,

which allows substantial hardware savings. In the next part of this chapter, the LUT based

Multiplication (LM) is studied. A FPGA incorporates different memory modules (e.g. for

Virtex 16x1, 32x1, 256x16, etc.) together with the dedicated adder circuit. Therefore, finding

the best architecture of a multiplier is a complex task which is addressed hereby, and novel

architectural solutions are proposed. In addition, some memory cells have a shorter address

width and two or more memory cells may contain the same data, therefore a single (common)

memory can be implemented instead. It should be noted that every part of the research is

followed by implementation results, which helps to analyse aspects of the considered

architectures.

3.1. Multiplier less multiplication (MM )

A constant coeff icient multiplier is usually implemented in a multiplierless fashion by

using only shifts and adders from the binary representation (BR) of the multiplicand. For

example, A multiplied by B= 14= 11102 can be implemented as (A<<1)+(A<<2)+(A<<3),

where ‘<<’ denotes a shift to the left. It should be noted that the hardware requirements

depend on the choice of a coeff icient, i.e. the number of 1’s in the binary representation of the

coeff icient should be as low as possible. Therefore several algorithms have been developed in

order to reduce hardware by a proper choice of the multiplication coefficient (e.g. for FIR

filters design [Sam89]). However, in this paper the assumption is made that the value of the

coeff icient is an input parameter to the design and therefore the coeff icient value cannot be

changed.

3.1.1. Canonic Signed Digit Representation

This area reduction technique attempts to reduce the number of 1s required in the

coeff icient’s two’s complement representation by the use of canonic signed digit (CSD)

representation [Gar65, Pir98]. The CSD representation is a signed power-of-two
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representation where each of the bits is in the set { 1,1,0 } (0 – no operation, 1 – addition, 1 –

subtraction).

In general, the conversion of a two’s complement number B=bn-1, bn-2, ..., b0 to the

CSD form D= dn-1, dn-2, ..., d0 can be described formally [Pir98] as in Figure 3-1.

Start

i=0, c0=0
bn=bn-1

ci+1= bi+1bi ∨ bici ∨ bi+1ci

di= bi+ci-2ci+1

i= i+1

YN
i<n

Stop

Figure 3-1. The CSD conversion algorithm

The use of the CSD representation for each coeff icient implies that the multiplication

can be conducted in a shift and add (or subtract) fashion using the lowest number of add

(subtract) operations. In the given example: B= 14= 11102= CSD01100 , therefore A multiplied

by B can be implemented as (A<< 4)-(A<< 1). The CSD representation requires only one

subtraction in comparison to the binary representation which requires two additions. One

average, a CSD representation contains approximately 33% fewer non-zero bits than its

binary counterpart [Har96]. This in turn implies hardware savings of about 33% per

coeff icient.

It should be noted that in the above CSD conversion algorithm a subtraction and

corresponding addition are considered as the same cost operations. Addition S= A+B can be

defined as:

si= ai xor bi xor ci (3-1)

if ai = bi then ci= ai else ci= ci-1. (3-2)

Similarly subtraction S= A – B can be expressed as

si= ai xor not bi xor ci (3-3)

if ai = not bi then ci= ai else ci= ci-1. (3-4)

For FPGAs (e.g. Virtex), eqs 3-1 and 3-3 are implemented in LUTs and the XOR gates (see

Figure 2-8). Eqs 3-2 and 3-4 are implemented in the dedicated carry logic circuit. It can be

also seen from eqs 3-1÷3-4, that the subtraction requires only the additional bit negation of
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the subtrahend, therefore the assumption of the equal cost of the addition and subtraction

seems to be justified. However, in the case of the addition for which the first argument is

shifted to the left, the least significant bits (LSBs) of the second argument can be directly

copied to the adder output, therefore additional hardware savings are achieved. Unfortunately,

for the subtraction, the subtrahend’s bits next to the LSB cannot be directly copied on the

output because the subtrahend bits have to be negated and a 1 forced into the carry input at the

least significant bit position. Consequently, the addition and subtraction cannot be considered

as the same cost operations.

3.1.2. Modified algor ithm for conversion to the CSD representation

The standard algorithm for conversion from the two’s complement (TC) to the CSD

representation does not consider the above conclusion, i.e. treats an addition and subtraction

as the same cost operations. Therefore, a modified conversion algorithm has been

implemented [Wia00b], so that the conversion to the 1 symbol (subtraction) takes place only

if the total number of operations (non-zero symbols) decreases.

In order to describe the modified conversion algorithm, a new function Q(i,j) for j≥i will

be introduced. Let bj is the j-th bit of two’s complement representation of the multiplicand B

(M= A⋅B) and let define Q(i,j) in the iterative way as follows:
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The function Q(i,j+1) is incremented if binary symbol bj+1 is 1 and decremented

otherwise.

The modified algorithm is shown in Figure 3-2. It should be noted that the conversion

to CSD symbol 1 takes place only if the number of operations is reduced. This implies that

the number of 1s in succession for TC representation should be at least three. If a 0-bit breaks

the raw of 1s then the number of the successive 1s (skipping the 0-bit) should be increased by

2, or equivalently the counter of ones should be decreased by 1 (as it is the case for function

Q(i,j)). The process of counting 1s (function Q(i,j)) should be stopped whenever count Q(i,j)

is less than zero (consequently 0 or 1 symbol should be inserted) or is equal 2 ( 1 symbol is

inserted).
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Figure 3-2. The modified algorithm for the conversion from the two’s complement to CSD
representation; bi- i-th bit of the binary coefficient, Q()- function defined in eq. 3-5, w- the

index of the MSB of multiplicand B

An example of results for the standard and modified CSD conversion (MCSD) is

given in Table 3-1. In can be seen that for the coeff icient values: 3, 11 and 13 symbol 1 has

not been inserted for the MCSD as the number of operation would not decrease.

Coeff icient Binary (TC) CSD MCSD
3 11 101 11
7 111 1001 1001
11 1011 10101 1011
23 10111 101001 11001

Table 3-1. An example of results for the standard CSD and Modified CSD (MCSD)
conversions
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3.1.3. Substructure shar ing

Additional area reduction can also be achieved by Sub-structure Sharing (SS) [Har96,

Par97]. For example, multiplication by 27=110112 can be implemented by the use of an

intermediate variable tmp, as it is shown in the following equations:

 tmp= a + (a<< 1) (3-6)

27⋅a= tmp + (tmp<< 3).

By the use of the SS the number of required additions has been reduced from 3 to 2.

It should be noted that the SS area-reduction may be implemented also on the CSD,

therefore the combination of the SS and CSD techniques should be also considered during the

optimisation process. Conversely, the CSD may interfere with the SS therefore the SS should

be considered separately on both the two’s complement and CSD representations.

3.1.4. Exper imental results

The comparison of the area-reduction techniques presented in this section is rather

diff icult, as the best algorithm depends on a coeff icient value. However some statistics:

average and maximum circuit costs and the best algorithm occurrence can be derived.

Average Maximum Best algorithm occurrenceK
CLBs L CLBs L Coeff . TC CSD SS CSD-

SS
3 2.71 0.57 5.5 1 7 6 1 0 0
4 4.13 0.87 9 2 11 12 3 0 0
5 5.52 1.16 10 2 23 22 9 0 0
6 6.92 1.44 14.5 3 43 39 17 4 0
7 8.44 1.75 15 3 75 68 43 16 0
8 9.8 2.03 17 3 183 114 94 44 3
9 11.1 2.31 20.5 4 309 188 193 107 15
10 12.3 2.57 23.5 4 747 300 407 254 62
11 13.6 2.83 24.5 4 1463 478 797 579 193
12 14.9 3.08 27.5 4 3381 746 1510 1285 554

Table 3-2. Average and maximum number of CLBs (XC4000) and corresponding number of
operations L (additions and subtractions), and the most hardware consuming coefficient

Results for 8-bit unsigned input (the most common data format for image processing)

and coefficient width K=3-12 (coeff icient values [1, 2K-1]) are shown in Table 3-2. These

results were obtained for the best algorithm (selected separately for every coeff icient) of two’s

complement representation (TC), CSD, SS, and CSD-SS – applying the SS on the CSD

representation. The best algorithm occurrence presents how many times each algorithm gives
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the best result. If results of two algorithms are the same, the simplest (former) solution is

taken.

It can be seen from Table 3-2 that the optimisation techniques (CSD, SS, CSD-SS) are

more attractive for large coeff icient widths. The average number of operations L for the TC is

roughly K/2-1, which for K= 12 gives L= 5 in comparison with L= 3.08 for the optimisation.

However the cost of a multiplier increases almost linearly with the increase of a coeff icient

size K as it is shown in Figure 3-3. In conclusion, the cost does not only depend on the

number of operations. Therefore the choice of the best technique cannot be taken only from

the final number of operations (additions/subtractions) but the overall circuits cost has to be

considered.
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Figure 3-3. Average and maximum area occupied by the 8-bit input multiplier for different
widths of coefficients K
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Figure 3-4. Cost of the 8-bit-wide input multiplier for XC4000 and different coefficients
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Cost of the multiplier depends strongly on a given coeff icient value, which is shown in

Figure 3-4. It can be seen that the costliest multipliers are for the coeff icient values in 60-75%

of the coeff icient full binary range.

3.2. LUT based Multiplication (LM)

3.2.1. Concept

In principle, the evaluation of any finite function can be carried out using a look-up

table (LUT) memory that is addressed with the argument for the evaluation and whose output

is the result of the evaluation. This, in theory, gives the fastest possible implementation, since

no actual arithmetic is required. Unfortunately, the use of a single LUT for the multiplication

is unlikely to be practical for any but the smallest argument, because the table size grows

rapidly with the width of the argument. For example, for the L-bits wide argument and K-bits

wide coefficient, the size of memory is (L+K)⋅2L, which for K=8, L= 8 gives 4k bits. It is,

however, possible to create a practical implementation of the LM by combining a number of

small LUTs and adders. The idea is to split the argument, use LUTs, and then use a tree of

adders [Chap96, Omo95]. An example of the multiplier circuit for K=8 and L=8 is shown in

Figure 3-5.

input

LUT
B

LUT
A

 4 4

 8

 12  12

Adder

 8
 4

 12

 16

output

Figure 3-5. The LM for input argument width L=8 and coefficient width K=8

The LUT contents for the multiplication Y= A⋅B can be evaluated directly from the

multiplication as it is given in the example in Table 3-3.
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Address Value y5 y4 y3 y2 y1 y0

0 0 0 0 0 0 0 0
1 19 0 1 0 0 1 1
2 38 1 0 0 1 1 0
3 57 1 1 1 0 0 1
address width 1 1 2 2 2 1

Table 3-3. The contents of the memory (y5-y0) for different address values and the coefficient
equal 19. Address width – the width of address bus for each memory cell

It can be easily proved that an output bit of the LUT depends only on the address bits

which weights are lower or equal to the output bit weight. In the example, the memory cell y0

depends only on the address line a0, memory cell y1 depends on a0 and a1, etc. In general an

output bit yi depends on the MAX(i+1, n) address lines, where n denotes the width of the LUT

address bus. In consequence, (n-1) LSBs require smaller memory modules, which implies

substantial hardware savings. These hardware savings will be denoted as LSBs Address

Width Reduction (LAWR).

An additional decrease of the address width may be observed when the contents of the

memory do not depend on a curtain address line. This address width reduction cannot be

generalised and differs for different coeff icient values and LUT address widths. Therefore, a

complex search algorithm has to be employed to find a don’ t-care address line. This saving is

denoted as Don’ t-care Address Width Reduction (DAWR). In the example given in Table 3-3,

the DAWR is observed for memory cells y5 and y4. It should be noted that the DAWR usually

occurs for MSBs of the product.

Further savings can be achieved by Memory Sharing (MS). In the given example,

memory cells y0 and y4 are the same therefore only one of them is needed. This optimisation

requires similar complex search as the DAWR does.

3.2.2. Implementation in FPGAs

The split of the multiplication argument should be carried out with respect to the size-

cost relation of memory blocks and adders’ cost. The XC4000 family incorporates 16×1 and

32×1-memory modules. The cost of the 32×1-memory module is 2 LEs (2LEs= 1 CLB for

XC4000 or ½ CLB of Virtex), which is twice the cost of 16×1-memory module (1 LE). The

cost of the adder is 1 LE/bit. In addition, there exists a virtual memory module 2×1 which

does not occupy any CLB’s area and can be implemented as either a connection from the

input argument to the adder input or as feeding the adder with a zero.

Finding optimum combination of different memory modules and adders is a diff icult

task, and the best solution depends on a size of input data and a given coeff icient value. The
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LM incorporating only 16×1 memory modules has been presented in [Cha96, Gre97, Pas01,

Woj99], 16×1 or 32×1 [Ser01], however no hint for optimal combination of different

memories or implementation of any of optimisation techniques described in Section 3.2.1 has

been given.

As a result of the author research, the following conclusion has been derived. For the

input width much greater than 4, the preferable memory blocks are 16×1. Unfortunately, if the

input width cannot be divided by 4, different memory blocks may be used.

An example of different multiplier architectures for the input data width equal 6 is

shown in Figure 3-6. The hardware requirements for these circuits for coeff icient equal 43

are: a) 11 ½, b) 12 and c) 12 CLBs of XC4000, therefore the difference is very slight. In

general, however, there is a rule of thumb that the best or almost the best circuit is generated

by the use of only 16×1 RAMs (and the direct connection to an adder if the remained input

bus width is 1).

Mem
16×1

Adder

Mem
16×1

in

out

6

24

a)

Mem
16×1

Adder

in

out

6

4

b)

Mem
32×1

Adder

in

out

6

5

c)

Figure 3-6. Different reasonable methods for implementing the multiplier with the input bus
width equals 6

The design task is even more complicated for Virtex family. Virtex FPGAs

incorporate several large BlockSelectRAM (BSR) memories which are 4 kb in size and may

have different data bus width: 4k×1, 2k×2, 1k×4, 512×8, 256×16 [Xil99b]. The area in sili con,

occupied by a BSR is equivalent to roughly 16 Virtex CLBs (64 LEs). However the actual

cost of these memories may differ with respect to free FPGA resources, e.g. a design does not

implement any BSRs but uses all CLBs. Consequently, trade-off f or distributed RAMs and

BSRs is design-dependent. However general conclusions can be derived from Figure 3-7. On
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average, the equivalent cost of the BSR 256×16 is about 8÷11 Virtex CLBs (VCLBs)

(=32÷44 LEs).

It should be noted that the BSR blocks are rather large and therefore it is diff icult to find

an architecture for which the BSR is fully used. The eff iciency of the BSR usage strongly

influences its equivalent cost. Consequently, for a small i nput and coeff icient width (<8), the

equivalent cost of the BSR is rather small (see Figure 3-7). For the width up to 13 the

equivalent cost of the BSRs increases. However for the width greater than 13, two or more

BSRs and an additional adder are required, therefore the eff iciency of the BSRs usage

decreases as an effect of quantization and distribution of the large BSR. For the input width

equal 16 the number of BSRs increases rapidly as the BSRs are grouped into pairs to form a

single 256×32 memory which implies low equivalent BSRs cost. As the width again increases

the equivalent cost is growing. It seems, however that the equivalent cost equal 11 is a

maximum value that is never surpassed.
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Figure 3-7. The area of the LM for the different input and coefficient width. A- area (in Virtex
CLB) scaled of 1:10, for the LM using only distributed 16×1 and 32×1 RAMs, B- number of
used 256×16 BSRs, C- equivalent cost (in Virtex CLB) of a BSR in comparison to distributed

RAMs- only option

Figure 3-7A shows also the cost for multipliers using only small distributed RAMs. It

can be seen a rapid grow of the cost for the width equal 9, 13, 17, 21, ... when the width

surpasses the number divided by 4.

In this thesis to find an optimal solution of a multiplier, an exhaustive search algorithm

(with some obvious simpli fications) has been implemented for which BSRs together with
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distributed RAMs and adders were combined and the best circuit taken. In order to ill ustrate

considered architectures, an example of the LM for input and coefficient width equal 14 is

shown in Figure 3-8. In this example a combination of BSRs and distributed RAMs is

implemented. The given example may be even more complicated if a concrete coefficient

value is given, however in this section, general cases are investigated for which the MS and

DAWR optimisations have not been considered.

256×16 32×1 3×16×1

147

7 5 4 1

3116

21

256×16 32×1 3×16×1

7 5 4

3116

21

Adder

28

14

7

21

7

2×1

1

2×1

11

Figure 3-8. A LM for input and coefficient width equal 14

It should be noted that the AuToCon does not assume any initial relations between

memory modules and adders’ costs, therefore memory modules can be freely selected and the

program can generate circuits for any FPGA family or even for ASICs. The input parameters

to the program are adders and memories sizes and costs.

In this thesis only Xili nx XC4000 and Virtex families have been thoroughly studied,

but almost the same properties have also different FPGAs. For example, Altera Apex 20K

family [Alt99] has almost the same cost-relation as Virtex has; the Apex family implements

16×1 LUTs or dedicated carry logic in each Logic Element (LE) and also incorporates a large

memory (128×16, 256×8, 512×4, 1024×2 or 2048×1) in each Embedded System Block (ESB).

The size of Apex ESB RAMs is half the size of the Virtex BSR, however in most cases the

Virtex BSR is not fully used therefore the main difference between Apex and Virtex seems to

be the lack of 32×1 distributed RAMs for Apex family.

While implementing LMs, it can be seen that the Virtex BSR has not optimal

parameters and often are not fully exploited. Memory modules 4k×1, 2k×2, 1k×4 and 512×8

have never been implemented, only 256×16 RAMs have been used. Even 256×16 memory

modules are very seldom fully exploited. For example in Figure 3-8, one address line is not
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used, which causes that only half of the memory is used. Therefore a question arises what

optimal memory size is. A general answer is that memory data width should satisfy:

WD= WC + WA - WL (3-7)

where: WD – memory data width, WC – width of the coefficient, WA- memory address width,

WL- address width of smaller and less costy LUTs, WL= 5 for Virtex (32×1).

From eq. 3-7 it can be seen that for WC= 13 and WA= 8 the result is WD= 16 which

corresponds with the 256×16 memory module, therefore the maximum of the equivalent BSR

cost is observed in Figure 3-7 for the input width equal 13.

It should be also noted that the number of used BSRs depends on the cost relations.

For example, for a 16-bit wide multiplier, the number of BSRs gradually increases as the BSR

cost decreases, see Table 3-4.

Cost BSR
VCLBs

# BSRs LUT RAMs Cost
VCLBs

Adders Cost
VCLBs

BSR eq. Cost
VCLBs

≥7.75 0 19 16 -
≥6.5 2 9.5 10 7.75

≤6.25 4 0 6 7.25

Table 3-4. The BSRs cost and its influence on the best architecture; area in Vertex CLBs,
1VCLB= 4LEs

Additional hardware savings can be obtained if not full binary range of input data is

used. For example, for the input data range 0-127 (binary range) and 0-99 (decimal range) and

the coefficient equal 81 the implementation results are 14.5 and 13.5 XC4000 CLBs

respectively.

Further design optimisation can be achieved for negative numbers. In general a design

can be divided into 4 regions:

• Coeff icient and input data are positive – there is not negative number optimisation.

• The coeff icient is positive, input data is in two’s complement format (negative or

positive). In this case only the MSBs LUT operates on two’s complement format.

However the MSB LUT output can be either positive or negative therefore design

optimisation cannot be implemented.

• The negative coefficient and positive input. All LUTs operate on two’s complement

numbers, but it can be seen that the LUT outputs are always negative. Therefore additions

can be substituted by subtractions and in this way all LUTs will operate only on positive

data. In consequence, the LUT sign bit coding is skipped and therefore the width of each

LUT is one bit shorter. However the double subtraction (s=-a-b) cannot be implemented
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in FPGAs and will be postponed to the next level of addition (s= -(a+b)), which implies

that the result of the additions (s= -a-b-c-d-...= -(a+b+c+d+...) ) should be negated.

This, however, requires an additional circuit. Therefore the best solution is to implement

substations for all but the LSB LUT. This implies that double subtraction chain is broken,

and the copy of LSBs (see Section 3.1.1) is achieved.

• The negative coefficient, two’s complement input data. In this case all but the MSBs LUT,

operate on only negative numbers and should be implemented as in the previous region.

The MSBs LUT operates on either positive or negative numbers, therefore might be

implemented as an addition. However this addition distracts subtraction-addition chain

and causes that the LSBs copy does not occur. In conclusion the MSB LUT should be

also implemented with a subtraction therefore the circuit is implemented in the same way

as in the previous region.

3.3. Compar ison of the multipliers

3.3.1. Area

In this chapter two different multiplication techniques have been presented: the

multiplierless multiplication (MM) and the LUT based multiplication (LM). Therefore a

question arises which of them is more hardware eff icient. The statistical cost-relation between

the MM and LM for XC4000 is shown in Figure 3-9. Accordingly, the LM is usually more

attractive for the input and coeff icient width less than 5, for the greater widths a better result

is usually obtained by the use of the MM. It should be noted that the choice of the best

architecture depends on the actual coeff icient value and Figure 3-9 shows only statistical

relationship. Therefore both architectures should be considered and the best of them chosen.

However, from Figure 3-9 it can be seen that the gain from considering best of the LM and

MM is insignificant for K greater than 5.

The general conclusion can be drawn from Figure 3-9. The MM optimisation

techniques (CSD and SS) are more and more eff icient with the increase of width K. Therefore

for greater K, the MM is getting more and more attractive in comparison to the LM.

The next question is how much hardware reduction is achieved by the use of the

DAWR and MS for the LM. Experimental results show that the gain is on average 5÷20%

depending on the input width K.



- 53 -

���
���
�

���
���
���
���
���

� � � � � � � �� �� �� �� �� �� .

/0�00
00�EHVW

Figure 3-9. Relation between average area of XC4000 occupied by: LM/MM – using only LM
and only MM; MM/best – using only MM and the best of LM and MM. Results for the

different input width K (input range 0÷2K-1) and coefficient values 1÷2K-1

3.3.2. Speed

In the previous section only area occupied by the multipliers has been considered.

However, relation between the design cost and speed should be also considered. Consequently

in order to increase the design throughput, design pipelining has been implemented. FPGAs

incorporate a flip-flop after each logic cell . Therefore conceptually design pipelining can be

implemented without any hardware overheads. However, some design paths do not require

any logic, therefore frequently flip-flops have to be inserted without associated logic

(according to cut-set method [Pir98]). In consequence, for a fully pipelined circuit (a flip-flop

inserted after every logic element), the area is defined by the number of f lip-flips rather than

the number of logic cells, and as a result, there is a pipelining overhead of about 0÷50%. This

overhead disappears if the number of pipeline stages is decreased (flip-flops are not inserted

after every logic cell ) but in consequence the circuit speed decreases. Conversely, design

pipelining considerably increases the throughput, therefore the design eff iciency [Pir98] is

usually improved and therefore the slight hardware overhead can be neglected. It should be

noted that the design pipelining has been also taken under consideration when searching for

the optimal architecture. For example, the sub-structure sharing architecture tends to

incorporate more flip-flops than the CSD architecture.
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Figure 3-10. Average area without pipelining and system period without and with pipelining

for the MM, LM and Core Generator [ Xil99] multiplier. Implementation results for
XC4000E-1 and for the 8-bit unsigned input and randomly chosen coefficients equal: 41, 108,

132, 190, 225

Figure 3-10 shows average hardware requirements and the system clock for the MM

and LM multipliers. It can be seen that the MM multipliers are generally more hardware

eff icient than the LM counterparts. Besides, the MM and LM developed during the course of

this work, surpass the multipliers generated by Core Generator [Xil99a] – a commercial

program.

3.4. Conclusions

This chapter investigates two different methods of implementing multiplication: the

LUT based multiplication (LM) and multiplierless multiplication (MM). The implementation

results show that for a small i nput width, the LM is usually the best choice, but with the width

increase, the MM is getting more and more attractive due to greater eff iciency of the CSD and

SS methods.

Furthermore, an improved algorithm for conversion from the two’s complement to the

CSD representation is introduced. This algorithm considers that the cost of the subtraction is

often higher than the cost of the addition as the copy of the LSBs cannot be achieved for the

subtraction. Consequently, a subtraction (CSD representation 1) is implemented only if the

total number of operations decreases.

This chapter thoroughly studies the LM and presents different optimisation techniques

which are rather intuitive but have never been presented. Firstly, the combination of different

memory modules has been introduced. This aspect is very important as FPGAs incorporate
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different memories and therefore finding the optimal memory configuration is a complex task

that is tackled hereby. Furthermore, different optimisation methods are presented for the LM:

LSB Address Width Reduction (LAWR), Don’ t care Address Width Reduction (DAWR),

Memory Sharing (MS) and negative number optimisation techniques. At the end, the

cost/speed relationship between presented architectures are presented for Xili nx Virtex or

XC4000 family.
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4. Architectures of Multipliers

Bit-parallel multiplication can be carried out implementing three different

methodologies. The first is a variable coeff icient (fully functional) multiplier (VCM) which

can be implemented using for example parallel-array multipliers [Omo94] or Wallace tree

multipliers [Wal64]. For the VCM, a coeff icient value can be freely changed but the

disadvantage of this solution is a relatively high cost. The alternative solution is a Constant

Coeff icient Multiplier (KCM) which in comparison to the VCM has much lower hardware

requirements [Cha96, Pet95], and therefore is recommended provided that the coeff icient is

constant during a calculation process. For ASIC designs the coefficient value once determined

cannot be changed. Conversely for FPGAs, the change of a coeff icient value can be

implemented by reconfiguring the FPGA structure. The process of reconfiguration usually

takes several ms [Xil99b]; therefore if the calculation process can be paused for that time and

the coefficient is relatively constant during data processing [Wir97], the KCM solution should

be considered. The reconfiguration time can be however reduced by the use of a partially

reconfigurable FPGA, e.g. a Virtex FPGA [Xil99b]. The KCM solution has another drawback

that the multiplier circuit has to be redesigned for a different coeff icient value. Fortunately, by

the use of an automated tool (e.g. AuToCon), the KCM can be redesigned within the time of

seconds. However a new design has to re-employ a place and route program which fits the

new design into the FPGA. The fitting process is usually time-consuming and takes

approximately 1min ÷ 1hour. In conclusion, the change of a coeff icient value for the KCM

requires not only the FPGA to be reconfigured but also the whole design cycle to be re-

implied. This causes that the change of a coefficient value for the KCM solution is onerous

and therefore often the more-hardware-consuming VCM solution taken instead.

An alternative solution is a Dynamic Constant Coefficient Multiplier (DKCM). The

DKCM is a Look up table based Multiplication (LM) for which the change of the coeff icient

can be achieved by a proper change of LUT memory contents. This solution can implement

in-circuit coeff icient reconfiguration therefore the multiplier configuration time is shorter and

the design fitting into the FPGA need not be re-implied. A drawback of this solution is that

the DKCM occupies more area in comparison with the KCM.
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At the first part of this chapter the LUT based multiplication (LM) and its modification

– the DKCM is presented. For the DKCM three different options: multiplexing in logic,

multiplexing in tri-state buffers and dual port memories are studied. Then, a comparison of

the KCM, DKCM and VCM and their implementation results are given.

4.1. Dynamic Constant Coefficient Multiplier (DKCM)

The DKCM [Xil99] (or self-configurable binary multiplier [Woj98, Woj99]) is the LUT

based multiplier for which ROMs are replaced by RAMs. The idea behind the dynamic

change of a coeff icient value is to properly change the contents of the memories. This,

however, requires an additional RAM programming interface and imposes constrains on the

DKCM architecture in comparison to the KCM.

input
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Figure 4-1. An example of the DKCM for input data and coefficient width equal 8

The additional RAM programming interface can be divided into two parts. The first part

allows the RAMs to be programmed and usually consists of address and (rather seldom) data

multiplexers. The second part of the additional circuit is RAM Programming Unit (RPU)

which produces proper data and address sequences and control signals for RAM

programming. An example of the DKCM is shown in Figure 4-1. It should be noted that this

example is equivalent to the KCM given in Figure 3-5.



- 58 -

4.2. Memory Multiplexers

It can be seen from Figure 4-1 that RAM memories usually have separated paths for

data reads and data writes [Xil99b], therefore data multiplexing is not required. Unfortunately,

the address bus is the same for reads and writes to the RAMs, therefore additional

multiplexers for switching between these addresses have to be implemented. The multiplexing

process can be carried out using Logic Elements (LE) in Configurable Logic Blocks (CLBs)

or tri-state buffers (TSBs) [Xil99b]. The latest solution consumes no logic area, though uses

the programmable interconnect resources which are often limited and slower than

multiplexing in LEs. The multiplexing process can be skipped by the use of dual-port (DP)

RAMs. The DP-RAM solution is usually quicker (without multiplexers delay) but consumes

more area. For example, for Virtex, a 16×1DP distributed RAM consumes the area of two

corresponding single-port (SP) RAMs. However, Virtex incorporates a large 4kb Block

SelectRAM (BSR) DP RAM therefore DP-RAM can be employed without any hardware

overheads. Summing up, design optimisation should consider three different options:

• Multiplexing using logic (LEs) resources (denoted as DKCM-L)

• Multiplexing using programmable interconnect (TSB) resources (DKCM-T)

• Using dual-port RAMs (DKCM-D).

4.3. RAM programming unit (RPU)

The main task of the RPU is to provide the memory with write address and data. Let

consider, at first, the case when input data is always positive and all memory modules have

the same address width. In this case during programming, all memories are fed with the same

address and data (li ke in Figure 4-1), therefore the RPU consists of address counter and the

accumulator which starts from value zero and is incremented every clock cycle by the

coeff icient value [Woj98]. In consequence, the data sequence is as follows:

d0= 0

d1= d0+coeff= coeff  

d2= d1+coeff= 2⋅coeff (4-1)

...

where di- write data for address value i, coeff- the coefficient value

It should be noted that the number of memory writes (the number of the multiplier idle clock

cycles) depends on the memory size, e.g. for RAM 16×1, sixteen memory writes are required.

Therefore in some applications, it may be beneficial to use only a part of memory in order to
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reduce the multiplier idle time. However, this causes that the multiplier consumes more

hardware [Woj98].

The RPU becomes more complicated if memory sizes (address widths) are different

because either different memory modules have been implemented or the input data width can

not be evenly distributed into separate memories. In this case, each memory write-enable

signal should be disasserted whenever the write address overflows the memory address width.

This however may require additional write-enable logic to be implemented. The write-enable

problem can be solved by programming RAMs from the highest address (all ones) down to

zero. In this solution, all memories can be written disregarding address width because the

latest memory writes are always proper and overwrite the previous (improper) writes. The

data sequence for programming RAMs is therefore as follows:

ds-1= (coeff<<w)-coeff= (s-1)⋅coeff;

ds-2= ds-1-coeff= (s-2)⋅coeff

....

d0= d1 - coeff= 0 (4-2)

where:   coeff<< w  - the coefficient shifted w bits to the left, w- maximum width of memory

address, s- maximum size of memory s= 2w.

The drawback of the above solution is that an multiplexer 2:1 is required (instead of the reset

circuit for eq. 4-1) for feeding the subtractor either with (coeff<<w) or di+1.

The RPU is further complicated for negative (two’s complement) inputs. In this case

all RAMs except from the MSBs RAM, operate on positive inputs therefore can be

programmed as above. For the MSB RAM and for the MSB (sign bit) equal zero, the MSB

RAM is programmed as the rest of RAMs. Conversely, if the sign bit is asserted then the

RAM has to be programmed with a different data sequence which can be generated by

continuing eq. 4-2, as follows:

...

d0= d1 – coeff= 0

d-1= d0 – coeff= -coeff

d-2= d-1 – coeff= -2⋅coeff (4-3)

...

d-sn= d-sn+1 – coeff= -sn ⋅ coeff

where: sn- the size of the MSB RAM divided by 2.

It should be noted that eq. 4-3 does not require additional hardware, it uses the same

address counter and subtractor as eq. 4-2. However, programming two’s complement input

multiplier requires additional control logic for write-enable signals. Consequently, the MSB
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RAM write-enable is asserted during whole programming process; for the rest of the RAMs,

the write-enable signal is asserted only for eq. 4-2 and disasserted for the rest of eq. 4-3. It

should be noted that the two’s complement input format causes that the multiplier

programming (idle) time is longer.

4.4. Implementation results for the DKCM

The optimal architecture of the DKCM depends strongly on a given FPGA device;

therefore at first implementation results for Xili nx XC4000 family [Xil99b] will be studied.

The multiplication requires mainly 2:1 multiplexing, addition and RAM units, therefore only

these modules will be considered here. The XC4000 incorporates single-port (SP) 16×1 and

32×1 and dual-port (DP) 16×1 distributed RAMs at the cost of 1, 2 and 2 Logic Elements

(1LE ≈ 4-input LUT ≈ ½ XC4000 CLB) respectable, and an adder with dedicated ripple carry

logic at the cost of 1 LE/bit. A 2:1 multiplexer consumes 1 LE if implemented in logic, or

only programmable interconnects resources if implemented as a tri-state buffer.
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Figure 4-2. Area occupied by the DKCM for different input and maximum coefficient widths
K. Implementation for XC4000 and unsigned coefficients and inputs

It can be also seen from Figure 4-2 that the best solution seems to be the DKCM-T for

which multiplexers are implemented as tri-state buffers. However the drawback of the

DKCM-T is that tri-state-buffer multiplexers are usually slower than logic multiplexers are
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(see Figure 4-3).  This may cause that commonly used A⋅T product [Sei84] is worse than for

other multipliers. It should be noted from Figure 4-3 that the tri-state-buffers propagation

delay is even less acceptable for pipeline architectures. Conversely, in order to speed up the

multiplier the DP memories should be used. The DP RAM solution has however a drawback,

the cost of DP RAM is twice of the SP RAM and the speed of the circuit is improved only for

non-pipelined architectures. However, if the cost of SP and DP RAMs is the same the DP

RAMs should be taken.

There is also another virtual DP 2×1 RAM which can be implemented as a 2-input AND

gate (a0⋅b0). The cost of this module is 1 LE which is lower than 2 LE for 16×1 DP RAMs,

this memory module should be therefore implemented to calculate every LSB of the LUT (for

which address width is 1). Similarly, a virtual 4×1DP memory can be implemented using a

16×1 LUT (a0⋅b1 ⊕ a1⋅b0) to calculate the next bit to the LSB of every LUT. Furthermore, the

parallel-array multiplier [Omo94] can be obtained if only AND gates instead of RAMs are

implemented.

Up to now, XC4000 family, which incorporates only small distributed RAMs, has been

considered, but additional RAM resources are available in Virtex which incorporates large DP

4k×1, 2k×2, 1k×4, 512×8 and 256×16 BlockSelect RAMs (BSRs).
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Figure 4-3. The maximum propagation delay for different architectures of the DPCM without
and with pipelining. Results for XC4003E-1 and K=8

Constructing the optimal multiplier using large BSRs, distributed RAMs and adders is

however a diff icult task which involves many trade-offs:



- 62 -

• Cost relations between BSRs, distributed (small ) SP and DP RAMs, multiplexers and

adders. The chip area occupied by 1 BSR is equivalent to roughly 64 LEs, but the real

cost-relation is application- and resources-dependent, as free BSRs can be implemented

instead of fully used logic elements and vice-versa.

• The multiplier programming time is proportional to the memory size, therefore in

applications where operation idle time is a criti cal factor, smaller memory blocks are

preferable.

• Multiplication delay time tends to be lower with larger memory blocks as the number of

arithmetic blocks decreases. Conversely, the memory access time usually increases with

the memory size, and routing large RAMs with arithmetic modules is more difficult as the

BSRs have fixed position in FPGAs and cannot be freely mixed with adders as it is the

case for small distributed memories. The case is even more complicated for pipelined

architectures where a cost of additional flip-flops and a frequency of the system clock

have to be considered.
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Figure 4-4. Number of LEs and BSRs (scaled 20:1) for Virtex (using large BSR), and number
of LEs for XC4000/Virtex (using only small distributed RAMs), and number of LEs and ESBs
(scaled 20:1) for Apex. The RPU is not considered, the equivalent costs: 1 BSR = 1 ESB= 20

LEs

The implementation results for combination of large BSRs and small distributed RAMs,

and for only small distributed RAMs is shown in Figure 4-4. Note that the number of used
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BSRs depends on the equivalent cost of the BSR; and for the equivalent cost greater than

roughly 44 LEs- the BSRs are not used at all .

Altera Apex 20K [Alt99] family also incorporates dedicated ripple carry logic at the cost

of roughly 1 LE/bit; but in comparison with the Xili nx FPGAs can implement only large DP

RAMs: 2k×1, 1k×2, 512×4, 256×8 or 128×16, one in each Embedded System Block (ESB).

Consequently, as it can be seen in Figure 4-4, the number of required ESBs in comparison

with BSRs is greater, however the number of LEs is reduced. The next consequence of the

lack of distributed RAMs in Apex FPGAs is the longer coeff icient reprogramming time in

comparison with the Xili nx FPGAs when only distributed RAMs are used.

The AuToCon uses advance full search algorithm which generates the best solution

from the given input parameters: input data range, coeff icient range and cost relations

between adders, memories, multiplexers and flip-flops, etc. In order to ill ustrate architectures

analysed by the AuToCon, an example of the optimum structure of the multiplier for K= 12 is

given in Figure 4-5. Note that in this example only dual port memories are implemented

therefore the input multiplexing is not required. However it might seem that it is better to use

multiplexers instead of DP RAMs according to the results in Figure 4-2, nevertheless in

Figure 4-5 only one 16×1DP RAM is needed, therefore the use of multiplexers cannot be

justified.

256×16
DP

125

7 1

16

17

256×16
DP

16×1
DP

7 3 2

16

19

Adder

24

12

7

17

7

2×1
AND

1

2×1
AND

11

MSBs
LSBs

4×1DP
16×1SP

1 1

Figure 4-5. An example of the multiplier for input and coefficient range 0÷212-1. The optimal
architecture for Virtex FPGAs and equivalent cost 1BSR= 20LEs = 5 CLBs. The RPU is not

shown
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4.5. Implementation of the DKCM versus the KCM

Initially, the architecture of the DKCM does not seem to be much different in

comparison with the KCM, only the additional RAM Programming Unit (RPU) and address

multiplexing are required (see Figure 3-5 vs. Figure 4-1). However, the KCM can be

implemented using either the LM or MM (see Chapter 3). The MM is getting more and more

attractive as the coeff icient width increases because more eff icient optimisation techniques

such as Canonic Sign Digit CSD and / or Sub-structure Sharing (SS) are employed.

Consequently, for Xili nx XC4000, and input and coeff icient width greater than 5, the LM

consumes on average 25÷50% more area in comparison with the corresponding MM, as it is

shown in Figure 3-9.

Furthermore, even the LM can employ advance optimisation techniques which are

suitable only for the KCM. These techniques are enumerated below:

• Simpli fication for even coeff icients - in this case the LSB(s) of the product has (have) a

fixed zero value. Furthermore, for coeff icients: 1, 2, 4, 8, etc., the KCM can be replaced

by the argument hardwired shift, which does not consume any hardware.

• Reduction of memory size –Don’ t care Address Width Reduction (DAWR), see Section

3.2.1.

• Memory sharing (MS)

• Skipping coding of the sign bit – for fixed coefficient, LUT outputs are usually either

always positive or negative, and therefore sign bit need not be coded see Section 3.2.2.

The DKCM in comparison with the KCM can implement a great range of coeff icient

values, for which, conversely, different KCMs should be developed. Furthermore, a KCM

architecture varies significantly for different coeff icients, which causes a great difference in

area occupied by the KCM. Therefore, to compare the DKCM with the corresponding KCMs,

three different statistical costs of the KCM can be used:

1. Average area occupied by a KCM for a given coeff icient range (usually 1÷2K-1). This cost

is suitable for static configurable systems [San99], for which the cost of a static KCM and

its equivalent static DKCM is compared. The average area of the KCM can also be used

for dynamic configurable systems [San99] for which a great number of KCMs are

considered at the time, therefore usage average statistical value is justified.

2. Maximum area for a given coefficient range – is recommended for dynamic configurable

systems, for which the coeff icient is changed by FPGA reconfiguration.
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3. Maximum area for a given coefficient set - as in point 2, but in the case when the number

of possible coefficients is relatively small . This value seems the best for defined designs,

however may constrain further design changes. This solution however cannot be

generalised and therefore is not further referred to.

The comparison of the KCM and DKCM is given in Figure 4-6. For small values of K,

area occupied by the DKCM is much greater than for the KCMs due to the strong influence of

the RPU; on Figure 4-6 the cost of the RPU is ill ustrated as the difference between DKCM-T

and maximum cost of the KCM-LM. As K increases, the relative cost of the RPU decreases

(for K= 3 and K=16, the RPU occupies 63% and 23% of the whole DKCM-L area

respectively), and additional cost of the DKCM over the KCM is related rather to the

comparison strategy (the average or maximum cost of the KCM). For example, for K= 15 the

DKCM overhead is 39% and 136% for the maximum and average KCM area respectively. It

should be also noted that architectural (LM vs. MM) overhead increases with growing K as it

is shown in Figure 4-6 (max KCM-LM vs. max KCM).
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Figure 4-6. Area for Xili nx XC4000, occupied by: the DKCM-T, maximum area of the KCM-
LM and KCM (the best architecture of the MM or LM) and average area for the KCM. The

input range 0÷2K-1 and the coefficient range 1÷2K-1

4.6. Implementation of the DKCM versus the VCM

The VCM is a fully functional multiplier, usually implemented using AND-gates and

adders [Omo94, Wal64], for which a coeff icient-change penalty is not observed. The
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drawback of the VCM, as can be seen from Figure 4-7, is its large cost in comparison with the

DKCM. For small multiplier width K, however, the cost of the DKCM is dominated by the

RPU, therefore the VCM is recommended.
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Figure 4-7. Area (Xili nx XC4000) for the DKCM-T and VCM for different K

According to Figure 4-7, the DKCM should be implemented for K≥7. Nevertheless

Figure 4-7 presents the best results for the DKCM as in real applications the DKCM requires

RAMs programming (idle) cycles which decrease the design throughput and may require

design modifications (additional cost). In consequence, two different groups of application

can be distinguished:

A) Designs without reconfiguration overheads – the change of the coefficient occurs

very seldom and / or does not disrupt the system work. For example, a real time image

processing system for which a change of the coeff icient is carried out during image blank

time, or so seldom that corrupted data is invisible. In this case, the DKCM can be

implemented without additional overheads. In this case, the KCM and a (dynamic)

reconfiguration system instead of DKCM should be also considered to allow additional

savings.

It should be noted that for the DKCM-D (dual port DKCM) and for adaptive systems

where the difference between the present and new coeff icient is very slight, the product

obtained while RAM programming is usually only slightly corrupted. Furthermore, for

positive inputs (or sign and magnitude input data format) and RAM programming schedule
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according to eq. 4-1, the multiplication result is in the range of the results calculated for the

old and new coeff icient. This is proved below for multiplication M= A⋅B. To simpli fy the

prove, multiplier consists of only two LUTs, however the prove can be easily extended for a

greater number of LUTs.

The multiplication result is given as:

M= (B⋅AMSB)<<k + B⋅ALSB (4-4)

where: B- multiplication coefficient, AMSB- MSBs part of the input, ALSB- LSBs part of the

input, k- address width of the LSBs LUT

During the LUTs programming, each address location of the LUTs stores either new

BN⋅AMSB, (BN⋅ALSB for the LSB LUT) or old BO⋅AMSB (BO⋅ALSB) value depending if the address

location selected by the input data has or has not been programmed. Therefore the result of

the multiplication can be as follows:

MO= (BO⋅AMSB)<<k + BO⋅ALSB (4-5)

MC0= (BO⋅AMSB)<< k + BN⋅ALSB (4-6)

MC1= (BN⋅AMSB)<<k + BO⋅ALSB (4-7)

MN= (BN⋅AMSB)<< k + BN⋅ALSB (4-8)

In eq. 4-5 the multiplier calculates a proper value for the old coefficient. In eq. 4-8 a proper

new result is calculated. Only eq. 4-6 and 4.7 give corrupted results, however it can be seen

that for ALSB≥0 (always true) and AMSB≥0 (holds for positive inputs) the MC0 and MC1 are in the

range of MO and MN (Consider two cases: BO<BN, which gives MO≤MC≤MN, and BO>BN,

which gives MN≤MC≤MO).

Eqs. 4-5 ÷ 4-8 hold provided that a simultaneous read and write to the same DP RAM

address location is allowed and well defined. However, this is usually the case, e.g. for  Xili nx

XC4000 16×1 DP.

B) Designs with reconfiguration overheads - the coefficient changes frequently or its

change interferes with the system work. In this case, four different approaches can be

implemented:

• DKCM-P - two parallel RAMs sets and additional multiplexers are used [Woj98],

which allows a RAMs set to be programmed while another is operating and vice-

versa.

• DKCM-D - as described in the point A (output data may be slightly corrupted!), but

architectural overhead is considered as the DP-RAM solution is usually less hardware-

eff icient than the SP-RAM counterpart.
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• VCM, which has no coeff icient change penalty.

• DKCM - the multiplier for which multiplication process is stopped whenever RAM is

programmed. In some cases, however, this solution cannot be implemented, as the

multiplier cannot stop its operation without heavy influence on the other units.

To quali fy the benefits from using the DKCM reconfiguration approach, let define a

functional density D [Wir97, Wir98]:

TA
D

⋅
= 1

(4-9)

The functional density for the DKCM should consider the idle time needed to program the

LUTs:

)1(

1

n

r
TA

DD

+⋅⋅
= (4-10)

where: D, A, T – functional density, area and criti cal delay respectively; r- number of

reconfiguration cycles; n- number of execution cycles between two consecutive

reconfigurations.

For the DKCM, a reconfiguration penalty factor r/n has been introduced. The penalty can

be decreased either by the increase of n - the number of execution cycles between two

consequtive reconfigurations; or by a decrease of the number of reconfiguration cycles r.

It can be seen from Figure 4-8 and for the DKCM-T8, for which the number of

reconfiguration cycles r is reduced from r=  16 to r= 8 (only half of the 16×1 RAMs is used),

that the decrease of r causes only slight increase of system performance for small n. For small

r, memory blocks are not fully used and therefore the multiplier occupies more area and has

longer propagation time. In consequence, for small n, the VCM should be rather implemented.

An alternative solution is the DKCM-D for n>16, for which the coefficient change penalty is

not observed, provided that coefficient changes are very slight and the product can be slightly

corrupted. For the DKCM-P, the additional RAM set and multiplexers increase the design

area and propagation time, which causes that this multiplier is usually not recommended for

XC4000.
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Figure 4-8. Functional density D [1/LE⋅µs] as a function of the number of n, results for K= 8
for XC4003E-1 (XC4005E for the DCKM-P), for following options (enumerating from the top

for n=100): DKCM-D, DKCM-T16, DKCM-T8, DKCM-P (TSB option), VCM

4.7. Conclusions

A proper choice of the multiplier architecture in FPGAs is, as it is shown in this chapter,

a diff icult task. For ASICs, two choices: the VCM and KCM can be easily distinguished.

However, for FPGAs the boarder between these two solutions cannot be smoothly defined as

FPGAs can be quickly reconfigured. Therefore, implementation of the KCM instead of the

VCM is strongly recommended as the KCM occupies 17÷23% on average or 29÷41% on

maximum, area of the VCM for multiplier width K= 3÷15. Furthermore, lower area of the

design causes usually shorter propagation time, and consequently a significant increase in

design functionali ty D. Conversely, coeff icient change for the KCM has a penalty of

operation idle time which decreases design functionali ty according to eq. 4-10. Consequently,

to decrease the idle, reconfiguration time there is a tendency to use a partial reconfiguration

for which only the multiplier circuit is reconfigured.

The reconfiguration time can be further decreased by in-circuit reconfiguration, i.e. by

the use of the DKCM. The DKCM offers much quicker reconfiguration but occupies more

area in comparison with the KCM, therefore is a middle-way solution between the VCM and
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KCM. The DKCM requires additional RAM Programming Unit (RPU) which significantly

influences the DKCM cost for small multiplier widths.

For adaptive signal processing, the DKCM solution is even more attractive as the

DKCM-D has no reconfiguration penalty provided that the product can be slightly corrupted

and the number of execution cycles is greater than memory size. Furthermore, the process of

coeff icient change for the KCM requires not only FPGA reconfiguration but also redesigning

and re-routing of the KCM which consumes significant amount of time (about 1min÷1hour)

and therefore this solution is usually unacceptable for adaptive systems.
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5. Convolution in FPGAs

The convolution basically consists of sum of (delayed) products, therefore

multiplication is an essential operation. Consequently, each multiplier can be implemented

separately, and then the addition applied. Nevertheless, disregarding the multiplier entities

allows for further optimisations. For example, for the LM, instead of considering separately

additions within the multipliers and then the final addition, a single adders block can be

formed, which allows for better grouping the adders, and therefore for implementing a more

hardware-eff icient circuit. This design approach to the group of the LMs is further denoted as

LUT based Convolution (LC).

In addition, a (parallel) Distributed Arithmetic Convoler (DAC) – a completely different

architectural solution can be implemented. This solution is similar to the LM, nevertheless,

the order of multiplications and additions is disregarded, which allows for memory data width

reduction, in comparison to the LC. This chapter presents also a novel approach: an Irregular

Distributed Arithmetic Convoler (IDAC) which is a combination of the DAC and LC.

Unlike for multiplierless multiplication (MM), for convolution common substructure is

not considered separately within each multiplier, but substructure sharing is applied for all

coeff icient altogether. Therefore a term, Multiplierless Convolution (MC), instead of the MM,

is introduced. This causes that trading-off between the (LUT based) IDAC versus the MC is

more complex than it is the case for the multiplication and the LM vs. MM. Consequently a

sophisticated algorithm has been developed to confront the problem.

For convolution interdependence between coefficients is often very strong, as

symmetric filters are often implemented. Consequently, additional algorithm for automatic

detecting and grouping similar coeff icients is also implemented.

5.1. Previous Works

For ASICs, several FIR filter sili con compilers [Jai91, Las92, Haw96] have been

developed. Nevertheless, FPGA designs differ significantly from the ASICs, as FPGAs

usually incorporate dedicated ripple-carry logic, which makes that the different adders

approach is adopted. Furthermore, FPGAs implement logic employing Look-Up Tables and

therefore LUT-based multiplication or convolution is an alternative solution to be taken into

account.
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An automatic implementation of FIR filters on FPGAs has been presented in [Moh95].

This tool employs inverted form 1D FIR filters [Moh95] and techniques adopted for ASICs,

such  as power-of-two coeff icient space [Lim83] (denoted hereby as the multiplierless

multiplication), carry-save adders [Omo94] for XC3000 family [Xil93] (XC3000 family does

not incorporate dedicated ripple-carry logic) and dedicated ripple-carry adders for XC4000

[Eva94]. Up to the author’s knowledge, the SS has not been implemented in [Moh95], only

CSD representation is used. Employing inverted form FIR filters instead of direct form filters

(implemented by the AuToCon) excludes implementation of distributed arithmetic.

Furthermore, adders operate on wider arguments in comparison to the direct-form filters.

Besides inverted form filters are not recommended for 2D filters as wider line buffers are

required. Nevertheless, a 2D filter can be constructed from several inverted form 1D filters.

Conversely, the structure of inverted form filters is more modular. Furthermore, a lot of

design effort in [Moh95] has been put into mapping (optimising placment and routing) to

increment clock frequency. Pipelining is (somehow) built -in the structure of the inverted form

filters, therefore, in comparison to the pipeline architecture of the direct-form filter, it might

seem that less flip-flops are required. However inverted-form filters require wider pipelining

registers. Summing up, direct-form filters allow more architectural solutions to be adopted,

and more design parameters to be specified in comparison to the inverted-form filters.

Therefore, the direct-form solution has been adopted in the AuToCon, nevertheless more

thorough research is required to compare these two different architectural solutions. Besides

direct form filters can be employed as a sum of products, etc.

Core Generator [Xil99], program distributed by Xili nx Inc., automatically generates FIR

filters employing only (parallel) distributed arithmetic. Nevertheless, implementation results

obtained for the AuToCon outperform the results obtained for Core Generator, as the

AuToCon considers different architectural solutions and applies more sophisticated

optimisation techniques. The Core Generator takes into account mapping of element into the

FPGA. Conversely, the AuToCon generates circuits on higher level using VHDL-approach,

therefore it might seem that the throughput for the Core Generator circuit is greater.

Implementation results proved that this is not the case.

Xili nx Inc. also provides a VHDL-based FIR filter description employing inverted-form

and KCM approach [Pas01]. Nevertheless, the input width is fixed and only number of taps

and coefficient values can be changed. Besides, the KCM LUTs operate on 4 times the input

clock frequency, therefore comparison with the AuToCon is impossible. It should be noted
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that there is a tendency for FPGAs to describe systems on high level (e.g. VHDL) and

disregard relative placement of elements. This allows for reducing design time and/or

implementing more sophisticated optimisation techniques.

5.2. Symmetry of Convolution Coefficients

Values of coeff icients, in general, can be selected without any restrictions, however

filters with symmetry are usually implemented, e.g. to obtain linear phase filters [Vai93]. The

filters given in Figure 1-1 are also with symmetry (or asymmetry in the case of Sobel gradient

filter). Table 5-1 gives possible 3×3 convolution kernels for different symmetries.

a)
W0,0 W0,1 W0,2

W1,0 W1,1 W1,2

W2,0 W2,1 W2,2

b)
W0,0 W0,1 W0,0

W1,0 W1,1 W1,0

W2,0 W2,1 W2,0

c)
W0,0 W0,1 W0,2

W1,0 W1,1 W1,2

W0,0 W0,1 W0,2

d)
W0,0 W0,1 W0,0

W1,0 W1,1 W1,0

W0,0 W0,1 W0,0

e)
W0,0 W0,1 W0,0

W0,1 W1,1 W0,1

W0,0 W0,1 W0,0

Table 5-1. Different filter symmetries: a) without symmetry, b) horizontal, c) vertical, d)
horizontal-vertical e) point symmetry

The symmetry of the filter allows further optimisation of the circuit. The same

coeff icient inputs should be at first added, and then the common multiplication performed.

Figure 5-1 shows the circuit simpli fications, and Table 5-2 number of adders and multipliers

after symmetry has been taken into account. It can be seen that for horizontal and vertical

symmetry the number of multipliers is the same. However the number of adders and pixel

delay elements is reduced for vertical symmetry because for this symmetry, only a single

adder is needed for every common line.  For the point symmetry, the number of multipliers is

further reduced. It should be noted that for 3×3 convolution kernels, savings are less

significant than for large kernel sizes, for which the number of multipliers is halved for

horizontal or vertical symmetry, quartered for horizontal-vertical symmetry and reduced to

1/8 for point symmetry. It should be noted that for some 2D filters with the point symmetry, it

may be beneficial to implement two independent vertical and horizontal  1D filtering [Cas96].

This is often the case for wavelet transforms [Cas96].
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a)

z-1 z-1

w2,2 w2,1 w2,0

Line Buf. z-1 z-1

w1,2 w1,1 w1,0

Line Buf. z-1 z-1

w0,2 w0,1 w0,0

Input  ay+2,x+2  ay+2,x+1  ay+2,x

 ay+1,x+2  ay+1,x+1  ay+1,x

 ay,x+2  ay,x+1  ay,x

 +

 Output

 by+1,x+1

b)

z-1 z-1

w2,1 w2,0

Line Buf. z-1 z-1

w1,1 w1,0

Line Buf. z-1 z-1

w0,1 w0,0

Input

 ay+2,x+2

 ay+2,x+1  ay+2,x

 ay+1,x+2

 ay+1,x+1  ay+1,x

 ay,x+2

 ay,x+1  ay,x

 +
 Output

 by+1,x+1

+

+

+

c)

Line Buf. z-1 z-1

w1,2 w1,1 w1,0

Line Buf. z-1 z-1

w0,2 w0,1 w0,0

Input
 ay+1,x+2  ay+1,x+1  ay+1,x

 +
 Output

 by+1,x+1+

d)

Line Buf. z-1 z-1

w1,1 w1,0

Line Buf. z-1 z-1

w0,1 w0,0

Input
 ay+1,x+2

 +
 Output

 by+1,x+1+

+

+

e)

Line Buf. z-1 z-1

w1,1

Line Buf. z-1 z-1

w0,0

Input
 ay+1,x+2  ay+1,x+1

+  Output

 by+1,x+1

+ +

+
w0,1

Figure 5-1. Convoler 3×3 architecture for different symmetry options: a) without symmetry,
b) horizontal symmetry, c) vertical symmetry, d) horizontal-vertical e) point symmetry

Symmetry # adders # multipliers L # ad. 3×3 # mul. 3×3
No-symmetry N⋅M – 1 N⋅M 8 9

Horizontal N⋅M – 1 N⋅M/2 8 6
Vertical N/2 + N/2⋅M - 1 N/2⋅M 6 6

Hor.-Vert. N/2 + N/2⋅M - 1 N/2 ⋅ M/2 6 4
Point N=M N/2 + N/2⋅N - 1 (1+N/2)⋅N/2/2 6 3

Table 5-2. Number of adders and multipliers for different symmetry options and for a given
convolution size 3×3. M- horizontal, N- vertical kernel size

5.3. LUT based Convoler (LC)

5.3.1. Concept

The structure of the LUT based Convoler (LC) is similar to the sum of products.

However to optimise the structure of the adders, all additions are performed within a single
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adders block, therefore multiplier entities are disregarded. To ill ustrate savings obtained by

the use of the LC instead of the sum of the LMs, an example is given in Figure 5-2, for

convolution kernel size equal 1×2 and 8×8 multipliers. Let consider savings obtained by

disregarding the multiplier bounds, for LUT output width equal w= 12 and LUT address

width (shift between the same multiplier LUTs) s= 4. For the LM, the adder width within a

multiplier equals roughly w. The final adder width equals roughly w+s. Therefore total adders

width for the sum of the LM is equal

wLM= 3⋅w+s. (5-1)

For the LC, three adders of width equal w are employed, and therefore total number of Full /

Half Adders is equal

wLC= 3⋅w. (5-2)

Consequently, a penalty factor, a result of employing sum of LMs instead of the LC, is

roughly

w

s

w

ww
p

LC

LCLM

⋅
=−=

3
 (5-3)

The above penalty factor is further employed for substructure sharing adders when two

arguments are shifted by s. It should be also noted that employing the LC rather than the sum

of LMs reduces the maximum width of the adder from roughly w+s to w, and therefore

reduces maximum propagation time.
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Figure 5-2. The structure of the convoler for Y= A⋅B0 + z-1⋅A⋅B1
  for input and coefficient

width K= 8. A) LC, B) sum of products

The LC is constructed in similar way as the LM, the same optimisation techniques are

employed. However exhaustive search technique, which optimises all LUT memories and

adders, is impractical to be implemented. Consequently for the LC, only local full search
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optimisation is implemented, for which each multiplier is optimised separately using the full

search technique and then all adders are merged into the adders block which is then separately

optimised by techniques described in the next chapter.

5.3.2. Constant coeff icients LUT based Convoler (KLC)

The KLC employs the same optimisation techniques as the KCM: LSB Address Width

Reduction (LAWR), Don’ t Care Address Width Reduction (DAWR) and Memory Sharing

(MS). In addition, optimisation techniques characteristic only for convolers are employed.

Similar Coeff icients Optimisation (SCO)

Section 5.2 describes the symmetries of f ilters. However, also different symmetries and

coeff icient combinations can be used [Lu92]. Therefore, the AuToCon compares all

coeff icients and groups them into similar coefficients blocks. Coefficients grouped together

can be shifted and negated. Grouped inputs are shifted in respect to the coefficient value and

then added (subtracted). Finally, a single multiplier is only implemented. This method allows

for reducing the number of multipliers.

For example, for the filter:

H(z)= H1(z) + 5⋅z-i - 5⋅z-j - 10⋅z-k + 20⋅zl (5-4)

similar coeff icient inputs are added:

A5= zi - zj - 2⋅zk + 4⋅zl, (5-5)

and the final result is:

H(z) = H1(z) + 5⋅A5. (5-6)

In this example the number of multipliers has been reduced by 3.

Pipelining Optimisation

Similarly li ke for the multipliers, the AuToCon generates a convoler with a

sophisticated pipelining architecture, for which additional parameter p defines maximum

number of logic elements between pipelining registers. Figure 5-3a shows an example of a

convoler with straightforward pipelining architecture. For this method, however, additional

pipelining registers are often required to compensate different pipelining delays. To reduce

this drawback, pipelining optimisation is implemented, for which feeding points of arithmetic

units are relocated in order to reduce unnecessary registers (similar optimisation is

implemented in [Har96]). A result of the optimisation is shown in Figure 5-3b. It should be

noted that the total convoler pipelining delay is often reduced in this method. This

optimisation technique is implemented for every architecture described in this chapter.
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Figure 5-3. Implementation of (2 + 5⋅z-1 - 5⋅z-2) filter for pipelining parameter p= 1 and a)
without b) with pipelining optimisation

5.3.3. Dynamic Constant coefficients LUT based Convoler (DKLC)

For the DKLC, the value of coefficients can be changed in similar way, as it is in the

case for the DKCM; rearranging the order of adders does not influence the LUTs

programming schedule. For the DKCM, address multiplexing is performed on the input of the

multiplier. Similarly for the DKLC, the multiplexer can be placed on the input of each

multiplier. Let denote this option as DKLC-M. An alternative solution, denoted as DKLC-C,

is to place the multiplexer on the convoler input and so the address sequence for programming

LUTs will propagate through the convolution delay elements to the input of the LUTs. The

drawback of this method is more sophisticated control logic. Besides, the number of

programming cycles increases because of additional propagation time through the filter delay

elements. In order to reduce this time the multiplexers should be rather placed at the

beginning of each line. Therefore the programming sequence will propagate only through

pixel delay elements. Summing up, M×N (M- horizontal; N- vertical kernel size) convoler

requires N multiplexers and M-1 additional programming cycles for dynamic reconfiguration.

In this option, however, similar coeff icient adders (for symmetric filters, etc.) distract memory

addressing and make the approach more complicated.

It should be noted that the LUTs can be programmed either in serial: a single

multiplier is programmed at the time, or in parallel, when all multipliers are programmed

simultaneously. The serial option has longer programming time but a single RAM

Programming Unit (RPU) is required. The parallel option has short programming time but

each multiplier requires its own RPU and therefore this option occupies more hardware. The

choice between the serial and parallel option should be taken after considering the average

time between coeff icients changes in similar way as it was described in Section 4.6.
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It should be noted that so far only self-programming architecture of the DKCM and

DKLC has been considered. However, the LUTs can be programmed using an off-chip

interface. In this case new LUT contents can be pre-calculated by a system processor and then

written to the LUT memories. In this case the RPU is not required. Conversely, off-chip

transfers are slower than internal ones and involve the system processor, which may not be

accepted in some designs.

The DKLC can be implement with many different options. This is one of the reasons

that the AuToCon cannot generate automatically any DKLC. Consequently including the

DKLC to the AuToCon might be a suggestion for further work. Nevertheless Virtex II

incorporates built -in fully functional multipliers, which makes the DKLC option less

attractive.

5.4. Distr ibuted Ar ithmetic Convoler (DAC)

5.4.1. Concept

The idea behind the DAC [Bur77, Min92, Do98] is to compute the convolution in

different order than for the LC. The following mathematical transformation has been

employed:
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where: N- size of the convolution kernel, L- width of the input argument a (in bits), hi- i-

th coefficient of the convolution, ai,j- -j-th bit of the i-th input argument.

a0,0 a1,0 ... aN-1,0

LUT

S0

a0,1 a1,1 ... aN-1,1

LUT

S1<<1

a0,L-1 a1,L-1 ... aN-1,L-1

LUT

SL-1<<(L-1)

Adder

WDAC

. . .

Figure 5-4. Diagram of the Distributed Arithmetic Convoler

In comparison with the LC, the LUT data bus width of the DAC is smaller, as it can be

seen from eq. 5-8.
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WDAC=K+log2(N+1) WLC= K+WIN (5-8)

where: WDAC - data width of LUTs for the DAC, WLC - data width of LUTs for the LC, WIN -

width of the input of the LUTs, K- width of the coefficients of the convolution, N- the size of

the convolution kernel.

The data width of the LUTs is a direct sum for the LC, and is a sum of the logarithm of

the number of inputs to the LUT for the DAC. This is a consequence that input bits are at the

same significance for the DAC. The lower output width of the LUTs causes substantial

FPGAs area savings, because not only smaller memory modules but also shorter adders are

required. As a result, the DAC is preferable to the LC. The drawback of the DAC solution is

that the dynamic change of the coefficient is much more diff icult in comparison to the LC,

which makes this approach rather impractical for dynamic systems.

A diagram of the DAC is shown in Figure 5-4. Similarly as for the LM, the size of the

LUT memory grows rapidly with the size of the convolution kernel N. Therefore the LUT

memory should be split i nto two or more independent LUTs, and then adders employed

similarly li ke for the LM. The split of the memory should be implemented with respect to the

cost relation between different memory modules and adders.

Consequently, in some cases the LUT based Hybrid Convoler (LHC) [Wia00c, Wia00d]

- the hybrid of the LM and DAC, may be implemented, as the optimum memory split i ssue is

concerned. For example, for the 3×3 convolution N=9=3⋅3, coeff icient width K=8 and input

width L=8, two different memory modules should be used: four and five input memory

blocks (4+5=9), but the 32×1 memory module occupies twice the area of the 16×1 module.

Therefore the alternative LHC may employ the DAC for N=8 and a single LM. The cost for

the pure DAC is 226 XC4000 CLBs and 209 CLBs for the LHC [Wia00c]. Therefore 17

CLBs are saved by the use of the LHC.

5.4.2. I r regular Distr ibuted Ar ithmetic Convoler (IDAC)

The previous solution assumes that the structure of the DAC is the same for different

significance of input bits. However, this need not be the case, and bits of different

significance can be grouped together in the same LUT. Therefore more or less a combination

of the LC and DAC is obtained. This novel, introduced by the author of this thesis, design

approach is denoted as Irregular Distributed Arithmetic Convoler (IDAC). An IDAC

optimisation algorithm should optimise rather the address and data widths of memories and

adder widths, and the bit-significance of inputs is only an input parameter which influences

the LUT data widths.
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A greedy algorithm for IDAC is proposed. This algorithm optimises a partial solution,

i.e. determines the LUT address width and the LUT inputs, according to the algorithm given

in Listing 5-1. Before the optimisation algorithm is applied, every coeff icient is shifted to the

left until it i s made odd. This reduces the data width of the LUT as the LSB of an even

coeff icient is fixed to zero. The input bit for which the coeff icient is shifted is further treated

as the input bit with significance increased by the number of shifts.

The algorithm in Listing 5-1 at first assigns input bits with the lowest shift si (step S1).

Step S2 tends to allocate firstly inputs for which coeff icient width is the lowest and this step is

applied only to input bits at the lowest shift, i.e. for input bits returned at step S1. Step S3

optimises sign of the output, i.e. allocates at first input bits which representation (either

positive or two’s complement) corresponds with the representation of the LUT output. Step

S3, however, is of the lowest importance and is considered only if two previous steps do not

give the best solution.

Listing 5-1. Algorithm choosing the best partial solution for the IDAC

cbest= ∝ (Initial conditions)
width= 1
Start of the loop

S1: Find an unassigned input bit with the lowest shift si

S2: If two or more input bits are found with the lowest shift si, take the input with the lowest
coefficient width wi.

S3: If two or more input bits are found in step S2, take the one which output sign corresponds
with the output sign of the LUT.

S4: Calculate average cost ca per input bit (consider also inputs found in the previous iterations
of this loop)

S5: If ca<cbest then ca= cbest (the better circuit has been found)
S6: width= width+1
S7: If width>max_width

then finish the algorithm and return the circuit with the lowest cost cbest

else go to the start of the loop

where:
width – address width of the considered IDAC  LUT
max_width – maximum address width for the considered memories (or the number of unassigned

input-bits if smaller)
si – shift of the input bit, si= significance of the input bit + shift of the coefficient (while making

coefficient an odd value)
wi – width of the coefficient after the coefficient is shifted (made odd).

ca – average cost of the input bit, 
width

adderCostmemoryCost
ca

__ +=

Cost_memory – cost of the memory module which address width is equal or greater than width and
data width is obtained from output range of the memory.

Cost_adder – adder cost which width is equal the width of the memory data + 1.
cbest – the lowest average cost per input bit – this cost is associated with the best-found circuit.
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Step S4 calculates the average cost (per input bit) of the memory module and the

associated adder. In this step, an assumption is made that the width of the adders is equal the

memory data width plus one. Actual width of the adder depends on routing the adders in the

adders block (see the next chapter). Step S5 determines the best circuit, i.e. the circuit for

which average cost per bit is the lowest. The next steps S6 and S7 are loop control

instructions. An example of circuit obtained by this algorithm is given in Section 5.7.

The above algorithm is a novel algorithm which deals with the problem which has not

been considered so far. Probably better optimisation techniques can be derived that employ

better optimisation criteria in the greedy algorithm. Furthermore, optimisation techniques,

which focus on global optimisation, should be implemented; some of these techniques are

described in the next chapter.

5.5. Multiplier less Convolution (MC)

The MC employs similar optimisation methods as the Multiplierless Multiplication

(MM) does. However for the MC, these methods are much more sophisticated as the convoler

composes of many multipliers and optimisation is not constrained to a single multiplier as it is

for the LC, but the whole convoler circuit is optimised all together. The design developments

combines the following solutions:

1. Canonical Sign Digit optimisation (CSD) – the same method as described in Section 3.1.2,

therefore this optimisation is not further described.

2. Substructure sharing (SS).

3. Pipeline Optimisation (PO) – described in Section 5.3.2.

5.5.1. Substructure Shar ing (SS)

The SS has been already described for the KCM, however in the case of the convoler

the optimisation techniques are much more complicated and some trade-offs have to be

considered.

The choice of which substructure to choose at each iteration is a substantial problem as the

selections in the early stages of optimisation influence the possible optimisations at the next

steps. In the AuToCon, similarly li ke in the other similar systems [Pas99, Har96, Pot96,

Cha93], the Greedy Algorithm (GrA) [Cor94] has been employed. The proposed algorithm

takes the best partial solution which is found in the exhaustive search [Cor94], i.e. all possible

two-input sub-expressions are tested and the best of them taken.
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In the case of a multiplier, the best partial solution is selected according to the number

of times t a common two-input sub-expression occurs, as the number of adders (subtractors) is

reduced by t-1 after the SS optimisation. In the case of a convoler, a curtain number d of delay

elements (flip-flops) is often required, as the common sub-expression is often needed in

different time slots. This is ill ustrated in an example of a convoler design in Section 5.7.2.

The cost of these additional delay elements should be also considered when selecting the best

partial solution.

To increase t by 1 (or more), a large number, denoted as dt+1, of additional delay

elements is often required. However, the cost of dt+1 delay elements may be greater than the

cost of the common sub-expression adder. Therefore it is beneficial to implement the

additional adder rather than the large number dt+1 of f lip-flops. An alternative and more

appropriate solution is to stop this optimisation step after t-th occurrence of the common sub-

expressions and to consider (t+1)-th and next occurrences of the common sub-expression in

the next optimisation steps. The latest solution allows optimisation program to select the best

partial solution in more unconstrained way, which is beneficial to the algorithm results. For a

2D convoler, some sub-expressions may be even required after being delayed by a line buffer,

which is impractical and should be rejected at the early stages of the optimisation.

Consequently, the maximum number dmax (dt+1≤dmax) of delay elements between two

successive time slots which are used in the next design stages, should be defined as:

FF

Add

C

C
d ≤max (5-9)

where: CAdd- cost of the adder, CFF- cost of the delay element (flip-flops).

The above equation can be justified, as an increase of t by 1 decreases the number of adders

by 1, therefore the additional cost of the delay elements must be lower than the cost of the

adder. Nevertheless, (t+1)-th occurrence of the common sub-expression may be included in

other sub-expressions in the next optimisation steps and including these inputs in this

optimisation step usually makes the next optimisation steps less eff icient, therefore eq. 5-9

should be considered as the inequali ty.

In order to reduce the output width of a common substructure adder, the inputs to the

common sub-expressions adder should be at the same bit-significance. Consequently a

penalty factor, given in eq. 5-3 and rewritten hereby,

w

s
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⋅
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3
 (5-10)
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is introduced. This factor takes into account the shift between arguments. To simpli fy the

optimisation program, width w is assumed to be constant for all adders and equal the width of

the input data to the convoler.

In the case when the subtrahend is shifted to the right in a SS adder, the LSBs cannot

be copied directly to the output, therefore in this case, the common sub-expression should be

negated. As a result, the minuend is now shifted to the right and therefore the LSBs can be

directly copied to the output, see also Section 5.7.

In the case when two or more sub-expressions are found, for which savings are the

same, some additional conditions are considered. In order to reduce the level of dependency

between substructure sharing adders and so to allow better pipeline optimisation, it is

beneficial to reduced the number of layers of the common substructure adders (an output of a

common substructure adder is an input to the next common substructure adder, which forms

an additional layer of adders). Consequently, a sub-expression which inputs are at lower layer

(to simpli fy the algorithm the input with lower index, see Section 5.7 and Table 5-5) is

selected first. In the case when inputs are at the same layer, which is the case only for the

direct inputs (because the algorithm considers the index rather than the layer number) the sub-

expression which inputs are closest to each other, is taken. This allows for reducing routing

resources.

Summing up, in order to select the best partial solution, the following factors are

considered:

1. How many times the common substructure occurs - t.

2. How many additional delay elements are required - d.

3. Bit-shift between inputs of the common substructure adder - s.

4. Maximum number of delay elements between two subsequent time slots- dmax.

5. Layer of the SS adders and position of the input.

The first three points conclude in the following equation:

FFAdd CdC
w

s
tSavings ⋅−⋅

⋅
−−= )

3
1( (5-11)

and the fourth point concludes:

dt+1 ≤ dmax (5-12)
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The sub-expression with the greatest savings is taken. The optimisation process is stopped

when no sub-expression with savings greater than zero can be found. If the savings are the

same for two or more sub-expressions, the 5th point is considered.

The AuToCon implements design in a similar way to [Har96]. However, [Har96]

considers more sophisticated delay optimisation (together with pipelining registers and

change in a register count). Conversely the AuToCon constrains the maximum number of

delay elements between two subsequent feeding points (eq. 5-12) and takes into account shifts

between inputs (eq. 5-11).

5.6. IDAC versus MC

The choice between the IDAC and the MC depends on the cost of the memories, adders

and flip-flops within a selected FPGA device. Furthermore, the cost-relation between these

elements differs for different designs, e.g. some designs may contain a lot of free memory

resources but adders and flip-flops resources are already occupied, and therefore it is

beneficial to employ more memory blocks than adders. This can be achieved by a decrease of

memory costs. Even convoler parameters influence the cost of FPGA resources. For example,

numbers of f lip-flops and 16×1 LUTs are usually the same, as each LUT is associated with a

flip-flop. Therefore, pipelining parameter p which defines the maximum number of logic

elements between pipelining flip-flops, strongly influences relation between the number of

incorporated LUTs and flip-flops. Consequently for p=1 the area is usually defined by the

number of f lip-flops and therefore the cost of f lip-flops is relatively high in comparison to the

cost of adders and memories. Conversely, for p≥3, the area is usually defined by the number

of adders and memory modules, consequently the cost of f lip-flops is relatively low.

Summing up, parameters of the design strongly influence e.g. eq. 5-9 and eq. 5-11, and

therefore the best solution differs significantly for different input parameters.

In conclusion, the choice between the IDAC and the MC depends strongly on the given

FPGA device and inputs parameters. Besides, the area occupied by the MC depends strongly

by the given coefficient values as some numbers require less non-zero bits and allows for

better substructure optimisation than others. Conversely, for the IDAC, the width of the

coeff icients is the most important factor. In conclusion, for some coefficients, the IDAC is

preferable, and the MC is a better choice for others.
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As a result of the above conclusions, the AuToCon does not make any predefined

assumptions and automatically trade-offs between these two architectures and implements

some coeff icients employing the IDAC, and other coeff icients employing the MC. The trade-

off between the IDAC and the MC cannot be considered separately for each coeff icient (as for

the KCM, see Section 3.3) as the SS depends strongly on relation between coeff icients.

Initially it might seem that the best solution can be obtained by checking all possible

solutions, i.e. considering all possible combinations, for which each coeff icient is

implemented either as the MC or the IDAC. The number of combinations is equal 2N⋅M (N×M-

size of the kernel) and therefore this algorithm is impractical even for small convolution

kernels.

MC vs. IDAC Algor ithm

A novel implementation algorithm which trade-offs between the MC and the IDAC is

introduced below:

Listing 5-2. MC vs. IDAC Algorithm

1. Determine the cost of every coefficient for the IDAC architecture (see Section 5.7).
2. Set optimisation option to all.
3. Mark all coefficients as (implemented employing) the MC.
(beginning of the optimisation loop)
4. Determine the MC circuit considering only coefficients which are marked as the MC.
5. Calculate the cost for each coefficient which is marked as the MC (see Section 5.7).
6. Find total cost of the circuit summing the cost of the IDAC coeff icients and the cost of the MC

coefficients.
7. I f the total cost is equal or lower than the best total cost then accept changes

else restore the best circuit (mark all coefficients as the IDAC or the MC as it was for the best
circuit)

and
If option=all then set option to one.
I f option=one then finish the algorithm.

8a. I f option=all then for  every coefficient marked as the MC, compare the coefficient cost for the
IDAC and the MC architectures and mark according to the better result.

8b. I f option=one then find a coefficient for which difference of costs for the IDAC and the MC is the
greatest and mark this coefficient as the IDAC.

9. Go to step 4.

The above algorithm assumes that the cost of the IDAC is rather not sensitive on

whether the rest of the coefficients are implemented employing the IDAC or the MC. The cost

of the IDAC circuits is the lowest when the coeff icients are at same width and inputs at the

same bit-significance (shift) are grouped in a single LUT. Therefore implementing a

coeff icient employing the MC rather than the IDAC may caused that the rest of the

coeff icients cannot be grouped so eff iciently; i.e. the coefficients at different width are

grouped to a single LUT, which increases the LUT data width and consequently the cost of
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the IDAC. However the increase of the IDAC cost is rather insignificant, especially when

coeff icient widths are similar.

The above algorithm requires knowledge of each coeff icient cost, however only the cost

of the whole convoler is known, as the program disregards bounds between each multiplier.

Consequently an algorithm that calculates the cost of each coefficient has been developed and

is described in Section 5.7.

In the third point of the algorithm, initially all coefficients are assumed to be

implemented as the MC. In the next iteration steps, more and more coeff icients are

implemented using the IDAC if the cost of individual coeff icient employing the MC is greater

than for the IDAC. Initially it seems that only one iteration step is required, however each

coeff icient marked as the IDAC, is not available in the next iterations of the SS optimisation

and therefore the rest of the MC coeff icients cannot be optimised so efficiently as they were

in the previous iteration steps. Consequently, the cost of some additional MC coeff icients may

be greater than the cost of the corresponding IDAC coeff icients and therefore these

coeff icients should be implemented employing IDAC, and so on.

Let denote coeff icients, for which cost of the IDAC is lower than for the MC as trade-

off coeff icients (TOCs). Marking TOCs as IDAC causes that the TOCs are implemented more

eff iciently. Conversely, the total cost of the circuit may increase, as the rest of the coeff icients

are less eff iciently optimised by the SS optimisation. In this case, better global result is

obtained when the TOCs are implemented using the MC rather than the IDAC architecture,

and therefore the TOCs should be marked as the MC, or equivalently, the circuit from the

previous optimisation step should be restored.

In the previous paragraph all TOCs were considered altogether (optimisation option=

all ), however some of the TOCs when implemented as the IDAC may decrease the total cost

of the circuit. Therefore two different optimisation options are considered in the MC vs.

IDAC optimisation algorithm. Initially (option= all ), all TOCs are marked as IDAC in every

optimisation step until the total cost of the circuit decreases. Afterwards (option= one), only a

single TOC, for which a local cost gain obtained by implementing the IDAC instead of the

MC is the greatest, is implemented as the IDAC. This step is continued until the total circuit

cost decreases.

It can be seen that in most cases the best solution is obtained when only option= one is

implemented. However introducing option= all  reduces the calculation time and usually

influences the overall performance insignificantly.
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5.7. Implementation Results

This section describes design steps for the given example of 1D filter:

H(z)= 59 + 183⋅z-1 + 162⋅z-2 - 7⋅z-3 - 48⋅z-4 + 12⋅z-5 + 9⋅z-6 + 2⋅z-7 (5-13)

The filter can be ill ustrated as follows:

bit \ coeff. 1 z-1 z-2 z-3 z-4 z-5 z-6 z-7

7 1 1 - -
6 0 0 - 1
5 1 1 1 - 0
4 1 1 0 - 1
3 1 0 0 1 0 1 1
2 0 1 0 0 0 1 0
1 1 1 1 0 0 0 0 1
0 1 1 0 1 0 0 1 0

Table 5-3. The filter representation, ‘-‘ – for negative numbers sign bit extension

5.7.1. Canonic Sign Digit (CSD) conversion

After CSD conversion the number of non-zero bits has decreased from 23 to 19. To

better ill ustrate the optimisation techniques the zero bits are invisible.

bit \ coeff. 1 z-1 z-2 z-3 z-4 z-5 z-6 z-7

7 1 1
6 1 1 -1
5 1
4 1
3 -1 -1 1 1
2 -1 1
1 1 1
0 -1 -1 1 1

Table 5-4. Filter representation after CSD conversion

5.7.2. Sub-structure shar ing (SS)

In the first step of the SS optimisation, substructure S2= 1 + z-1 is introduced (Table 5-

5, S2 is denoted as 2 and 02). Substructure S2 occurs three times in the following expressions:

-(1 + z-1) + 26⋅(1 + z-1) + 27⋅z-1⋅(1 + z-1), and only a single delay element (z-1) is required to

obtain expression: 27⋅z-1⋅(1+z-1). Sub-expression 8⋅z-5⋅(1 + z-1) can also be implemented using

sub-expression S2, however, this would require additional delay dt+1= 4 (4 delay elements)
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and dt+1>dmax= 1 (see eq. 5-12), therefore this sub-expression is not included in this

optimisation step.

Expression S2’= -1+z-5 also occurs three times: 4⋅(-1+z-5) + z-1⋅(-1+z-5) + 8⋅z-1⋅(-1+z-5) and

requires also one delay element and shift between inputs is also equal zero. However, for S2’ ,

input z-5 is delayed by 5 clocks in comparison to the fist input. For S2, the second input z-1 is

delayed by only 1 clock, and consequently to save routing resources, sub-expression S2 is

selected.

Bit \ coeff . 1 z-1 z-2 z-3 z-4 z-5 z-6 z-7

7 2 02

6 2 02 -1
5 1
4 1
3 3 -1 1 03

2 3 03

1 1 1
0 -2 02 1 1

Table 5-5. Filter representation after two sub-expression optimisations (S2 and S3) have been
implemented. In italic – expressions which cannot be shared in sub-expression 2 because

dt+1>dmax

In the next steps of optimisation the following sub-expressions are introduced:

S3= -1 + z-5 S4= S3 + 2-2⋅z-6 (5-14)

S5= z-2 + 23⋅z-4 S6= S4 + 24⋅S2

Bit \ coeff . 1 z-1 z-2 z-3 z-4 z-5 z-6 z-7

7 06,2 02

6 06,2 02 -1
5 1
4 05

3 64,3 -1 05 03

2 64,3 03

1 5 04

0 -2 02 5 04

Table 5-6. Filter representation after all sub-expression optimisation have been implemented.
0i – zero inserted as a result of i-th sub-expression sharing

In the case of subtraction between two expressions, the order of subtraction (a-b or b-

a) can be freely chosen, therefore should be selected to allow for direct copy of the LSBs

(subtrahend should be shifted left). For example, for S3
’= 1- 2-2z-1, sub-expression should be

negated to allow copping the LSB, i.e. sub-expression S3
’’ = -1 + 2-2z-1 should be taken.
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5.7.3. Multiplierless Convoler

The circuit obtained from Table 5-6 is shown in Figure 5-5. It can be seen from Figure 5-5

that the additional number of f lip-flops is significantly reduced in comparison to estimations

made during the SS optimisation. Additional flip-flops after adder A2, A3, A4 are not required,

as all delayed sub-expressions are included to adder A6. Even input expression In⋅z-7 is

obtained in additional delay element after adder A6.

FF FF FF FF FF

Add

In In⋅z-1 In⋅z-2 In⋅z-3 In⋅z-4

FF

A2

Add

In⋅z-5

A3

Add

In⋅z-6

A4

Add

A5

Add

A6

Add

FF

FF

Out

Figure 5-5. Block diagram of the MC circuit without pipelining. FF- flip-flops, Add- Adders

FF FF FF FF FF

Add

In In⋅z-1 In⋅z-2 In⋅z-3 In⋅z-4

FF

A2

Add

In⋅z-5

A3

Add

In⋅z-6

A4

Add

A5

Add

A6

Add

FF

FF

Out

FF

FF
In⋅z-7

Figure 5-6. Block diagram of the MC circuit with pipelining. Pipelining flip-flops are inserted
after every arithmetic unit
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To speed up the above circuit, pipelining is introduced, i.e. flip-flops are inserted after

every arithmetic unit (pipelining parameter p= 1). Additional pipeline optimisation is

implemented for which in order to compensate different delays introduced by pipelining, the

feeding points to the arithmetic units are reallocated rather than additional flip-flops inserted

at the end of the arithmetic units. Figure 5-6 shows pipelined and optimised circuit

corresponding to the circuit presented Figure 5-5.

Figure 5-6, in comparison to Figure 5-5, incorporates (disregarding pipelining flip-flops

associated with every arithmetic unit) only 2 additional flip-flop sets: to generate In⋅z-7 and

A2⋅z-1. It should be noted that the AuToCon allows for defining pipelining parameter p to be

any integer from 1 to +∝.

MC implementation results

Table 5-7 shows implementation results for different pipelining and synthesis options.

XCV100CS144-6
(Synthesised Adders )

XCV100CS144-6
(Predefined Adders)

p Area by
 AuToCon

[LEs]

# FFs

T
[ns]

Area
[LEs]

T
[ns]

Area
[LEs]

D
[1/LE⋅µs]

1 83 183 7.4 92 7.4 71 0.738
2 83 138 8.9 91 8.5 68 0.853
3 83 102 12.7 88 11.4 72 0.860
4 83 100 14.1 92 13.9 71 0.719
5 83 85 17.4 90 17.8 72 0.661

+∝ 83 61 20.4 89 19.6 72 0.615

Table 5-7. Implementation results (area, minimum clock period T, functional density D=
1/A⋅T) for different pipelining and synthesis options

Two different results are presented hereby. The first one uses VHDL-synthesised

adders. For example, the adder which input widths are 4-bit wide and output width is 5-bit

wide when generated by FPGA Express (from Synopsys), a VHDL synthesis program,

occupies 7 LEs (7 4-input LUTs). The estimated number of LEs for this adder is only 5 LEs.

This adder does not use dedicated carry logic, which is the reason of the difference between

estimated and reported number of LEs. This is only the case for Virtex family; for XC4000

family, adders are sinthesised properly.

An alternative and better solution, as it can be seen from Table 5-7, is to implement

adders employing predefined adders which were previously generated by CORE Generator

[Xil99a]. In the latest solution, dedicated carry logic is employed. For the predefined adders

the reported number of LEs is smaller than the estimated number of LEs because the

implementation report considers only usage of 4-input LUTs. Nevertheless, for dedicated
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carry logic, the carry out signal (e.g. the 5-th MSB of the adder output for which inputs are 4-

bit wide) does not use LUT logic, however the LUT associated with the carry out signal

cannot be rather used by other logic. Therefore, the estimated number of LEs should also

include the carry out signals.

The numbers of f lip-flops estimated by the AuToCon and reported by Foundation 3.1

(distributed by Xili nx Inc.) are the same (they include additional flip-flops inserted at the

input and output of the convoler, additional 18 flip-flops).

5.7.4. I r regular Distr ibuted Ar ithmetic Convoler

The implementation results for the example given in eq. 5-13 and for the IDAC

optimisation algorithm presented in Listing 5-1 is given in Figure 5-7 and Listing 5-3.

FF FF FF FF FF FF FF

-

LUT9 LUT10 LUT11 LUT12 LUT13 LUT14 LUT15

D0 D1 D2 D3 D4 D5 D6 D7

D8

Adder

Figure 5-7. Block Diagram of the IDAC

Before the algorithm given in Listing 5-1 is applied, similar coeff icients are first grouped and

addition/subtraction on grouped inputs implemented. Similar coeff icients are coefficients

which values are shifted and/or negated with respect to each other. In the given filter example,

coeff icients: -48⋅z-4 + 12⋅z-5 are similar, therefore associated inputs are shifted and subtracted

from one another, and a single multiplication is applied (signal D8 in Figure 5-7).

Listing 5-3. A fragment of VHDL code that describes IDAC LUT given in Figure B-3.
data(i)(j) denotes signal di in Figure B-3 and j-th bit of this signal

d9: da4g generic map( -- LUT output shift= 0 – IDAC LUT number 9
coeff0=> 9, coeff1=> -7, coeff2=> 59, coeff3=> 183, width_dout=> 9, insert_ff=> 0)

port map (clk=>clk, ce=>ce,
din0=> data(6)(0), din1=> data(3)(0), din2=> data(0)(0), din3=> data(1)(0), dout=> data(9)(8 downto 0));
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d10: da4g generic map( -- LUT output shift= 1
coeff0=> 9, coeff1=> -7, coeff2=> 59, coeff3=> 81, width_dout=> 9, insert_ff=> 0)

port map (clk=>clk, ce=>ce,
din0=> data(6)(1), din1=> data(3)(1), din2=> data(0)(1), din3=> data(2)(0), dout=> data(10)(8 downto 0));

d11: da4g generic map( -- LUT output shift= 1
coeff0=> 183, coeff1=> 6, coeff2=> 18, coeff3=> -14, width_dout=> 9, insert_ff=> 0)

port map (clk=>clk, ce=>ce,
din0=> data(1)(1), din1=> data(8)(0), din2=> data(6)(2), din3=> data(3)(2), dout=> data(11)(8 downto 0));

d12: da4g generic map( -- LUT output shift= 2
coeff0=> 59, coeff1=> 81, coeff2=> 183, coeff3=> 6, width_dout=> 9, insert_ff=> 0)

port map (clk=>clk, ce=>ce,
din0=> data(0)(2), din1=> data(2)(1), din2=> data(1)(2), din3=> data(8)(1), dout=> data(12)(8 downto 0));

d13: da4g generic map( -- LUT output shift= 3
coeff0=> 9, coeff1=> -7, coeff2=> 59, coeff3=> 81, width_dout=> 9, insert_ff=> 0)

port map (clk=>clk, ce=>ce,
din0=> data(6)(3), din1=> data(3)(3), din2=> data(0)(3), din3=> data(2)(2), dout=> data(13)(8 downto 0));

d14: da4g generic map( -- LUT output shift= 3
coeff0=> 183, coeff1=> 6, coeff2=> 162, coeff3=> 12, width_dout=> 9, insert_ff=> 0)

port map (clk=>clk, ce=>ce,
din0=> data(1)(3), din1=> data(8)(2), din2=> data(2)(3), din3=> data(8)(3), dout=> data(14)(8 downto 0));

d15: da3g generic map( -- LUT output shift= 6
coeff0=> 3, coeff1=> 6, coeff2=> -12, width_dout=> 5, insert_ff=> 0)

port map (clk=>clk, ce=>ce,
din0=> data(8)(4), din1=> data(8)(5), din2=> data(8)(6), dout=> data(15)(4 downto 0));

5.7.5. Approximated coefficients’ cost for the MC and IDAC

In order to compare the cost of the MC and the IDAC, the cost of each individual

coeff icient must be found.

Multiplierless Convolution

At first, savings obtained by introducing common substructure are calculated. It can be

seen that by introducing a sub-expression shared t times, the total number of adders is reduced

by t-1, and 2⋅t inputs are involved. Therefore an average saving (in number of adders) per SS

input is:

t

t
SA ⋅

−=
2

1
(5-15)

Introducing each sub-expression often requires additional delay elements, which cost

reduces the savings. Furthermore, inputs to the sub-expression adder are often shifted to each

another, which increases the width of the adders in the next calculation stages. Therefore in

this approach, the additional cost of delay elements and increased width of adders is evenly

shared by all sub-expression inputs. Consequently, the approximated savings (in number of

adders) introduced by a SS are as follows:

t

C

Cwd

w

s
t

S A

FF

⋅

⋅⋅−
⋅

−−
=

2

3
1

(5-16)

where: d- the number of delay elements, CFF- cost of a delay element (flip-flop), CA – cost of

the adder, s- shift between arguments, w- width of the arguments.
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Savings for the circuit in Table 5-6, obtained by introducing sub-expressions S5 and S6

are given in Table 5-8. The cost of a delay element is w⋅CFF/CA= 0.4, (w= 4). It should be

noted that actual shift between arguments for S6 is s6= 6 (initially it might seem to be equal

4); s5= 3.

Bit \ coeff . 1 z-1 z-2 z-3 z-4 z-5 z-6 z-7

7 0.025
6 0.025
5
4 0.088
3 0.025 0.088
2 0.025
1 0.088
0 0.088

Table 5-8. Saving obtained by introducing sub-expressions S5 and S6

The savings obtained in the latest stages of the optimisation (the greatest indices) are evenly

divided to two involved inputs. For example, for input 27⋅z-1, saving S= 0.025 is divided (by

2) into inputs 27⋅z-1 and 27⋅z-2 and then savings S= 0.267 (sub-expression S2, t=3, d=1, s=0)

added, in total S= 0.279. Further optimisation savings are added to the previous ones. As the

result the following final savings are obtained.

Bit \ coeff . 1 z-1 z-2 z-3 z-4 z-5 z-6 z-7

7 0.279 0.279
6 0.279 0.279 0
5 0
4 0.088
3 0.210 0 0.088 0.210
2 0.210 0.210
1 0.088 0.121
0 0.267 0.267 0.088 0.121

Table 5-9. Total savings obtained by the SS

The total cost of each coeff icient is proportional to the number of non-zero CSD bits minus

the total SS savings obtained for the coefficient, plus an approximated number of pipelining

flip-flops

CC= CA⋅(NA - ∑Si) + ((w+3)⋅CFF⋅NA)>> (p-1)) (5-17)

where: CC – approximated cost of a coefficient, NA – number of non-zero CSD bits, p –

pipelining parameter, >> - a shift to the right.
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Bit \ coeff . 1 z-1 z-2 z-3 z-4 z-5 z-6 z-7

7 0.721 0.721
6 0.721 0.721 1
5 1
4 0.912
3 0.790 1 0.912 0.790
2 0.790 0.790
1 0.912 0.879
0 0.733 0.733 0.912 0.879

MC NA 2.244 2.965 2.633 1.912 1.912 1.702 1.669 0.879
MC [LEs] 15.7 20.8 18.4 13.4 13.4 11.9 11.7 6.2

IDAC[LEs] 19 23 21 15 13 11 15 9

Table 5-10. Approximated cost (for p=∝) of non-zero CSD bits and coefficients, and the cost
of the alternative IDAC solution, Cost RAM 16×1= 1, cost adder = 1LE/bit

It should be noted that for FPGAs the cost of adders depends on the adder width.

Therefore to simpli fy the above considerations, all adders are considered to be at the same

width equal width of the convolution input plus 3.

Irregular Distributed Arithmetic Convoler

For the IDAC, the cost of each coefficient depends on the width of the coeff icient rather

than number of non-zero bits and SS optimisation result. Consequently different circuit cost

may be obtained for the IDAC and the MC architectures, and therefore these two architectures

are compared with each other separately for every coeff icient, and the better coeff icient

circuit is taken.

The previous section described the algorithm for calculating the cost of the MC for

every coeff icient. Now a similar algorithm for the IDAC is derived:

1. Calculate the widths of coeff icient wcoeff. At this step, even coeff icients are shifted to the

right until the odd coeff icients are obtained. The shifts are implemented because for the even

coeff icients the LSBs of the result are always zero.

2. For all different kind of memory modules:

a) Calculate data width of each IDAC block:

wdata= wcoeff + log2(1+wma) (5-18)

where: wdata- data width of the considered IDAC memory, wcoeff- coefficient width calculated

in the first point, wma- address width of the memory module.

The above equation is similar to eq. 5-8 and assumes that all coefficients grouped  in a IDAC

ROM are at the same width, and input bits are at the same bit-significance. Therefore the
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actual width of the data may be greater. Conversely, the ceili ng function is employed, which

tends to increment the actual data width of the IDAC ROM.

b) Calculate the number of required memory modules and adders:

ma

in

md

data
m w

w

w

w
n ⋅








= (5-19)

ma

in
a w

w
n = (5-20)

where: nm- number of required memory modules for a single coefficient, na- number of adders

required for a single coefficient, wmd- address width of the considered memory module, win-

width of the input data to the convoler.

c) Calculate the cost of a coefficient

C = nm⋅CMem + na⋅CAdd(wdata+1) + CFFMem + CFFAdd (5-21)

where: CMem- cost of the considered memory module, CAdd(wdata+1)- cost of the adder which is

(wdata+1)-bit wide, CFFMem – approximated cost of pipelining flip-flops inserted after memory

blocks (only for asynchronous memories), CFFAdd – approximated cost of pipelining flip-flops

inserted after adders





≤⋅⋅
≥

=
2

30

pforCnw

pfor
C

FFadata
FFMem (5-22)

CFFAdd = na⋅(wdata+1)>>(p-1) (5-23)

where: p – pipelining parameter, CFF – cost of a flip-flop.

It should be noted that the average width of the adder is incremented by 1 for the IDAC, in

comparison to the MC for which the adder width in incremented by 3. This assumption is

made because the adder inputs are usually at better bit-alignment for the IDAC; and for the

MC, adder width tends to increase after the SS.

d) Compare the current cost with the best obtained cost, and store the best of them.

In the considered example, for coeff icient 162 (=2⋅81, wcoeff= 7):

• for 16×1 (wma= 4, wmd= 1) memory and win= 4, CMem= 1 LE, CAdd(11)= 11 LEs the

following values are obtained: wdata= 10, nm= 10, na= 1, C= 21 LEs.

5.7.6. MC vs. IDAC Algor ithm

The MC vs. IDAC algorithm was described in Section 5.6, here only an example of

the algorithm implementation is given. The cost of the IDAC in comparison to the MC is
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given in Table 5-11. For coeff icients z-4 and z-5 cost of the MC is higher than for the IDAC

(see Table 5-10), therefore these coeff icients are marked as the IDAC. Table 5-11 shows an

intermediate result of the algorithm.

bit \ coeff. 1 z-1 z-2 z-3 z-4 z-5 z-6 z-7

7 42 02

6 42 02

5 3
4
3 -3 03 I I 1
2 -1 D D
1 03 A A 04

0 -2 02 1 C C 04

MC [LEs] 17.1 21.4 17.5 13.2 13.8 6.8
IDAC[LEs] 19.0 23.0 21.0 15.0 13.0 11.0 15.0 9.0

Table 5-11. MC representation of the convoler and relative cost (in number of MC adders) of
non-zero bits

Excluding coeff icients z-4 and z-5 from the SS optimisation causes that the SS optimisation is

altered and therefore cost of other coefficients may be greater than the cost for the IDAC, etc.

For this example, the cost of coeff icient 1 has increased from 15.7 LEs to 17.1. Conversely,

the cost of coeff icient z-2 has decreased from 18.4 to 17.5 LEs. Nevertheless, by introducing

the IDAC, the total cost of the circuit has increased from 111.4 LEs to 114.1 LEs. Therefore

the old circuit (without the IDAC) is restored. In the next step of optimisation only a single

coeff icient for which the difference between the cost of the MC and the IDAC is the greatest,

is marked as the IDAC. In the given example coeff icient z-5 is implemented using the IDAC

architecture. The overall cost of such a circuit is 114.2 LEs which is slightly more than for the

MC architecture. In conclusion, the final circuit employs only the MC as shown in Tables 5-6

and 5-10.

If cost of a flip-flop is incremented from 0.4 to 1.0 LE then the cost of the MC

increases (mostly because dmax=0, see eq. 5-9) and the final circuit is as shown in Figure 5-8

where only coeff icients z-1 and coefficients z-4 and z-5 are implemented using the IDAC. It

should be noted that 1-input LUT is implemented as a direct connection to the final adder

block, therefore this LUT does not occupy any hardware.
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+
D8

Figure 5-8. An example of the circuit when both the MC and IDAC architectures are
employed

Implementation Results

Table 5-12 presents implementation results for Xili nx XC4005XLPC84-09. The AuToCon

outperforms Core Generator, which generates only Distributed Arithmetic circuit for 1-D

convolution. Furthermore in Core Generator, the pipelining option cannot be specified.

Circuits 2 and 4 in Table 5-12 are as in Figures 5-5 and 5-6 respectable. Circuit 3 is

similar as in Figure 5-5, however some pipelining modifications are implemented. Circuit 5 is

as in Figure 5-8. Circuit 6 is similar as in Figure 5-8. This circuit is generated when the

pipelining flip-flops are not taken into account when trading off between the MC and IDAC.

The estimated number of f lip-flops should be smaller than for e.g. circuit 4. However this

circuit requires more LUTs than the counterpart, and therefore more pipelining flip-flops are

inserted. Consequently, pipelining flip-flops should be also taken into account when trading

off between the IDAC and MC, which is the case for circuits 7 and 8. Therefore circuit 8

consumes less FFs in comparison to circuit 6. Summing up, the generated circuits are

different not only for different cost relations between FPGA resources but also depends on the

pipelining parameter.

Table 5-12 uncovers an inaccuracy of the AuToCon. For p=∝ and CFF= 1, CLUT16×1= 1

the total cost of the circuit 2 is C= 83 + 43= 126, and the total cost of circuit 5 is C= 134 +

28= 162, that is, the result for circuit 5 is worse than for circuit 2. The reason of this

inaccuracy is that for the circuit 2, shown in Figure 5-5, additional flip-flops after adder 2, 3,

4 are not required, as all delayed sub-expressions are included in adder 6. This, however, is
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diff icult to be estimated during design optimisation and therefore the reduction of the number

of f lip-flops is not considered by the architectural trade-off algorithm.

Circuit # 16×1 LUTs # FFs T [ns]
1) Core Generator 169 201 12.1
2) AuToCon p=∝ CFF=0.4 83 43 39.6
3) AuToCon p=2 CFF=0.4 83 119 17
4) AuToCon p=1 CFF=0.4 84 (83) 163 (159) 11
5) AuToCon p=∝ CFF=1 134 (136) 28 36
6) AuToCon p=1 CFF=1 135 (136) 208 (210) 11.8
7) AuToCon p=2 CFF=1 107 (105) 116 16
8) AuToCon p=1 CFF=1 107 (105) 178 12.2

Table 5-12. Implementation results for Core Generator [ Xil99a] and the AuToCon for
different pipelining parameter p and cost of flip-flops CFF, ( )- values estimated by the

AuToCon if different from implementation results

Consequently to improve the algorithm, the AuToCon should consider the actual (not

estimated) circuit cost during searching for the optimal circuit. This however would

significantly increase circuit generation time. However, for small designs, the AuToCon

generates a circuit within a second, which is only a small fraction of the time required to

implement the design in a FPGA. Consequently, this algorithm improvement might be a

suggestion for a future work.

5.8. Conclusions

In this chapter a novel algorithm for the IDAC has been presented. This algorithm

disregards regular structure of the DAC, and therefore allows for further optimisation of the

circuit. Similarly li ke for the multipliers the MC proven to be more eff icient architecture than

the IDAC or LC. One of the most important features of the AuToCon is that cost-relation

between FPGA resources is user-defined and no architectural assumption is made. Therefore a

novel architectural algorithm has been presented which trade-off between the IDAC and the

MC.

Implementation examples and results have been presented in Section 5.7, and as a

result, the circuit generated by the AuToCon significantly outperforms the commercial

counterpart.
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6. Optimisation of the adders tree

Addition is a fundamental operation for the convolution, as for example, the MC

incorporates only adders, and appropriate routing of the adders significantly influence the

total cost of the circuit. Different optimisation techniques for carry-save-adders have been

studied e.g. in [Kim98, Kim00]. According to the author knowledge, no research has been

done in order to optimise the ripple-carry-adders network. For example, Thien-Toan Do et. al.

[Do98] constructed the structure of the LM and DA and showed the final adders tree but the

order of the additions seems to be intuitive rather than based on a thorough research. This

draws a conclusion that general rules for constructing adders tree should be given and/or a

design automated tool has to be developed in order to find an optimal network of adders

[Jam01a, Jam01b, Jam01c].

This chapter studies also sophisticated input parameters of the adders block. Basically,

only input widths are required, however, to achieve hardware savings, the input ranges and

even inputs correlation should be considered. Furthermore, correlation between inputs

depends on the architecture: the MM, LM or DAC, which makes implementation more

diff icult. Further, different heuristics for finding the optimal adders tree are investigated.

Implementation approaches and results are included to ill ustrate how the adders tree is

optimised.

6.1. Implementation of adders in FPGAs

For ASIC designs, the classic problem of carry propagation is resolved by numerous

techniques, e.g. carry-look-ahead, carry-select [Omo94], which reduce the delay of carry

propagation at the expense of great increase in hardware complexity. Another approach to the

carry propagation problem is to remove it completely through carry-save addition [Omo94].

Consequently, in ASICs, carry-save addition is a substantial technique implemented in

convoler designs [Haw96].

FPGAs incorporate a dedicated carry propagate circuit [Xil99b, Alt99] which is so fast

and eff icient that conventional speed-up methods are meaningless even at the 16-bit level, and

of marginal benefit at the 32-bit level [Xil99b, Xin98]. Furthermore the dedicated carry-

propagate circuit is implemented outside the standard logic (LUT), which results in the adder
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area reduction. Consequently, using only ripple-carry adders in FPGA designs is the best

solution with respect to the propagation time and occupied area [Xin98].

As a result, there is a substantial difference between pipelining the ASIC and FPGA

adders. For ASIC designs, pipelining flip-flops should be inserted every N-logic blocks

(where N is an integer which value is application specific), therefore the carry-propagation

chain is broken as it is shown in Figure 6-1. For FPGAs, the fast build-in carry logic

significantly reduces carry-propagation time and therefore pipelining flip-flops should be

rather inserted after every K additions (see Figure 6-1).

HA

din1(0) din0(0)

FA

din1(1) din0(1)

FA

din1(2) din0(2)

FA

din1(3) din0(3)

HA

din3(0) din2(0)

FA

din3(1) din2(1)

FA

din3(2) din2(2)

FA

din3(3) din2(3)

HAFAFAFA

dout(0)dout(1)dout(2)dout(3)

Pipelining FFs for FPGAs Pipelining FFs for ASICs

Figure 6-1. An example for different pipelining strategies for ASIC’s and FPGA’s additions
for the equation: dout= din0 + din1 + din2 + din3. Pipelining parameters: N=2 (ASIC), K=1

(FPGA)

Nevertheless, the build-in carry logic cannot nulli fy the carry propagation time, and

therefore for FPGAs, the most time criti cal path is the carry-propagate circuit. For example,

for Xili nx XC4000, delay through LUT logic, e.g. sum-generation circuit, is approximately

six times longer than delay through the carry-propagate circuit. However, when the

programmable interconnects delays are included, which essentially influence overall system

performance, the carry propagate delay is much less significant. This holds as FPGAs

incorporate dedicated and therefore very fast routing circuit from the carry-out to the carry-in.

Furthermore the propagation time through the programmable interconnects is usually

comparable or even greater than the propagation time through LUT logic.

Nevertheless, in FPGAs, a long-width adder can be divided into several parts by

inserting pipelining flip-flops every M carry-propagate blocks (li ke for VLSIs). This solution

should be used together with the pipelining solution presented for FPGAs; i.e. a hybrid
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solution of the FPGA and ASIC designs (see Figure 6-1) is employed. This, however, would

complicate the system design and require additional flip-flops to be inserted according to the

cut - set pipelining rule [Pir98]. Therefore, this solution has not been implemented in the

presented system, however, is considered in the next step of the design development. This

hybrid solution outperforms delayed addition technique [Luo98] for which a carry-in does not

propagate to carry-out. Conversely, each 4-2 adder has the standard carry-out logic and 2

outputs and therefore 2 flip-flops are required for each 4-2 adder.

Summing up, for FPGAs the best solution seems to be the usage of dedicated adders

and pipelining after every K additions as it is shown in Figure 6-1 and the FPGA option.

6.2. Addition parameters

6.2.1. Input parameters

The previous chapters describe methods of implementing convolers. Now, let consider

the adders tree block alone. This block is independent of these methods and therefore let

define input parameters which determine the adders block.

The first intuitive parameter is the number of inputs and their bus widths or the

minimum and maximum input values. Consequently, for the addition: y= a + b, the relation

between the inputs and the output ranges is as follows:

ymin= amin + bmin ymax= amax + bmax (6-1)

It should be noted that for a subtraction the above equation also holds. The use of minimum

and maximum values instead of the bus widths can cause hardware savings, as some inputs

might not use the full binary range. For example, for input range from 0 to 9 adding three

such inputs gives output range from 0 to 27, which requires 5-bit wide bus. If only the bus

width is considered, the output will be 6-bit wide. Besides, using data range instead of the bus

width allows for easy dealing with positive and negative numbers without additional hardware

overheads – allows skipping sign-bit coding if possible.

In addition, some inputs may have the LSBs fixed to zero as the argument is shifted to

the left, therefore an additional shift parameter s is also included.

6.2.2. Corr elation between inputs

 To further decrease adder widths, correlation between inputs should be considered.

Because an assumption is made that inputs ai (see eq. 1-1, in order to simpli fy notation only

1-D convolution is hereby considered) are uncorrelated, the correlation is observed only
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within the multiplication hk⋅ai when the addition of the partial products of the same

multiplication takes place; e.g. addition of shifted ai for the MM . Consequently, the

correlation is considered separately for each multiplication, and therefore in this section rather

a multiplication than a whole convoler is considered.

The correlation should be considered for every intermediate addition; e.g. for the

addition: y= a + b + c, at first intermediate addition, yab= a + b, takes place and therefore

only correlation between inputs a and b should be considered. Furthermore, the correlation

should be calculated from the very beginning for every intermediate addition; i.e. only inputs

to the intermediate adders block should be taken into account, and therefore the actual adders

connection network within the intermediate adders block is disregarded.

To describe correlation between inputs, different architectures will be further

approached.

6.2.2.1. Multiplierless Multiplication

For the MM, no correlation is observed unless a subtraction y= a – b, where a= 2kb,

between the same argument takes place. In this case, the eq. 6-1 should be replaced by:

ymin= amin - bmin ymax= amax - bmax (6-2)

6.2.2.2. LUT-based Multiplication

The correlation is more complicated in the case of the LM. Let I0, I1, ... Ik be the inputs to

LUT memories for a single multiplication, where I0 represents the input to the LSBs LUT and

Ik the input to the MSBs LUT; and wo, w1, ... wk represent the input (address) width of the

LUTs; s0, s1, ... sk represent the shift to the left of each LUT: ∑
−

=

=
1

0

j

l
lj ws , and s denotes the

shift of the adders block output. It can be seen that inputs to all LUTs but the MSBs LUT

operate on the positive binary range:

I j max= 2Wj-1 I j min= 0 for j= 0 .. k-1. (6-3)

The MSBs LUT is an exception for which the following equation holds:

Ik max= Imax>> sk Ik min= Imin>> sk (6-4)

where: Imax, Imin – maximum and minimum input values to the multiplier, >> s- denotes a shift

to the right by s-bits.

The LUT output range can be defined as:

Oj max= h⋅I j max Oj min= h⋅I j min for h≥0

Oj max= h⋅I j min Oj min= h⋅I j max for h<0 (6-5)
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where: h – the multiplication coefficient.

It should be noted that the total output range of the multiplication: Omax, Omin can also be

obtained by employing the eq. 6-5 – only index j disappears. The relation between the LUT

output ranges is specified:

∑
=

>><<≤
k

j
jj ssOO

0
maxmax )]([ ssOO

k

j
jj >><<≥ ∑

=

]([
0

minmin (6-6)

The above inequali ty becomes the equali ty if there is no correlation between outputs Oj or the

correlation is not taken into account.

The algorithm which determines the correlated maximum and minimum of an

intermediate adder A (the set A contains indices of all i nputs to the intermediate adder block)

is based on constructing a correlation set C (C⊆A). The set C contains the MSBs LUT k if the

LUT k feeds the intermediate adder A, i.e. k∈A, otherwise the set C is empty (no correlation is

observed). The set C is further constructed in an iterative way, starting from the index j= k-1.

The index j belongs to the correlation set C if and only if the index j+1 also belongs to.

Consequently, C contains successive elements: j, j+1, ..., k-1, k, where j-1 is the greatest index

of the LUT which is not included in the intermediate addition block, i.e. (j-1)∉A. The input

range of the of set C is calculated in a similar way as input range of the MSB LUT (eq. 6-4)

and can be expressed as follows:

ICmax = Imax>> sC ICmin = Imin>> sC (6-7)

where: )min(C
Cj

jC swws =−= ∑
∈

, min(C) - the smallest index in the set C.

The output range of set C can be calculated in the following equation which is similar to eq.

6-5.

CA max= h⋅IC max CA min= h⋅IC min for h≥0

CA max= h⋅IC min CA min= h⋅IC max for h<0 (6-8)

Finally, the output range of the intermediate adder A is calculated as follows:

A
CAi

iiCAA ssOsCO >><<+<<= ∑
−∈

])()[( minminmin

∑
−∈

>><<+<<=
CAi

AiiCAA ssOsCO )]()[( maxmaxmax (6-9)

where: sA - the shift of the intermediate adder A; sA= min(si) for all i ∈A.

It should be noted that the correlation set C is empty if the MSBs LUT is not included into an

intermediate addition block, i.e. k∉A. In this case: CAmin= 0, CAmax= 0.

It is important to note that the correlation is not observed for the binary or two’s

complement full range of the input argument, e.g. for input range: 0 to 255 or –128 to 127.
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Example 6-1

Let consider the example from Figure 3-5, for input range: –99 to 99 (8-bit wide input) and

coeff icient h=100. Consequently, from eq. 6-3 and 6-4, the input range is I0= 0 to 15 and I1=

–7 to 6. Employing eq. 6-5, we obtain the output range: O0min= 0, O0max= 1500 and O1min= -

700, O1max= 600. When the correlation is not taken into account, the output range of the

addition is (from eq. 6-6) OA=  -11 200 to 11 100. Otherwise (from eq. 6-9), OA= -9 900 to 9

900.

Hardware savings, after the correlation is taken into account, are more significant for

less wide MSB LUTs. For example, for input range –9 to 9 (5 bit wide input divided into 4-bit

wide LUT and a 1-bit wide LUT), I0= 0 to 15 and I1= –1 to 0. Consequently, uncorrelated

(from eq. 6-6) addition range is -1600 to 1500, in comparison to –900 to 900 when the

correlation is taken into account.

Correlation savings are even more eff icient if the multiplication coefficient can be

changed by employing the DKCM. In this case, instead of multiplication coeff icient h,

coeff icient range hmin and hmax should be used. Consequently, eq. 6-5 should be replace by:

Oj max= Max (hmax⋅I j max, hmim⋅I j min)

Oj min= Min (hmax⋅I j min, hmin⋅I j max) (6-10)

It should be noted that for the DKCM, there is correlation between arguments even if full

input binary range is used.

Example 6-2

Let consider the example from Figure 4-1 for input range –99 to 99 (8-bit wide input) and the

coeff icient values hmin= -100 and hmax= 100. Consequently, I0 = 0 to 15 and I1= –7 to 6. The

output ranges are: O0min= -1500, O0max= 1500 and O1min= -700, O1max= 700. Output range of

the addition, when the correlation is not taken into account is OA= -12 700 to 12 700.

Otherwise, OA=  -9 900 to 9 900.

6.2.2.3. Distributed Arithmetic

For the DAC (or IDAC), the correlation should be considered in a similar way as for

the LM. However inputs to the LUT are from different filter inputs a,j (see eq. 1-1 and 5-7).

Therefore each input to the LUT should have a separate correlation entry kj, Cjmin, Cjmax (see

Section 6.2.3) and should be regarded as an one-input LUT. This however complicates the
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input parameters set (one input has several correlation entities). Furthermore, the correlation

is also much more diff icult to be considered within the addition block, which significantly

increases the calculation time.

Consequently, a simpli fied approach should be rather employed, for which the

correlation is considered collectively for the set of inputs ai. Accordingly, kj, Cjmin, Cjmax are

calculated not for a single multiplication but for the sum of products. This, however, causes

that if a single multiplication from the set does not comply to the correlation rules, i.e. an

input miss occurs only for a single DA-LUT, the correlation of all i nputs less significant than

the miss input is disregarded. Therefore, the simpli fied approach may result in the hardware

overheads. However, the miss case can be eliminated in most cases by sorting the correlation

set – the more significant output of the DA LUT the larger index of the DA LUT.

6.2.3. Summary of the input parameters

In our approach for every input j, the following input parameters are specified:

• Input shift: sj

• Input width: wj

• Input range (e.g. for the LM, output of the LUTs) : Ojmin, Ojmax

• Kind of operation: addition / subtraction

Corre lation parameters:

For MM:

• The multiplication input index: k. If two or more inputs have the same index k then for

subtraction, the eq. 6-2 instead of eq. 6-1 should be employed.

For LM and DA:

• Correlation index : k – index of the MSBs LUT of: a) multiplication, for the LM b) sum of

products for the DA.

• Correlation range: Ci min, Ci max, these values are calculated in eq. 6-8 for the correlation set

C= {j, j+1, ..., k} . If all i nputs from j to k are involved in a intermediate addition A then

variables CAmin, CAmax rather then Ojmin, Ojmax and eq. 6-1 should be employed.

The correlation for the LM and DA is calculated correctly according to the above schedule if

indices are correctly assigned. Correspondingly, for the LM, output indices are assigned

incrementally and separately for every multiplication, according to increasing bit-significance

of LUTs. Similar procedure is employed for the DA, however all i nputs associated with the

DA should be considered together.
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6.2.4. Addition tree structure

Additional assumptions and rules for constructing the addition tree must also be

specified. A binary tree is employed for which the number of inputs to the next adder layer is

halved. An example of a binary adder tree for 6 inputs is given in Figure 6-2. This assumption

is rather intuitive and minimises the input-output delay. It should be however noted that for

some cases when the delay time is disregarded, this assumption might exclude the best

solution. This, however, is a rare case and therefore this assumption seems to be justified.

+ + +

+

+

inputs

output

layer 1

layer 2

layer 3 flip-flops (inserted for  p= 1)

flip-flops (inserted for p= 1 or
2)

a b c d e f

ab cd ef

abcd

Figure 6-2. An example of the adders tree for 6 inputs

The most complex part of the design is paring inputs to form two inputs adders. This

task must be carried out with respect to the area of the adders structure. Therefore, the cost of

a Full Adder (FA) should be another user-defined parameter. An alternative, universal

solution is defining the cost of the adder for every possible adder width, e.g. from 1 to 32, as

the average cost of a FA may depend on the adder width, as it is the case for e.g. carry look

ahead adders [Omo94]. Furthermore, the latter solution allows for area-time trade-offs, i.e. the

cost of the adder increases rapidly with the increase of the adder width as the delay through

the adder increases with the adder width. Consequently, the cost of the adders for different

widths can be specified with respect to not only the occupied chip area but the delay time as

well .

It should be noted that the actual width of an adder may be smaller than the width of the

addition result in the case when the one argument is shifted to another. An example of shifted

arguments is given in Figure 3-5, for which 4 LSBs are directly copied to the output. For

subtraction, however, the LSBs of the subtrahend cannot be copied because conversion to

two’s complement has to be carried out on the subtrahend before the addition is implemented.
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Consequently, subtraction and addition have to be treated in a slightly different way [Wia00b]

and different optimisation rules applied for additions and subtractions.

 In order to speed-up the addition, pipelining is implemented. Consequently, additional

user-defined parameter: level of pipelining p has been introduced. Parameter p defines that

pipelining flip-flops are inserted after every p-layers of adders. An example of pipelining is

given in Figure 6-2. For p= 1, flip-flops are inserted after every addition layer; for p= 2, flip-

flops are inserted only after layer: 2, 4, 6, etc. It should be noted that flip-flops are

incorporated in FPGAs after every logic element, therefore, it might seem that no additional

chip area is occupied by the pipelining flip-flops. However, some bits of an addition result

may be directly copied to the output. This happens when either inputs are shifted to each other

(the case discussed in the previous paragraph) or an input cannot be paired (e.g. signal ef in

Figure 6-2). Therefore, in these cases no logic cell i s required and consequently pipelining

flip-flops are not attached to any logic. Consequently, the design area may be specified by the

number of f lip-flops rather than the number of logic elements; and this causes the increase of

the chip area. Summing up, for adders blocks, the chip area is usually defined by the number

of f lip-flops for pipelining parameter p= 1 and by the number of logic elements for p≥2.

However, for increasing p the design throughput is reduced, therefore a compromise between

area and throughput is observed.

6.2.5. Fil ters Example

Implementation results of different algorithm have been given for different filters. Table

6-1 shows parameters of these filters.

Filter # inputs to
adders bl.

Input
range

# taps Cost [# FA] for the GrA

a 16 0-15 5×5 111
b 11 0-15 5×5 74
c 13 -99-99 8 128
d 39 0-199 41 413
e 85 0-9999 41 1358
f 290 0-9999 41 3730

Table 6-1. Parameters of the implemented FIR filters
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6.3. Greedy algor ithm

A Greedy Algorithm (GrA) [Cor94] considers the estimated best partial solution. The

drawback of this algorithm is that taking series of the best partial solutions often does not lead

to the best overall solution, therefore an approximate solution is usually obtained. The GrA is

the quickest algorithm from all algorithms considered in this paper and very often gives an

acceptable solution. The most significant part of the GrA, which strongly influences the

overall result, is criteria which defines priorities according to which a partial solution is taken.

In this project, different criteria have been specified for the first input and for the second input

to an adder. The following rules has been selected:

1. First input

1.1.  Take input with the smallest input shift s1. If two or more inputs have the same input shift

s1, consider the next rule for these inputs.

1.2. Take input with the smallest input width w1.

2. Second input

2.1.  Take input with the smallest significance of the MSB m2= s2+w2. Disregard this rule if

the significance of the MSB of the first input m1= s1+w1 is greater or equal than m2 (m1 ≥

m2). If two or more inputs have the same smallest m2 or m1 ≥ m2, consider the next rule for

these inputs.

2.2.  Take input with the smallest shift s2. If two or more inputs have the same shift s2 consider

the next rule.

2.3.  Take input, which does not generate carry out of the addition (the input with the smallest

addition result). If two or more inputs have the same smallest addition width consider the

next rule for these inputs.

2.4.  Take input with the greatest input maximum value I2 max.

Rule 1.1 causes that the first input is taken to sort inputs according to their shifts.

Consequently, this rule considers the overall solution rather than the best partial solution as

the unattached inputs tend to be of a greater shift and therefore easier to be grouped in the

next iterations. Rule 1.2 tries to optimise partial solution by taking the smallest input width.

This rule also supports searching for a good overall solution as wider inputs can be easier

grouped with inputs with a greater shift, which are left for the next iterations. The second

input is taken rather to optimise at first the partial and then overall result. Rule 2.1 finds input
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which generates the smallest result width. Rule 2.2 finds input with the smallest shift and

therefore tries to optimise overall solution similarly as rule 1.1. It should be noted that if input

shifts are different (s1<s2), (s2-s1)-bits are copied directly to the addition output (this copy

does not require any hardware) and this justifies that rule 2.1 is more significant than rule 2.2.

Rule 2.3 selects an input which produces the smallest output. Furthermore, to improve the

overall solution the input with the maximum value is chosen according to rule 2.4.

The above rules, although based on extensive research, are rather intuitive, therefore

probable better criteria may be found. Furthermore, the priority queue might be different for

different input parameters; e.g. for subtraction, bit copy of shifted inputs cannot be

implemented and therefore different rules may be specified. Furthermore, the average cost of

a full adder (FA) may be different for different adder widths, and this causes that a different

priority queue should be specified, etc.

6.4. Exhaustive search

6.4.1. Concept

The best possible result can be always found by search through all possible solutions.

The problem of f inding the best solution for adders tree is NP-complete and therefore only

simple adders blocks can be routed using the exhaustive search algorithm. At first, let

consider an example of 5 input adder. The following solutions have to be examined  (the

bottom layer is only taken into consideration, the example shows how inputs (letters: a to e)

are paired together):

(a+b)+(c+d)+e; (b+c)+(a+d)+e; (c+a)+(b+d)+e;

(b+c)+(d+e)+a; (c+d)+(b+e)+a; (d+b)+(c+e)+a;

(c+d)+(e+a)+b; (d+e)+(c+a)+b; (e+c)+(b+a)+b;

(d+e)+(a+b)+c; (e+a)+(d+b)+c; (a+d)+(e+b)+c;

(e+a)+(b+c)+d; (a+b)+(e+c)+d; (b+e)+(a+c)+d;

In order to find out the number of possible combinations, at first let define the function

S1(n) which returns the number of all possible combinations within a single adder layer for a

given number of inputs n:
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The total number of possible solutions S(n) is defined in an iterative way and is a

product of the number of combinations on this layer and the total number of combinations on
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the upper (closer to the output) layers, i.e. for the adders block for which number of inputs is

halved:

S(n)= S1(n)⋅S(n/2) (6-12)

where   - the ceili ng function

N # layers # Combinations
2 1 1
3 2 3
4 2 3
5 3 45
6 3 45
8 3 315

10 4 42 525
12 4 467 775
14 4 42 567 525
16 4 638 512 875
18 5 1 465 387 048 125

Table 6-2. The number of possible combinations for a given number of inputs n to the adder
block

It can be seen from Table 6-2 that the number of possible solutions is growing rapidly,

making the exhaustive search (ES) method useless for the input number greater then about 11-

16.

6.4.2. Constrained Search (CS)

As the number of possible solutions is growing rapidly with the growing number of

adder inputs, a modification of the ES method is hereby proposed. This method considers at

first the cost of the GrA solution for every layer l. Consequently, the cost C(l) of the partially

routed adder (up to the adder layer l) is first calculated (initially using the GrA) for every

layer l and then a method, similar to the ES, is implemented. This method, however, stops

calculating a group of solutions in its early stages (on layer l) if the cost of the partially routed

adder is greater than Cb(l) + t; where: Cb(l) – the cost C(l) for the best overall solution so far

found (initially found by the GrA), t- a certain threshold number. The comparison procedure

is executed after every layer of the adders tree is completed.

The CS technique saves the calculation time, as solutions which are unlikely to give the

best solution are skipped on a low layer and therefore upper layers and their combinations are

not calculated for the given partially routed adders tree. Conversely, it is possible that an

adder block has a very high cost on the bottom layer(s), however the upper layers are much

less costy, and therefore the best solution is not found. Consequently, the key problem is a
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proper choice of the threshold number t. Increase of the threshold number t increases the total

number of considered solutions but decreases the probabili ty of not finding the best solution.

N ES CS (layer 1) CS (layers 1 and 2)
6 45 15 45
8 315 105 315
10 42 525 945 14 175
12 467 775 10 395 155 925
14 42 567 525 135 135 14 189 175
16 638 512 875 2 027 025 212 837 625
18 1 465 387 048 125 34 459 425 32 564 156 625

Table 6-3. Theoretical numbers of considered solutions for different number of adder inputs N

Table 6-3 shows the theoretical number of possible solutions for the CS assuming that

the calculation process is constrained only to layer 1, or layer 1 and 2. It can be seen that the

total number of considered solutions has decreased significantly, however it is still

unacceptable for the number of inputs N greater than 18.

6.4.3. Implementation Results

In this section results for the greedy algorithm (GrA), exhaustive search (ES) and

constrained search (CS) algorithms are given. Table 6-4 shows the cost of the generated

circuits by the GrA, ES and CS (for different thresholds t). Table 6-5 shows the calculation

cost – the number of iterations needed to find the circuit.

Filter No
inputs

ES CS (t=5) CS (t=2) CS (t=0) CS (t=-1) GrA

a 16 93 93 93 93 93 111
b 11 72 72 72 73 73 74
c 13 123 126 126 126 126 128

Table 6-4. The implementation costs (number of full or half adders) for different filters (see
Table 6-1) and techniques

Filter layer 1 layer 1,2 ES CS (t=5) CS (t=2) CS (t=0) CS (t=-1)
a 2 027 025 212 837 625 638 512 875 9 556 259 4 881 543 2 963 651 2 327 927
b 945 14 175 467 775 444 927 278 735 80 051 13 173
c 135 135 14 189 175 42 567 525 3 079 789 915 375 369 357 193 057

Table 6-5. The number of iterations for different filters and techniques

It can be seen from Table 6-4 and Table 6-5 that acceptable results are achieved using

only the GrA. The improvement of about 2-7 % can be obtained by the use of the ES. The

drawback of the ES is its computation cost therefore the reasonable solution seems the CS (for
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the number of inputs up to 16). For the threshold t=-1, only partial solution which is better

than the best found is taken into consideration. This makes the CS (t=-1) similar to a GrA for

which the step is constrained not only to a single adder (li ke for the GrA) but for all adders in

the layer. Besides for the CS, it is always possible to undo a selection if the upper layers cost

is high and therefore the overall cost of a new solution is higher than the best previously

found cost. By the increase of threshold t, the number of considered solutions is growing. For

t=0, not only the best but also all solutions on the same partial cost are also considered. This

however increases the number of iterations but very slightly influences the overall results.

Similar results are obtained for t=2 and t=5.

It should be noted that the GrA behaves more poorly for filters for which subtraction is

implemented (for negative coeff icients, examples a, c) as this algorithm deals with subtraction

and addition in the same way.

6.5. Simulated Annealing (SA)

6.5.1. Pr inciple

The principle behind the SA [Aar89, Kir83] is analogous to what happens when metals

are cooled at a controlled rate. The slowly falli ng temperature allows atoms in the molten

metal to line themselves up and form a regular crystalli ne structure that has high density and

low energy. In the SA, the value of an objective function which we want to minimise, is

analogous to the energy in a thermodynamic system. At high temperatures, SA allows

function evaluations at faraway points and it is li kely to accept a new point at higher energy.

At low temperatures, SA evaluates the objective function only at local points and the

likelihood of it accepting a new point with higher energy is much lower.

The SA algorithm, implemented for optimising adders structures, employs the following

steps:

Objective function calculates the cost C of the circuit for a given adders tree.

Annealing Schedule regulates how rapidly the temperature T goes from high to low values,

as a function of iteration counts. In the considered case, the starting temperature T1 equals the

cost of a 2-bit wide adder CA2, the stopping temperature TS equals ¼ of the cost of a 1-bit wide

adder CA1/4. In every iteration, the temperature Ti is decreased according to the following

equation:
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Ti+1= η⋅Ti (6-13)

where S

ST

T 1
1 )(=η , S- the number of iterations.

Generating a new adders structure – obtained by randomly selecting two adders on the

same layer; i.e. randomly selecting a first adder (or input to the adders block) from all adders

and randomly selecting a second adder from adders at the same layer as the first adder.

Examples of possible modification are given in Figure 6-3.
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Figure 6-3. Examples of possible one-step modifications: A) an initial circuit, B) C) the
modified circuit A.

Modifications of the circuit are constrained by temperature Ti. In the conventional SA,

also known as the Boltzmann machine, the generating function which specifies the change of

the input vector, is a Gaussian probabili ty density function [Jan97]. In our approach, the

number of possible solutions is finite therefore the Gaussian probabili ty function is useless.

An alternative solution is defining a move set [Mau84], denoted by M(x), as a set of legal

points available for exploration. However, constructing the move set is rather computationally

demanding task thus not implemented.  In this approach, two adders are selected randomly

(but at the same adders layer) and then a local acceptance function (LAF), which is further

described in the next paragraph, is calculated. The LAF differs from the (global) acceptance

function as it takes under consideration only the cost of the two involved adders before and

after the modification. If the modification is not accepted locally, the change is rejected and

the next modification is randomly generated (the iteration counter and temperature are not

affected in this step).

Acceptance function. After a new network of adders has been evaluated, the SA decides

whether to accept or reject it based on the value of an acceptance function h( ). The

acceptance function is the Boltzmann probabili ty distribution:
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where: ii CCC −=∆ +1 - the difference of the adders block cost for the previous and current

adders tree.

The new circuit is accepted with probabili ty equal the value of the acceptance function.

6.5.2. Implementation results

The result for the SA, for different circuits are given in Table 6-6. For filter a, the result

equals 103 (FAs/HAs), and is the best possible – the same as for the ES. This result is

obtained already for 1000 iterations. For filter c, the cost equals 123, the same as for the ES,

and was obtained already for 30k iterations; for the CS, the result is 126 even for more than

3M iterations. It should be, however, noted that the computation cost of a single iteration is

lower for the CS than for the SA. This holds as for the CS and ES, the change in the circuit is

well -defined and usually constrained only to the upper layers of the adders and therefore only

a part of the circuit has usually to be re-calculated. For the SA, the change is done randomly

and on every part of the circuit, therefore cost of the whole circuit has to be recalculated. The

lower calculation cost for the CS and ES, does not, however, compensate much greater

number of iterations required to obtained the same result. Consequently, the overall

calculation cost of the CS is usually greater than for the SA, however for small circuits for

which the calculation cost is very low, the CS and ES are good alternatives to the SA.

Ex. GrA SA 1k SA 30k SA 1M ES
a 111 93±0 93±0 93±0 93
c 128 126.9 ±0.3 125 ±1.4 123 ±0 123
d 413 394 ±3 385 ±1 382 ±1 -

d (wlaf) 413 398 ±4 382 ±1 380 ±1 -
e 1358 1346 ±10 1299 ±3 1292 ±4 -

e (wlaf) 1358 1341 ±9 1293 ±4 1283 ±4 -
f 3730 3702 ±20 3338 ±14 3245 ±6 -

f (wlaf) 3730 3706 ±13 3419 ±13 3296 ±8 -

Table 6-6. The circuit costs for the GrA, ES, and the SA for different number of iterations;
wlaf – without local acceptance function

The final circuit (obtained in the lowest temperature) is often not the best one.

Therefore, the best-obtained circuit is every time stored as the best result; this increases

calculation cost insignificantly but allows for substantial algorithm improvements.
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Table 6-6 shows also the results when local acceptance function (LAF) is not

implemented (option: wlaf). Calculating local cost before and after the modification,

insignificantly influences the total calculation cost and the LAF usually rejects solutions

which are unlikely to generate a good global result. Conversely, the LAF constrains search

space and therefore may cause some good solutions to be omitted. This is often the case for

relatively small adders circuits and for large number of iterations. For example, it can be seen

from Table 6-6 that not implementing the LAF gives better results for circuit d and for a small

number of iterations, however spoils results for more complicated circuit f.

6.6. Genetic Programming (GP)

Genetic Programming (GP) [Koz92, Gol89] is an optimisation method based loosely on

the concept of natural selection and evolutionary process. Major components of the GP

include: encoding scheme, fitness evaluation, parent selection, crossover operation and

mutation operators, these are approached next.

6.6.1. Encoding scheme

 Encoding scheme transforms gene representation into a problem specific

representation. In this approach, the adders tree is represented directly using two vectors of

integers, which is typical rather for the Genetic Algorithm [Mic92]. Each adder occupies one

entry in each vector. The entry specifies the index of the adder or input (from the lower layer)

which is connected to the considered adder. For example, parent 0 in Figure 6-4 is

represented in the following two vectors of integers:

considered adder 24,  23,  22,  21,  20,  19,  18, 17, 16, 15, 14, 13

vector 0 22,  19,  18,  13,  14,  16,  0,   3,   2,   4,   9,   7

vector 1 23,  20,  21,  17,  15,  11,  6,   8,   1,   5,   12, 10

Initially, it might seem that the structure of adders can be defined giving only the order

of adders block inputs (the bottom layer order), as the rest of the structure can be built

straightforward by connecting two neighbour adders. This, however, is a special case when

the number of inputs to the adder block is a power of two. Otherwise, there is an alone signal

which cannot be paired and therefore must be fed directly (without addition) to the upper

layer of the adder block. In the given example for parent 0, it is the case for the input 11 for

the first layer and signal 18 for the second layer. These alone signals complicate the adders

structure, and cause that the structure of upper layers must be also included into gene coding.
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6.6.2. Fitness evaluation

Fitness evaluation is based on evaluation of the cost (area) of a given adders tree.

6.6.3. Selection

After fitness evaluation, a new generation is produced from the current generation. The

selection operation determines which adder will survive, based on the fitness value – the

lowest cost of the adder, the greatest survival probabili ty. It this approach, the modGA

algorithm [Mic92] has been implemented as it has proved to surpass the classical genetic

algorithm [Mic92]. In the modGA, in every generation we select independently (p-r)

chromosomes to survive unchanged with the probabili ty proportional to the scaled fitness fi’

which is obtained as a linear scaling of the area fi occupied by the adder block:

fi’ = a⋅fi + b. (6-15)

Parameters a and b are calculated independently in every generation to satisfy the following

equations:

1min =+⋅ bfa (6-16)

∑
=

−=+⋅
p

i
i rpbfa

1

)( (6-17)

where: fmin – the fittest (minimum cost) chromosome, p –population size, r – number of

chromosomes determined to die r<p/2;

The eq. 6-16 preserves the fittest individual with the probabili ty equal 1. Eq. 6-17 causes that

on average (p-r) chromosomes are selected to survive in a single wheel spin (a single wheel

spin - every chromosome is picked to survive with probabili ty fi’  only once). In this approach,

the wheel spins until (p-r) chromosomes are selected and on average, a single wheel spin is

required.

The r chromosomes selected to die are replaced by new ones, which are produced in

either crossover or mutation. Consequently, the following equation holds:

r= c+m (6-18)

where: c- number of new chromosomes produced in the crossover operation, m- number of

new chromosomes produced in the non-overwriting  mutation operation (see mutation

operation). In this approach p= 12, r= 5, c= 4, m= 1.

6.6.4. Crossover

Crossover is applied to randomly selected pairs of parents. The structure of the adders

tree seems very similar to the commonly used tree graph structure used for scheduling and
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partitioning [Mic92] or finding the optimal operation tree [Ayt95]. However for the adders

block, the structure of the tree is strongly constrained. Therefore, the crossover operation

implements a procedure, which generates only a valid structure of the adders tree (no repair

procedure is required).

Two different options of crossover have been implemented. The first one (option A)

attempts to copy as much as possible from the parents (considering actual parents structure

and therefore disregarding the adder indices) and then employs a greedy algorithm (simpli fied

version of the GrA described in Section 6.3) to route unconnected adders. In the second

option (option B), the offspring copies the structure of the first parent and implements

changes similar as for the SA, however changes are applied according to the structure of the

second parent. In this option only indices are considered. These options are described below.

Crossover option A

In this option, an offspring inherits one (or all but the one) branch of adders from the

first parent. For an example given in Figure 6-4, offspring 0 inherits from parent 0, the adder

structure: 20, 14, 15, 9, 12, 4, 5. Then, offspring 0 inherits as much as possible from the

second parent. In the given example, offspring 0 can copy only adders 13, 2, 11; 16, 6, 7 and

17, 8, 0 from parent 1. Unfortunately, the whole adder structure may not be obtained directly

from the parents; as some connections copied from the first parent, conflict with connections

in the second parent. For the given example for offspring 0; from parent 0, the adder

structure: 14, 9, 12 is copied; this makes impossible to copy the adder structure 14, 1, 9 from

parent 1 as input 9 is already connected.

It should be noted that the crossover algorithm considers only indices of inputs on the

bottom layer (in the given example: inputs 0-12) and how they are connected going up to the

top layer (the indices of the adders on the upper layers are disregarded). Consequently, pairing

the upper layers adders can be achieved if all adders on the lower layers can also be paired.

Therefore, a single connection that cannot be achieved on a bottom layer, prevents the adders

on the upper layers from being connected. This causes that the structure of adders on the

upper layers is seldom inherited from the parents. Nevertheless, the offspring inherits only

connections which existed in either of the parents.

This approach causes that the effectiveness of the algorithm strongly depends on

crossover points; that is how many adders are copied from the first parent. Consequently, a

crossover parameter is included into the gene-coding scheme, which allows this parameter to

be optimised together with the adders structure during the evolutionary process. The crossover

parameter defines from which adders layer a randomly chosen branch of adders is copied
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from the first parent to the offspring. For example in Figure 6-5, offspring 0 inherits adders

structure: 20, 14, 15, 9, 12, 4, 5; i.e. the branch of adders beginning from the adder 20 (adder

20 is on the layer 2). Besides, the crossover parameter defines if one branch of the adder is

inherited or all but one branches are inherited. For the given example, for the offspring 0, only

one branch of adders is inherited from parent 0; for offspring 1, all but the one branches of

adders are inherited from parent 1, i.e. except adders: 20, 14, 1, 9, 3.

0 6 7 10 3 8 2 1 11 9 12 4 5

18 13 17 16 14 15

21 19 20

22 23

24

2 11 6 7 810 50
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4 1 9 3

16 15 171813
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not used for any chi ld
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for off spring 0 and 1

from parent 0
from parent 1

random choice

16

Figure 6-4. An example of the crossover operation for option A

The implementation results showed that in old generations, the crossover parameter is

the same for all chromosomes and is equal: copy one branch beginning from the next to the

last adder, i.e. copy half of the adders structure. Consequently, the crossover parameter is not

longer included into gene-coding scheme and the crossover point is fixed to the half-adders-

block copping.

Crossover option B

In this option, the crossover operation is very similar as for the Simulated Annealing

presented in the previous section. The difference is that for the SA a modification is made in a

random way, however for the GP, the modification is carried out with respect to the structure

of the second parent. An example of the crossover operation is given in Figure 6-5. The

crossover operation consists of three steps:

1. Randomly select a common crossover signal (in the given example: signal 0).
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2. Find swapped signals which are paired with the common signal (signal 1 for parent 0 and

signal 2 for parent 1). In the case when the common signal is an alone signal (is not

paired), the alone signal is chosen.

3. Swap signals found in the previous point.

10 2 3 4

5 6

7

8

20 3 4 1

5
6

7

8

parent 0 parent 1

20 1 3 4

5 6

7

8

offspring 0

10 3 4 2

5
6

7

8

offspring 1

Figure 6-5. An example of the crossover operation for option B

It should be noted that the common crossover signal can be selected on any layer of the

adder (except the top layer, which is a trivial case and therefore skipped). Besides, indices of

signals on the upper layers for different parents may not correspond to each other, in the sense

of the real adders structure. For example in Figure 6-5, signal 5 in parent 0 (S5= S0+S1) is

different from signal 5 in parent 1 (S5= S0 + S2). This means that swapping the upper layers

adders often disregards the real connections of the parents as indices of these adders are

assigned more or less in a random way. Therefore, to improve the algorithm the indices of the

upper layer adders are assigned (sorted) according to the increase of the input index (the lower

index of two inputs). For example, for parent 1 in Figure 6-5, adder 5 has the lowest index on

the layer 1 because input 0 is the lowest input index on the bottom layer. Sorting adder indices

improves correlation between parents, nevertheless, the index of the upper layers adder in one

parent often represents different addition than in the second parent. This means that swapping

is often achieved in a random way, especially when structure of parents differs significantly.

It should be noted that for large adders structure the relationship between index number and

its structure is decreasing, therefore for a large adders tree this crossover method is not

recommended (see Table 6-8).

The change made by a single swapping is rather insignificant therefore, usually 1-3

similar swapping operations are performed to obtain an offspring.

The idea behind the modGA is that the algorithm avoids leaving the exact copies of the

same chromosomes in the new population, which may still happen accidentally by other

means but is very unlikely [Mic92]. However, experiments proved that both option A and B

can produce an offspring identical to its parents especially if the parents are very similar. This
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causes that several copies of the same parents exist in the population, which deteriorates the

result. Therefore, to improve the modGA results, in the case when an offspring is an exact

copy of the parent(s) (or differs insignificantly), the mutation is performed on the offspring.

Therefore, in this approach, the additional mutation operation prevents from obtaining the

exact copy of the parent during crossover operation and prohibits super-individuals from

dominating the population. It should be noted that in the nature, a specimen avoids to mate

with its relatives in order not to produce similar gene offsprings. Moreover, similar solution

has been proposed by Maudlin [Mau84], where the mutation rate is changed according to the

degree of homogeneity of the chromosomes. The disadvantage of Maudlin’s approach is that

it requires additional computation time to evaluate the degree of the homogeneity. In this

approach, however, detecting crossover diversity increases computation time insignificantly

as it is associated directly with the crossover operation.

6.6.5. Mutation

Crossover operation can only explore the current gene potential therefore, a mutation

operation is included to spontaneously generate new chromosomes. In our approach, mutation

is carried out in a similar way as for the SA, i.e. by swapping two adders on the same layer.

Two different mutation options has been implemented:

1. parent non-overwriting mutation (NOM)

2. parent overwriting mutation (OM)

The NOM is associated with the modGA selection operation as the number of new

chromosomes r generated in each generation, includes the number of new chromosomes

created during mutation m. Therefore, randomly picked chromosomes (from the surviving

chromosomes) are copied and the mutation is performed on the copy of the chromosomes.

The OM is carried out in the standard way, i.e. every unchanged chromosome is

mutated with probabili ty pm.

Two different mutation options have been implemented to allow proper population

development. In the case when only the OM is implemented, the high mutation ratio prohibits

super-individuals to grow as often probabili ty of generating an offspring which fitness is

comparable to the parent is very low – lower than mutation rate. Therefore, the best solution

is often generated rather in a random way then based on the genetic algorithm properties and

the fitness of the latest generations is very often far from the best solution fitness. Conversely,

low mutation ratio causes mutation to have insignificant influence on the result and therefore

deteriorates the result. Employing only NOM causes that super-individuals are always copied

to the new generation without any change (the fittest chromosome is selected with probabili ty
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equal 1) and therefore the population is dominated by the super-individuals which may be in a

local minimum. Consequently, the best solution is a combination of the NOM and OM.

Implementation results, given in Table 6-7, confirm this assumption.

circuit pm= 0, m= 1 pm= 0.2%, m= 1 pm= 10%, m= 0
d) iter= 6k 393 ±2 392 ±5 391 ±2

d) iter= 200k 392 ±4 388 ±5 381 ±1
e) iter= 6k 1302 ±3 1303 ±2 1317 ±4

e) iter= 200k 1297 ±3 1292 ±2 1297 ±2
f) iter= 6k 3580 ±7 3580 ±6 3616 ±8

f) iter= 200k 3454 ±5 3455 ±4 3508 ±16

Table 6-7. Implementation results for different mutation solutions: only NOM, combination of
the NOM and OM, and only OM; for crossover: option A

6.7. Implementation results

Table 6-8 shows implementation results for the different algorithms. The number of

iterations for the GP and SA is selected so that the calculation cost was roughly the same. It

can be seen from Table 6-8 that the SA solution gives usually the best results and the

crossover option A is a better solution in comparison to option B, especially for more

complicated circuits. Furthermore for option B and circuit f, the implementation results are

even so poor that the GrA initial solution is the best-found solution for up to 6k iterations.

#  iterations (GP/SA)Circuit) technique
200/1k 6k/30k 200k/1M

d) option A 399 ±3 392 ±5 388 ±5
d) option B 412 ±2 392 ±4 387 ±5
d) SA 394 ±3 385 ±1 382 ±1
e) option A 1341 ±6 1303 ±2 1292 ±2
e) option B 1358 ±0 1357 ±1 1297 ±4
e) SA 1346 ±10 1299 ±3 1292 ±4
f) option A 3713 ±7 3580 ±6 3455 ±4
f) option B 3730 ±0 3730 ±0 3645 ±26
f) SA 3702 ±20 3338 ±14 3245 ±6

Table 6-8. Implementation results for different options of the GP, and for the SA, for different
number of iterations
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6.8. Conclusions

In this chapter, thorough analysis of adders tree as a part of the FIR filters has been

presented. Complex input parameters of the adders block have been considered: inputs range

(not only input width), input shifts and even the correlation between inputs. Consequently,

finding an optimal network of the adders tree is a complex task which has been investigated.

Different approaches: greedy algorithm, exhaustive search, simulated annealing and genetic

programming have been implemented and the results given. Consequently, the GrA gives the

worst solution but at very low calculation cost. Conversely, the best solution is obtained by

checking all possible solutions in the ES, however the calculation time is unacceptable for the

number of inputs n greater than about 12. Therefore, the Constrained Search (modification of

the ES) has been proposed. For the CS, each layer of the addition is considered, in some

degree, separately. The CS checks a lower number of solutions however the number increases

rapidly with growing n, and therefore, this solution can be implemented for the number of

inputs n less than about 14 – insignificant improvement in comparison to the ES. Further, the

Simulated Annealing has been implemented. For small n, the SA usually finds the best

solution and requires much lower number of iterations in comparison to the ES. However, for

n≤8, the ES searches at most 315 solutions and therefore the computation cost is low.

Therefore for n≤8 the ES solution should be implemented. For n≥9, the ES goes through at

least 42 525 solutions therefore the SA should be rather used.

The Genetic Programming is another design-approach which has been implemented.

The structure of the adder block is strictly defined and therefore the crossover procedure has

to copy parts of the parents in such a way that the child has a proper structure. This, however,

is diff icult to be achieved and therefore some parts of the offspring has to be routed to satisfy

the adder block constrains rather then to copy a structure of the parents. Two different

crossover procedures have been implemented. Nevertheless, at the same computation time,

the GP usually gives worse results than the SA. This conclusion is similar as presented by

McMahon [McM95] for scheduling problems and shows that for some problems the SA is

beneficial in comparison to the GP.
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7. Conclusions

The design complexity of nowadays systems stimulates a strong demand for design

automated tools which are able to generate a wide range of implementations and support

multiple parameters. The AuToCon is an example of such a system. The AuToCon takes

different input bit-width, convolution kernel size and coeff icient values, and generates a

circuit searching through multiple architectural solutions in order to find the best circuit.

Different speed options can be defined by the value of the pipeline parameter. This thesis

presents a novel synthesis approach for which FPGA resources are user-defined, which allows

for smooth migration from one device to another. Furthermore, by changing cost-relations

between the FPGA resources, different architectural solutions are obtained, as the AuToCon

searches for the lowest cost architecture. For variable coeff icient systems, reconfiguration

time is also a crucial factor that influences the architecture and design cost, which has been

thoroughly studied.

The AuToCon explores FPGA device-specific features, e.g. for ASICs LUT-based

multiplication or convolution is very seldom adopted, addition is carried out employing carry-

save adders, while for FPGAs, ripple-carry adders are the best solution and the LM may give

the best result. The AuToCon minimise the need for knowledge of low-level details, provided

that the FPGA resources and their structural, VHDL models have been once supplied for the

FPGA family. The system user has to only enter convolution kernel size, coeff icient values,

reconfiguration option and the pipelining parameter. Nevertheless in some projects (e.g. when

almost all CLBs are occupied and still l ot of large memory blocks are available), changing

cost-relation between FPGA resources (which requires rather the low-level knowledge) may

improve usage of FPGA resources. It should be noted that generated circuit is produced

automatically mostly within the time of a second. Summing up, the thesis has been proved.

This thesis presents the AuToCon, however detailed description of the whole AuToCon

system is outside the scope of this thesis. Only the most attractive fragments have been hereby

characterised. It should be however noted that most of the author research time has been spent

on development of the tangled and complicated automated system.

As a part of the research several novel architectural solutions have been developed, such

as modified CSD conversion algorithm, usage of different memory modules for the LM and
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IDAC, advance optimisation techniques for LMs, the Dual Port DKCM, extensive usage of

Multiplierless Multiplication in FPGAs, Irregular Distributed Arithmetic Convoler, and trade-

off between the IDAC and Multiplierless Convoler.

Chapter 2 reviews different computing machines implementing the convolution

operation. General-purpose processors and DSPs are the best solution for relatively low

computationally demanding processes. However, e.g. for real time high-resolution image

convolution and large kernels, the microprocessor approach is inadequate. Furthermore,

nowadays architectures of microprocessors are very sophisticated and further development of

their complexity results in less and less significant computation speed-up. ASICs are an

alternative solution, however, they suffer from long development time, high cost for

prototyping and low volume production, and at last but not least low design flexibili ty.

Conversely, FPGAs are more and more commonly implemented in regions originally reserved

for DSPs or ASICs. Furthermore, FPGAs’ density grow surpasses the counterparts’ grow. As

a result, there is a strong demand for design automation tools that speed-up design process for

FPGAs. The presented automated tool is, therefore, a proposition for such a system.

Chapter 3 approaches the Constant Coeff icient Multiplier (KCM) and different

architectures performing the KCM, such as Multiplierless Multiplication (MM) and LUT-

based Multiplication (LM); a comparison of these two techniques is also presented. Novel

architectural solutions have been introduced, such as the Modified CSD conversion algorithm;

usage of different memory modules for the LM together with the advance optimisation

techniques: the LSBs Address Width Reduction, the Don’ t Care Address Width Reduction,

and the Memory Sharing. Furthermore, the full search algorithm compares all possible

solutions and the best solution for the given input parameters is taken.

Chapter 4 investigates multiplier architectures for which change of the coeff icient is a

feasible design factor. Furthermore, a novel architecture of Dynamic Constant Coeff icient

Multiplier (DKCM) with Dual Port memories is studied. For this multiplier the multiplication

result is corrupted during a change of the coefficient, however, the corruption is well defined

and may be acceptable in adaptive systems. Similarly li ke in Chapter 3, usage of different

memory modules is included into the full search algorithm. However the search space is

enlarged by additional DP memories, or single port memories and multiplexers trade off .

A convolution, basically, can be carried out as a sum of products, however, its

modification, LUT-based Convolution, for which adders within LMs and the final adder are

combine together, gives better results. Chapter 5 presents also the (parallel) Distributed

Arithmetic Convoler, and its novel modification, the Irregular Distributed Arithmetic

Convoler. The IDAC is an architectural solution which combines both the DAC and LC in
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such a way that the resultant circuit is at the lowest cost. A novel optimisation algorithm,

which finds the optimal IDAC circuit, has been also presented. The Multiplierless

Convolution is an alternative solution to the IDAC. The MC is similar to the Multiplierless

Multiplication, however more sophisticated methods are involved, such as substructure

sharing between different coeff icients or pipeline optimisation. Furthermore, the novel

algorithm trading-off between the MC and IDAC has been developed. As a result, each

individual coeff icient can be implemented employing either the MC or IDAC.

Chapter 6 describes optimisation techniques for adders tree. Different techniques such

as: Greedy Algorithm, Exhaustive Search, Simulated Annealing and Genetic Programming

have been implemented. As a result, Greedy Algorithm is the quickest, however better results

can be obtained for more complex algorithms. The ES is, therefore, recommended for number

of inputs n≤8 because computation requirements for such an adders block are rather low, and

the SA is recommended for n≥9.

In conclusion, the implementation results proved that the AuToCon outperforms

comparable automated tools.

Suggestions for fur ther work

The AuToCon takes into account a great number of parameters. However, additional

parameters can be still defined. For example, the AuToCon implements only bit-parallel

arithmetic, and in some applications a bit-serial [Hes96], or middle-way between bit-parallel

and bit-serial architecture [Pas01] can handle the design requirements. The later solution may

be used instead of the lowly pipeline (large value of the pipeline parameter p) architectures.

Conversely, in some cases even fully pipelined bit-parallel circuit cannot cope with high

frequency requirements. In this case two or more parallel filters should be implemented.

However additional area-reduction is obtained by employing reduced-complexity parallel FIR

filters [Par97].

For multipliers, the best-possible circuit (under the given design conditions) is generated

by the exhaustive search algorithm. However, a convolution circuit is much more complex

and requires heuristics. In this thesis mostly greedy algorithm has been implemented.

However better priority queues for the greedy algorithms might be found. Besides more

sophisticated optimisation techniques should be also considered (similar li ke for the adders

tree). In order to keep AuToCon computation requirements at low level, trade-off between the

IDAC and MC is based on the estimated cost for a convoler. However, the AuToCon is
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relatively quick (in most cases the convoler is generated within the time of a second), and

therefore the trade-off algorithm might be based on the actual circuit cost.

FPGAs evolve and new FPGA resources are introduced. For example, recently

introduced Virtex II family incorporates larger BSRs, and greater variety of small

(distributed) memory modules. Because FPGA resources are the input parameters to the

AuToCon, these new resources can be quickly included while searching for the optimal

architecture. Nevertheless, Virtex II incorporates also new dedicated 18×18 fully functional

multipliers, which makes DKCMs less attractive than for Virtex. In the case of the constant

coeff icient option, the KCM occupies less chip area, and therefore the standard KCM can be

still employed especially when the width of the multiplier is short. The AuToCon might also

map the 18×18 multiplier as a virtual 218×36 memory, consequently more complex

coeff icients (containing large number of non-zero CSD bits) might be implemented in the

built -in multipliers and the rest of the coeff icient in the CLBs or BSRs. However this requires

additional changes in the AuToCon and analysing implementation results.

The AuToCon takes littl e attention of design routing. An assumption is made that a

place and route program can do the job. However routing optimisation should be considered

in the next step especially for the substructure sharing and optimisation of the adders block.

Realisation of the FIR filters uses inputs and coeff icients values directly, which requires

full -length multipliers and adders. However, differential coeff icients and inputs method

[Cha00] might be implemented. This method uses differential coeff icients to multiply with

inputs and compensates the effect of differential coefficients by adding the product of the

previous computation. Since differential coeff icients have shorter word length, the resulting

design can use shorter word length. Similar effect is obtained for differential input, when the

range of the difference between two consecutive inputs is smaller than the original input.

For standard pipelining designs, the clock frequency is constrained by the maximum

delay time between consecutive flip-flops. However wave pipelining [Boe98] might be

implemented for which minimum clock period is limited by the difference between the

maximum and minimum path delay plus the clock skew, the rise/fall time and the setup time

of the registers. The difference between maximum and minimum delay can be further reduced

by a place and route program.
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Ripple-carry adders are assumed to be the best solution. Nevertheless for long adders

the carry propagation delay can significantly slow down the design throughput. Consequently,

a splitti ng of long adders into several parts (applying the hybrid pipelining as for FPGAs and

ASICs) is suggested. The next design step might be automatic optimisation of the adders tree

for which long adder splitti ng is implemented.

The AuToCon might be included to a hardware/software co-design system [Sta97] e.g.

in the RACE [Smi96]. Consequently, the system might automatically detect convolution

loops in e.g. C-language, and implement the most computationally demanding task in a FPGA

rather than in a microprocessor. In the course of this work, different architectures have been

compared, and FPGAs are the most promising architectural solution for high-speed

convolution. Therefore such a system may be a fundamental solution for tomorrow’s systems.

Furthermore the AuToCon might be included into an adaptive system for which dynamic

change of the coeff icients or even the kernel size is allowed.

The author has designed and developed a general-purpose FPGA board with three

XC4010E up to XC4025E chips, on board SRAM memory and the PCI interface. A more

detailed description of this board is outside the scope of this thesis. Consequently, a range of

real time image convolutions has been implemented. Nevertheless, the AuToCon allows for

implementation of different algorithms: e.g. part of artificial neural networks, etc.

Furthermore, the next design step might be development of a system that will automatically

generate neural networks. The most essential advantage of such a system (in comparison to

the ASIC solutions) might be a dynamic change applied to not only the weights but also to the

network structure while learning process is in progress. The system may exploit the fact that

most of weights might be equal zero and therefore need not be implemented.
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Appendix A.

Br ief description of the AuToCon

The Automated Tool for generation 2-dimentional Convolers implemented in FPGAs

(AuToCon) basically consists of two segments:

• C++ program which reads input parameters from file ‘param.txt’ and VHDL-like template

files and generates the final VHDL (text) files.

• Predefined VHDL files which describe FPGA implementation of the fundamental

elements used in the design, such as RAMs, adders, etc. Besides discription of regular

blocks is included, e.g. RAM programming unit.

Design flow is ill ustrated in Figure A-1. The AuToCon generates also a VHDL test bench,

therefore the generated circuit can be automatically simulated, and a design error detected and

reported.

C++ program

input parameters

VHDL-like templates

VHDLPredefined VHDL files
VHDL

simulation

FPGA implementation
Time

simulation

Figure A-1. Typical design flow

Input parameters

The following input parameters can be defined in ‘param.txt’ f ile:

min_din – minimum input value

max_din – maximum input value

ram – defines whether constant (ram=0) or dynamic (ram=1) circuit is implemented

coeff – coefficient value(s)

min_coeff – minimum coeff icient value (applicable only for ram=1)
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max_coeff – maximum coeff icient value (applicable only for ram=1)

SizeCoeffX – horizontal kernel size

SizeCoeffY – vertical kernel size

SymmetryX – filter horizontal symmetry: 1- symmetry, 0 - no symmetry, -1 – asymmetry

SymmetryY - filter vertical symmetry: 1- symmetry, 0 - no symmetry, -1 – asymmetry

SymmetryP – filter point symmetry: 1- point symmetry, 0- no symmetry

pipeline – defines maximum number of logic elements between two subsequent pipelining

flip-flops

InsertRegistersIn – insert flip-flips at the input of the convoler/multiplier

InsertRegisterOut – insert flip-flops at the output of the convoler/multiplier

InsertCe – insert clock enable signal to make the circuit inactive for clock cycles, this signal

might be required e.g. during blank cycles when the image is inactive

SimulationLength – the number of simulation cycles. The smaller number, the shorter

simulation time but an design error is less likely to be detected

clock – period of the clock (needed for time simulation only)

LineWidth – external li ne buffers length, needed for simulation only; during implementation

line buffers are external blocks inserted by the designer (line buffers of any length can

be automatically generated by e.g. Core Generator [Xil99a]). This allows to perform

e.g. sum-of-products operation when SizeCoeffX=1 and SizeCoeffY defines the number

of products.

FPGA resources declaration

Flip-flops

CostFF – defines cost of a single D-type flip-flop

Adders

CostAdd – defines cost of the adder separately for different adders widths

Memory

Mem initialisation of memory entity

No memory identification number (the same as used during VHDL entity declaration)

= separator

MemorySize memory size declaration (k - 1024 and M= 1024k is accepted)

× separator

DataWidth data bus width declaration (must be power of 2 for multipliers)

DP/SP type of memory Dual Port/ Single Port

DataWidthDP  data width of the second port (for DP, should be the same as DataWidth)
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S/A (a)synchronous memory reading (no flip flops need to be inserted) (writing is always

synchronous - or the RAM programming unit has to be modified)

cost cost of the single block

Example:

Mem1= 16x1SPA1 - 16×1 distributed memory for XC4000/Virtex, cost of memory equals 1

LE.

Communication between C++ and predefined VHDL files

C++ program generates VHDL files (C-VHDL) which describe a convoler mostly at

structural domain. However, the C-VHDL files do not refer to any low-level structure of a

FPGA, these files refers to the entities defined in the predefined VHDL files. Consequently

the user can define the final structure of the adders or memory blocks, etc. in the predefined

VHDL files. Furthermore, the pre-defined VHDL files can refer to pre-synthesised modules

or modules which have been generated using different design entry methodology, e.g.

modules generated by Core Generator [Xil99a], schematic elements.

Example of convoler design given in Figure 5-8.

Input parameters (param.txt file)

CostMux2= 0 CostFF= 10
CostAdd=
10 20 30 40 50 60 70 80
90 100 110 120 130 140 150 160
170 180 190 200 210 220 230 240
250 260 270 280 290 300 310 320
330 340 350 360 370 380 390 400
410 420 430 440 450 460 470 480

Mem0= 2x1SPA0
Mem1= 16x1SPA10
Mem2= 32x1SPA20
Mem3= 16x1DP1A20
LineWidth= 16 InsertCe= 0
clock= 50ns SimulationLength= 50
InsertRegistersIn= 1  InsertRegistersOut= 1
pipeline= 100 ram= 0
SymmetryX=0 SymmetryY=0 SymmetryP= 0
SizeCoeffX= 8 SizeCoeffY= 1
max_din= 15 min_din= 0
coeff=
59 183 162 -7 -48 12 9 2

A fragment of the predefined VHDL file, the description of the adder block.

This VHDL code can be edited to define a different adder structure.

-- Addition dout<= din1 + din0;
library IEEE;
use IEEE.std_logic_arith.all;
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use IEEE.std_logic_1164.all;

entity adder is
    generic(width_din0: integer:= 4; -- input width of the first input
    width_din1: integer:= 4; -- input width of the second input
    width_dout: integer:= 5; -- input of the output
    sign: integer:= 0; -- encoded sign of the first and second input and operation (adder, subtractor)
    shift_din0: integer:= 0); -- shifting of  the first input to the left
    port (din0: in unsigned(width_din0-1 downto 0); -- the first input
        din1: in unsigned(width_din1-1 downto 0); -- the second input
        dout: out unsigned(width_dout-1 downto 0)); -- the output
end adder;

architecture adder_arch of adder is
constant width_din0sh: integer:= width_din0 + shift_din0; -- width of the first input after shifting
signal din0sh: unsigned(width_din0+shift_din0-1 downto 0); -- declaration of the shifted din0 signal
signal din0u, din1u: unsigned(width_dout-1 downto 0); -- input signals for which MSBs are fill width 0s or 1s

begin
-- shifting din0 signal if shift_din0

  din0sh(width_din0sh-1 downto shift_din0)<= din0;
  shift1:
  if shift_din0 > 0 generate
  din0sh(shift_din0-1 downto 0)<= conv_unsigned(0, shift_din0); -- fill with zeros
  end generate;

  i0g: if width_din0sh > width_dout generate -- the width of din0 is greater than the width of dout (unusual case)
  din0u(width_dout-1 downto 0)<= din0sh(width_dout-1 downto 0);
  end generate;
  -- fil ling MSBs of din0 with either 0s or sign
  i0a: if width_din0sh <= width_dout generate
    din0u(width_din0sh-1 downto 0)<= din0sh;
    i0: if width_din0sh<width_dout generate -- fill MSBs with either zeros or sign
      i0f: for i in width_din0sh to width_dout-1 generate -- for every not assigned MSB
    i0u: if sign=0 or sign=2 or sign=4 or sign=6 generate -- din0 is unsigned
    din0u(i)<= '0';
    end generate;
    i0s: if sign=1 or sign=3 or sign=5 or sign=7 generate -- din0 is signed
    din0u(i)<= din0sh(width_din0sh-1); -- sign bit
    end generate;
   end generate; end generate; end generate;

  i1g: if width_din1 > width_dout generate -- unsual case - the width of the adder is reduced
din1u(width_dout-1 downto 0)<= din1(width_dout-1 downto 0);

  end generate;
  -- fil ling MSBs of din1 with either 0s or sign
  i1a: if width_din1 <= width_dout generate
   din1u(width_din1-1 downto 0)<= din1;
   i1: if width_din1<width_dout generate -- fill MSBs with either zeros or sign
    i1f: for i in width_din1 to width_dout-1 generate -- for every not assigned MSB
    i1u: if sign=0 or sign=1 or sign=4 or sign=5 generate -- din1 is unsigned
    din1u(i)<= '0';
    end generate;
    i1s: if sign=2 or sign=3 or sign=6 or sign=7 generate -- din1 is signed
    din1u(i)<= din1(width_din1-1); -- sign bit
    end generate;
   end generate; end generate; end generate;

  -- insert adder
  a: if sign<=3 generate

dout<= din0u + din1u;
  end generate;

  -- insert subtractor
  s: if sign>=4 generate

dout<= din0u - din1u;
  end generate;
end adder_arch;
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An example of VHDL-like templates

The C program reads the following file in order to generate an adders tree description

(e.g. entity ass2, ac3 or al). The final adders tree description is combination of the VHDL-like

template and text inserted by the C program. The procedure is as follows. The C program

reads the VHDL template file and copies directly fragments of between ‘#’ symbol.

Whenever ‘#’ symbol is found, the C program inserts variable (depending on the AuToCon

input parameters) text.

library IEEE;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_1164.all;

entity # is
  port(clk, ce: in std_logic;
# dout: out unsigned(# downto 0));
end #;

architecture #_arch of # is
  component adder
    generic(width_din0: integer;
    width_din1: integer;
    width_dout: integer;
    sign: integer;
    shift_din0: integer);
    port (din0: in unsigned(width_din0-1 downto 0);
        din1: in unsigned(width_din1-1 downto 0);
        dout: out unsigned(width_dout-1 downto 0));

end component;
  component  ffg – flip flops

generic(width: integer);
port(clk, ce: in std_logic;

din: in unsigned(width-1 downto 0);
dout: out unsigned(width-1 downto 0));

end component;

  type arr is array (# downto 0) of unsigned(# downto 0);
  signal ff_out, add_out, alone: arr;

begin
#
end #_arch;

The final VHDL description generated by the C program

Adder D9 in Figure 5-8.
library IEEE;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_1164.all;

entity ass2 is
  port(clk, ce: in std_logic;

din0: in unsigned(3 downto 0);
din1: in unsigned(3 downto 0);
dout: out unsigned(9 downto 0));

end ass2;

architecture ass2_arch of ass2 is
 [ ...] components declaration

type arr is array (3 downto 0) of unsigned(9 downto 0);
  signal ff_out, add_out, alone: arr;

begin
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  ff_out(0)(3 downto 0)<= din0; -- shift= 0, min= 0, max= 15, correl= -1, add
  ff_out(1)(3 downto 0)<= din1; -- shift= 5, min= -15, max= 0, correl= -1, subtract

--level of logic= 0
  ff_out(0)(4)<= '0'; -- din1 is only negated
  add_out(2)(4 downto 4)<= conv_unsigned(0, 1);
  add2: adder

generic map (width_din0=>1, width_din1=>4, width_dout=>5, sign=>4, shift_din0=>0)
port map(din0=>ff_out(0)(4 downto 4), din1=>ff_out(1)(3 downto 0), dout=>add_out(2)(9 downto 5));

  add_out(2)(4 downto 0)<= ff_out(0)(4 downto 0);
  ff_out(2)(9 downto 0)<= add_out(2)(9 downto 0);

  dout<= ff_out(2);
end ass2_arch;

Adder D8 in Figure 5-8.
library IEEE;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_1164.all;

entity ac3 is
  port(clk, ce: in std_logic;

din0: in unsigned(3 downto 0);
din1: in unsigned(3 downto 0);
dout: out unsigned(6 downto 0));

end ac3;

architecture ac3_arch of ac3 is
  [ ...] components declaration
  type arr is array (3 downto 0) of unsigned(6 downto 0);
  signal ff_out, add_out, alone: arr;

begin
  ff_out(0)(3 downto 0)<= din0; -- shift= 2, min= -15, max= 0, correl= -1, subtract
  ff_out(1)(3 downto 0)<= din1; -- shift= 0, min= 0, max= 15, correl= -1, add

--level of logic= 0
  add2: adder

generic map (width_din0=>2, width_din1=>4, width_dout=>5, sign=>4, shift_din0=>0)
port map(din0=>ff_out(1)(3 downto 2), din1=>ff_out(0)(3 downto 0), dout=>add_out(2)(6 downto 2));

  add_out(2)(1 downto 0)<= ff_out(1)(1 downto 0);
  ff_out(2)(6 downto 0)<= add_out(2)(6 downto 0);

  dout<= ff_out(2);
end ac3_arch;

The final adder

library IEEE;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_1164.all;

entity al is
  port(clk, ce: in std_logic;

din0: in unsigned(9 downto 0);
din1: in unsigned(9 downto 0);
din2: in unsigned(3 downto 0);
din3: in unsigned(3 downto 0);
din4: in unsigned(3 downto 0);
din5: in unsigned(3 downto 0);
din6: in unsigned(3 downto 0);
din7: in unsigned(3 downto 0);
din8: in unsigned(3 downto 0);
din9: in unsigned(10 downto 0);
din10: in unsigned(1 downto 0);
din11: in unsigned(7 downto 0);
din12: in unsigned(1 downto 0);
din13: in unsigned(2 downto 0);
dout: out unsigned(13 downto 0));

end al;

architecture al_arch of al is
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  [ ...] components declaration
 type arr is array (27 downto 0) of unsigned(13 downto 0);
  signal ff_out, add_out, alone: arr;

begin
  ff_out(0)(9 downto 0)<= din0; -- shift= 0, min= -15, max= 480, correl= -2, subtract
  ff_out(1)(9 downto 0)<= din1; -- shift= 2, min= -15, max= 480, correl= -2, subtract
  ff_out(2)(3 downto 0)<= din2; -- shift= 6, min= 0, max= 15, correl= -1 (no correlation), add
  ff_out(3)(3 downto 0)<= din3; -- shift= 1, min= 0, max= 15, correl= -1, add
  ff_out(4)(3 downto 0)<= din4; -- shift= 0, min= 0, max= 15, correl= -3, add
  ff_out(5)(3 downto 0)<= din5; -- shift= 3, min= -15, max= 0, correl= -3, subtract
  ff_out(6)(3 downto 0)<= din6; -- shift= 0, min= 0, max= 15, correl= -4, add
  ff_out(7)(3 downto 0)<= din7; -- shift= 3, min= 0, max= 15, correl= -4, add
  ff_out(8)(3 downto 0)<= din8; -- shift= 1, min= 0, max= 15, correl= -1, add
  ff_out(9)(10 downto 0)<= din9; -- shift= 0, min= 0, max= 1293, correl= 13, add, min_cor= -720, max_cor= 2925
  ff_out(10)(1 downto 0)<= din10; -- shift= 3, min= 0, max= 3, correl= 13, add, min_cor= -720, max_cor= 1632
  ff_out(11)(7 downto 0)<= din11; -- shift= 3, min= 0, max= 225, correl= 13, add, min_cor= -720, max_cor= 1608
  ff_out(12)(1 downto 0)<= din12; -- shift= 7, min= 0, max= 3, correl= 13, add, min_cor= -768, max_cor= 0
  ff_out(13)(2 downto 0)<= din13; -- shift= 8, min= -3, max= 0, correl= -1, add

--level of logic= 0
  add14: adder

generic map (width_din0=>4, width_din1=>4, width_dout=>5, sign=>0, shift_din0=>0)
port map(din0=>ff_out(4)(3 downto 0), din1=>ff_out(6)(3 downto 0), dout=>add_out(14)(4 downto 0));

  ff_out(14)(4 downto 0)<= add_out(14)(4 downto 0);

  add15: adder
generic map (width_din0=>4, width_din1=>10, width_dout=>10, sign=>6, shift_din0=>1)
port map(din0=>ff_out(3)(3 downto 0), din1=>ff_out(0)(9 downto 0), dout=>add_out(15)(9 downto 0));

  ff_out(15)(9 downto 0)<= add_out(15)(9 downto 0);

  add16: adder
generic map (width_din0=>10, width_din1=>4, width_dout=>10, sign=>0, shift_din0=>0)
port map(din0=>ff_out(9)(10 downto 1), din1=>ff_out(8)(3 downto 0), dout=>add_out(16)(10 downto 1));

  add_out(16)(0 downto 0)<= ff_out(9)(0 downto 0);
  ff_out(16)(10 downto 0)<= add_out(16)(10 downto 0);

  add17: adder
generic map (width_din0=>2, width_din1=>10, width_dout=>10, sign=>6, shift_din0=>1)
port map(din0=>ff_out(10)(1 downto 0), din1=>ff_out(1)(9 downto 0), dout=>add_out(17)(9 downto 0));

  ff_out(17)(9 downto 0)<= add_out(17)(9 downto 0);

  add18: adder
generic map (width_din0=>4, width_din1=>4, width_dout=>5, sign=>4, shift_din0=>0)
port map(din0=>ff_out(7)(3 downto 0), din1=>ff_out(5)(3 downto 0), dout=>add_out(18)(4 downto 0));

  ff_out(18)(4 downto 0)<= add_out(18)(4 downto 0);

  add19: adder
generic map (width_din0=>4, width_din1=>2, width_dout=>5, sign=>0, shift_din0=>0)
port map(din0=>ff_out(11)(7 downto 4), din1=>ff_out(12)(1 downto 0), dout=>add_out(19)(8 downto 4));

  add_out(19)(3 downto 0)<= ff_out(11)(3 downto 0);
  ff_out(19)(8 downto 0)<= add_out(19)(8 downto 0);

  add20: adder
generic map (width_din0=>2, width_din1=>3, width_dout=>3, sign=>2, shift_din0=>0)
port map(din0=>ff_out(2)(3 downto 2), din1=>ff_out(13)(2 downto 0), dout=>add_out(20)(4 downto 2));

  add_out(20)(1 downto 0)<= ff_out(2)(1 downto 0);
  ff_out(20)(4 downto 0)<= add_out(20)(4 downto 0);

--level of logic= 1
  add21: adder

generic map (width_din0=>5, width_din1=>11, width_dout=>11, sign=>0, shift_din0=>0)
port map(din0=>ff_out(14)(4 downto 0), din1=>ff_out(16)(10 downto 0), dout=>add_out(21)(10 downto 0));

  ff_out(21)(10 downto 0)<= add_out(21)(10 downto 0);

  add22: adder
generic map (width_din0=>7, width_din1=>5, width_dout=>8, sign=>3, shift_din0=>0)
port map(din0=>ff_out(15)(9 downto 3), din1=>ff_out(18)(4 downto 0), dout=>add_out(22)(10 downto 3));

  add_out(22)(2 downto 0)<= ff_out(15)(2 downto 0);
  ff_out(22)(10 downto 0)<= add_out(22)(10 downto 0);
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  add23: adder
generic map (width_din0=>6, width_din1=>5, width_dout=>7, sign=>3, shift_din0=>0)
port map(din0=>ff_out(17)(9 downto 4), din1=>ff_out(20)(4 downto 0), dout=>add_out(23)(10 downto 4));

  add_out(23)(3 downto 0)<= ff_out(17)(3 downto 0);
  ff_out(23)(10 downto 0)<= add_out(23)(10 downto 0);

--level of logic= 2
  add24: adder

generic map (width_din0=>11, width_din1=>11, width_dout=>12, sign=>2, shift_din0=>0)
port map(din0=>ff_out(21)(10 downto 0), din1=>ff_out(22)(10 downto 0), dout=>add_out(24)(11 downto 0));

  ff_out(24)(11 downto 0)<= add_out(24)(11 downto 0);

  add25: adder
generic map (width_din0=>10, width_din1=>9, width_dout=>11, sign=>1, shift_din0=>0)
port map(din0=>ff_out(23)(10 downto 1), din1=>ff_out(19)(8 downto 0), dout=>add_out(25)(11 downto 1));

  add_out(25)(0 downto 0)<= ff_out(23)(0 downto 0);
  ff_out(25)(11 downto 0)<= add_out(25)(11 downto 0);

--level of logic= 3
  add26: adder

generic map (width_din0=>10, width_din1=>12, width_dout=>12, sign=>3, shift_din0=>0)
port map(din0=>ff_out(24)(11 downto 2), din1=>ff_out(25)(11 downto 0), dout=>add_out(26)(13 downto 2));

  add_out(26)(1 downto 0)<= ff_out(24)(1 downto 0);
  ff_out(26)(13 downto 0)<= add_out(26)(13 downto 0);

  dout<= ff_out(26);

end al_arch;

The final circuit description

library IEEE;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_1164.all;

entity conv is
   port(clk: in std_logic;

din0: in std_logic_vector(3 downto 0); -- input data (for different lines)
dout: out std_logic_vector (13 downto 0) );  --output

end conv;

architecture conv_arch of conv is
  constant width_din: integer:= 4; -- width of din
  constant width_dout: integer:= 14; -- width of dout

  [ ...] components declaration
function my_conv_unsigned(din: std_logic_vector) return unsigned is – convert std_logic to unsigned
    variable dout: unsigned(din'range);
    begin

for i in din'range loop
dout(i):= din(i);

end loop;
      return dout;
  end;

  type dinu_arr is array(0 downto 0) of unsigned(width_din-1 downto 0); -- input converted to unsigned
  signal dinu: dinu_arr;
  type data_arr is array(14 downto 0) of unsigned(width_dout-1 downto 0);-- data for adders and DAs
  signal data: data_arr;
  signal douta, doutff : unsigned(width_dout-1 downto 0);
  signal zero, one: std_logic;
  signal ce: std_logic;

begin
  zero<= '0';  one<= '1';
  dout<= conv_std_logic_vector(doutff , width_dout);
  ce<= '1';

-- line 0
  dinu(0)(3 downto 0)<= my_conv_unsigned(din0);
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  ffd0: ffg generic map (width_din)
port map (clk, ce, dinu(0), data(0)(width_din-1 downto 0));

  ff1: ffg generic map (width=>4)
port map(clk=>clk, ce=>ce, din=>data(0)(3 downto 0), dout=> data(1)(3 downto 0));

  ff2: ffg generic map (width=>4)
port map(clk=>clk, ce=>ce, din=>data(1)(3 downto 0), dout=> data(2)(3 downto 0));

  ff3: ffg generic map (width=>4)
port map(clk=>clk, ce=>ce, din=>data(2)(3 downto 0), dout=> data(3)(3 downto 0));

  ff4: ffg generic map (width=>4)
port map(clk=>clk, ce=>ce, din=>data(3)(3 downto 0), dout=> data(4)(3 downto 0));

  ff5: ffg generic map (width=>4)
port map(clk=>clk, ce=>ce, din=>data(4)(3 downto 0), dout=> data(5)(3 downto 0));

  ff6: ffg generic map (width=>4)
port map(clk=>clk, ce=>ce, din=>data(5)(3 downto 0), dout=> data(6)(3 downto 0));

  ff7: ffg generic map (width=>4)
port map(clk=>clk, ce=>ce, din=>data(6)(3 downto 0), dout=> data(7)(3 downto 0));

-- Adders and DAs
  a8: ass2

port map(clk, ce, data(0)(3 downto 0), data(2)(3 downto 0), data(8)(9 downto 0) );

  a9: ac3
port map(clk, ce, data(4)(3 downto 0), data(5)(3 downto 0), data(9)(6 downto 0) );

  d10: da4g generic map( -- output shift= 0
coeff0=> 183, coeff1=> 366, coeff2=> 12, coeff3=> 732, width_dout=> 11, insert_ff=> 0)
port map (clk=>clk, ce=>ce,
din0=> data(1)(0), din1=> data(1)(1), din2=> data(9)(0), din3=> data(1)(2), dout=> data(10)(10 downto 0));

  d11: da1g generic map( -- output shift= 3
coeff0=> 3, width_dout=> 2, insert_ff=> 0)
port map (clk=>clk, ce=>ce,
din0=> data(9)(1), dout=> data(11)(1 downto 0));

  d12: da4g generic map( -- output shift= 3
coeff0=> 183, coeff1=> 6, coeff2=> 12, coeff3=> 24, width_dout=> 8, insert_ff=> 0)
port map (clk=>clk, ce=>ce,
din0=> data(1)(3), din1=> data(9)(2), din2=> data(9)(3), din3=> data(9)(4), dout=> data(12)(7 downto 0));

  d13: da1g generic map( -- output shift= 7
coeff0=> 3, width_dout=> 2, insert_ff=> 0)
port map (clk=>clk, ce=>ce,
din0=> data(9)(5), dout=> data(13)(1 downto 0));

  d14: da1g generic map( -- output shift= 8
coeff0=> -3, width_dout=> 3, insert_ff=> 0)
port map (clk=>clk, ce=>ce,
din0=> data(9)(6), dout=> data(14)(2 downto 0));

  a: al
port map(clk, ce, data(8)(9 downto 0), data(8)(9 downto 0), data(0)(3 downto 0), data(2)(3 downto 0),
data(3)(3 downto 0), data(3)(3 downto 0), data(6)(3 downto 0), data(6)(3 downto 0),
data(7)(3 downto 0), data(10)(10 downto 0), data(11)(1 downto 0), data(12)(7 downto 0),
data(13)(1 downto 0), data(14)(2 downto 0), douta(13 downto 0) );

  ffout: ffg generic map (14)
port map (clk, ce, douta(13 downto 0), doutff (13 downto 0));

end conv_arch;
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