Parameterised automated
generation of convolers

Implemented in FPGASs

Ernest Jamro

Supervisor
dr hab. inz. Kazimierz Wiatr, prof. n. AGH

A DISERATION SUBMITED TO
UNIVERSITY OF MINING AND METALL URGY
DEPARTMENT OF ELECTRONICS
INFULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Krakow, Poland
June 2001

Abstract

Silicon techndogy now alows us to buld chips consisting of tens of millions of
transistors. As a result, more and more projeds are cnstrained by the design time and
complexity rather than available diip resources. This thesis describes a (C++ based)
Automated Tod for generation 2dimentional Convders (2D FIR filters) implemented in
FPGAs (AuToCon). The AuToCon can automaticdly generates a VHDL description d a
wide range of convders giving the list of parameters, such as. an inpu width, a convdution
kernel size, coefficient values, a pipelining option, etc.

A novel synthesis approach has been propased: the AuToCon dces not assume ay cost-
relations between available memories, adders, multiplexers and flip-flops resources, these
values are inpu parameters to the AuToCon. Even dfferent memory types can be freely
defined. Consequently, migration from one device family to ancther is rather effortless
Furthermore, within the same FPGA, cost-relations between dfferent resources might differ
and depend onthe number of avail able resources (some resources might be dready all ocated
by other designs incorporated into the same FPGA). Therefore, the AuToCon generates
different circuits, i.e. all ocates diff erent resources, according to the cst-relations between the
FPGA resources.

FPGAs, in comparison to ASICs, can be quickly reconfigured, therefore design
functionality can be significantly improved by constant propagation through functional
reconfiguration. In the curse of this work, different architedures have been studied: constant
coefficient architedure, where mefficient values are built-in the drcuit. This architedure is
the most hardware dficient, howvever any coefficient change requires the drcuit to be
redesigned. The second solution is variable wefficient option (usage of fully functional
multi pliers) which consumes much more dip-areg bu coefficient can be danged withou
restrictions. Thereis also a mid-way solution for which coefficient is dynamically changed by
employing in-circuit reconfiguration.

The AuToCon considers awide range of possble architectures, employing sophsticaed
optimisation techniques uch as exhaustive seach, gealy algorithms, smulated anneding
and genetic programming. These techniques have been employed e.g. to ogtimise the adders
tree As a result, the AuToCon daes nat only significantly reduces design time but also a
generated circuit is, in most cases, more hardware dficient than a hand-crafted cournterpart
and comparable mmmercia solutions.

The greatest effort has been pu into development of the AuToCon. Neverthelessthis
thesis presents a wide range of novel architecural solutions and algorithms, such as. a novel
binary to Cannoric Sign Digit conversion algorithm, usage of different memory modues,
implementation o dual port memories for Dynamic Constant Coefficient Multipliers and
adaptive systems, extensive usage of Multiplierless Multiplicaion in FPGAs, advance
optimisation techniques for LUT-based Multi plicaion, nowe structure of Irregular Distributed
Arithmetic Convder, and the dgorithm which trade-offs between multiplierless and LUT-
based convdution.

In the ourse of this work, implementation o the cnvder on dfferent architectures,
such as general-purpose processors, DSPs, dedicated VLSI convders and FPGAS, has been
presented. As aresult, FPGA implementation wsually outperforms the other solutions, and the
developed synthesis tod significantly reduces design time and hardware requirements of a
convder. In conclusion, as convdution a similar operations (e.g. a sum-of-products) are
fundamental operationsin most digital signa processng systems, this work might be acrucial
contributionin eledronic digital designs.

Acknowledgement

I would like to- thank professor Kagimiery Wiatr for
his considerable support guidance and expertise
throughout the duratiow of the project.

GLOSSARY OF TERMS ..ot eaas 7
THE SIS o e ettt e e e e e et a e 10
1. INTRODUCGCTION. ... ittt e e e e e e an e eaaas 11
1.1, CONVOIULION OPEIALION......eeiiiiiitiiiiee et ieeet ettt e e e sttt e e e st b r et b e e e e e s st be e e e e s s aabbenaesbeeeeeessbbrneeeeeaas 11
1.2. DeSIgN AULOMEBIEA TOOISeeiiiiiiiiiiiiee ittt ieeet et e ettt e et eenb et e e s s s e e e e e e e aas b enenss e e e e e s annnneeeens 12
1.3. OVerview Of the theSiS.ottt e et e e e e e e e eeet e e e e e e e e e aaaaaeaaaeaan 14
2. DIFFERENT MACHINES IMPLEMENTING CONVOLUTIONcccooevviiieeeis 15
2.1, GENETAl PUIPOSE PIOCESSIN S..uitveeeeeeeiutteeeeeeesaeeeaastbe e e e e e s st bbbt e e e s s aeees s beeeeeeesabbbeeeeesaamnnaasbbeeeeeesane 15
P80 5t I o o o 1010 o] | oo [PP EPPURUR 16
2.1.2. SUPErSCA@r arChIitEOUIEeeeieeeeeeii e e e 17
2.1.3. Very Long Instruction Word (VLIW) ...ttt e e e e e e aeaaeens 20
20 S 11 0 PSRRI 21
2.1.5. IMpPlemeNtation FESUIES.ii et ee oottt e e ettt et et e e e e eeasebseeeeeeeeeeaeas 23
2.2. Digital Signal ProCESIONS (DSPS) ..uvvvvrriiiiiiiiiiiiieeeieeeeesreetettettaeaeaaesaassssssmntaaaaeaaasasssssaassnnsnneeeseesees 24
2.2. 1. Parall € PrOCESTOISueeiiieiiiiiieie e e et e ettt e ettt e e e st e e et b e e e e s snbbbe e e e e e s s ne e nsbbeeeeesannstneeaeean 24
2.2.2. DSP TIMS320C80cutteeitieiiitieeteeeamte e s ettt eeae s s aeebe et e eaamta e s e nnbb e e e e e s e nsbb e e e eenmteeseanbbeeeeeeeanneeeas 28
PR R T = S A = (PRSPPI 30
2.3. Dedicated VL SI ConVOlULION ProCESTONS........uuuiiiiiiiiiiiiee et ieee sttt e ettt ee e e s smmee s e e e e s annnaeeeas 32
2.4. Field Programmable Gate At @YS (FPGAS)cccceeeiiiiiiiieieeeee s eesstaiteetrseee e e eeeaeeaeeessesaeseeaeaaaaaaeaeees 34
PR ©7o o T 11 Lo LT TP PSP RRTR 36
3. CONSTANT COEFFICIENT MULTIPLICATION (KCM)....cvvvviiiiiiieeeeeeeeeeiiiinnnn 39
3.1. Multiplierlessmultiplication (MM).......ccoiiiiiiiiiiicccccceree e e ee s eee e e e s anenrenes 40
3.1.1. Canonic Signed Digit REPreSentationccccuvvvriiirieeeieeerieerierinrrreererereessesessnssesereeeeesseeeeeeese 40
3.1.2. Modified algorithm for conversion to the CSD representation...........cccccvvvvvrrreeeeeeesrsennrenrnenneeeens 42
TN TS o1 1 0ot (1= 7= o P 44
3.1.4. EXPENMENLA FESUITS. ... uuveieiieiiiiiiee e ettt e e e e e s e rmeee e e e e e e s e e s e e e e es s s snnnnneeneennenees 44
3.2. LUT based MUltiplication (LM)cooicuiiiiiiiiiiiiiiie et ermee e e e e sinneeeeenmee e 4O
A I o (o1 o SO PRSP PPOUTT PR 46
3.2.2. IMPlEMENALTION TN FPGAS. ...ttt ettt ettt e e e e e e e e e ettt e e e e e e e e e e e e e s e e e e e nnneaeaaeeeeaa s 47
3.3. Comparison Of tNE MUITIPITEN S....ccii i 52
G I Y (= N TS PP 52
T S o= < PP PRRTPPPPRPPN 53
K3 B o] (o 11 = o] £ PRSP SPPR 54
4. ARCHITECTURES OF MULTIPLIERS 56
4.1. Dynamic Constant Coefficient Multiplier (DKCM)oiiiiiiiiiiieiiiiieeeiee e e 57

-4-

i \V o To VY U o] == SRR 58

4.3. RAM programming UNit (RPU)cooiiiiiiiiiiiie s s s e e e e e e e e et enee e eeaes s s e e e e e e e snnenaaaeeeas 58
4.4. Implementation resultSfor the DKCMcoooiiiiiiiiie e e e e e e e aeaees 60
4.5. Implementation of the DKCM VersuSthe KCMouuuiiiiiiiiiie e 64
4.6. Implementation of the DKCM VErsuUSTNEVCMcoouiiiiiiiiiii e 65
R @] o [1= o g TP 69
5. CONVOLUTION IN FPGASot 71
DL PrEVIOUS WO KS. ..ttt ettt ettt ettt e e e bbbt ese e e e e e e e e eearene 71
5.2. Symmetry of Convolution CoeffiCIENTS..........coiviiiiiiiicrrs e reee e eee D
5.3. LUT based CoNVOIEE (LC) ...oiiiiiiieeiiieiiis et s st e e e e e e et et mmme e e s e e s e e e e e aeeeanansaeaeeaaeeeennnnes 14
TG I I o (o1 o O PRSP PPUUTT PP RROP 74
5.3.2. Congtant coefficients LUT based Convoler (KLC).......uuuuiiiiiiiiiiiiaiei et 76
5.3.3. Dynamic Constant coefficients LUT based Convoler (DKLC)uuviiiiiiiiiiiiiieiieiieeieeeeeeeeeeaee e, i
5.4. Distributed Arithmetic CONVOIEr (DAC) ...coieiiiiiie ittt 78
S O o o o 78
5.4.2. Irregular Distributed Arithmetic Convoler (IDAC)ooooveeeeie e ccceeeee e e e 79
5.5. MultiplierlesSSCONVOIULION (M C)ciiiiiiiiiiiiiee ittt ettt eeei et e e ennbseeeseeee e 81
5.5.1. SUDSLIUCIUIrE SHariNg (S .. uueeuereririiiiiiieiiieeeeeeeietie e e e e e e staeae e e e s s saareetaataaaaaeaaeassasssssnnneaeaaesesaanan 81
5.6. IDAC VEISUSIM C....ceeeiee ettt et e e e e e et e et e e e e e mmt et e e e e e r e e e e e e e e aeee s 84
5.7, IMPIemMENtation RESUITS........uueiiii et ereere e e e e e e e e e e e e e e e e e era e n e e e eeeaaes 87
5.7.1. Canonic Sign Digit (CSD) CONVEISION.......uuuiiiiiiiiiiiaiee et a e e e e e rmmme e e e e e e e e e e e aeneeeed 87
5.7.2. SUD-SIrUCUFE SharNG (S . eeeeeiiiiiieei ettt et e e e e e eaanneenbeeeeeees 87
5.7.4. Irregular Distributed Arithmetic CONMVOIENuuuiiiiiiiieiii e 91
5.7.5. Approximated coefficients' cost for the MC and IDACccoooiiiiiiiiiiiieees e eeeas 92
5.7.6. MC VS. IDAC AlQOITM......oiiiie it e e e s e e e e e s aneren e nnneeneees 95
o3RS I ©o T 11 o LSO 98
6. OPTIMISATION OF THE ADDERS TREEcovvii e 99
6.1. Implementation of addersSin FPGAS........coooviiiii e ennr e e e e e e e e e e anennas 99
LA o (o [o) g o =T =T 1= = RPN 101
B.2. 1. INPUL PAIBIMELENS. ... eeeeeiettte ettt e e e e e e e e e ee ettt s bmmme et eeestbeba e e e e e e e e e aaaassaeeeeaaeeeeesssnnnnnnnns 101
6.2.2. Correlation DEWEE INPULScoii i eees s e s ereese st e e e e e eeeeaaeeeeenseneeeeees 101
6.2.3. Summary Of the iNPUL ParamELErScccuueeiiiiiiieeeeeeceeeeter e e e e e e e e eeentreeeeeerreataeaeaeeeeessamnns 105
6.2.4. AQUItION IFEESITUCLUIEeii ittt et ettt e e st eeeb et e e s s s bt e e e e e e st e ensbbeeeeeeennneees 106
B.2.5. FIlt OIS EXAMPIE ... ittt ceeet e e et e e e e eeet e et et et eeeaeeeeae e s s et e eaaeaaaaeeeeeaeeaaaanns 107
6.3. Greedy algorithm.. ..ottt e e aan 108
B.4. EXNAUSLIVE SEAICI ...ttt te e ettt e e et e e e e eeetee e et e e e e e e aaaaeaaeaeeaeaan 109
L I o (o1 o AT SPUPPPTUTTTTPP 109
6.4.2. CONSIraiNEd SEACN (CG) ..ceeieiiiieiieaeee ettt e et eee s nnnnnnnreee 110
6.4.3. IMplementation RESUILS. ...ttt et e e e e e e e e e e e e e ammr e e e e aaaeaeeaeas 111
6.5. Simulated ANNEAIING (SA) ..ieeeeiiiiiiiiie ettt reeer e e s e e e e eeaeeeeeestesmnnreeeessrannnnnnns 112
LRI I = 1o o] = TP PPPPSRRPPR 112

6.5.2. IMpPlemMENtAtioN FESUILS.......iii ettt e e e ettt e e e e e eaeansen b e s eeeeeeeas 114

6.6. GeNetiC Programming (GP)c oot e e e e e e e e ae e et e e e e e e e e e e e aa e et enrnn e as 115
6.6.1. ENCOOING SCNEIME ...ttt ettt ettt et e e e e e e e e e e s sareeeeaaeaaaaaaaaaaeaanan 115
B.6.2. FItNESS @VAIUBLION. ...ttt eee ettt et e e ee ettt ettt e e e e e aaaaaeeeesaareeeeaaaaaaaaaaaaaaaaaan 116
L TS = =T 1o o P EPPPSRRRPPP 116
B.6.4. CIOSSIVESuutiitiiiiieeeeeet ittt e e eeees ettt ettt et et teeeeeeesiaar e ettt et e e e e e e e e e e et e e aa e amnne e e e e e e e e e e e e e e e e b e nne e s 116
LGS T IV U = (o o B TP URR 120

6.7, IMPlEMENTALION FESUITS.eeiiiie ittt e e et e e e s smme e s et e e e e e e enenees 121

B.8. CONCIUSIONS. ...ttt et eeeee ettt ettt e et e e e e e e e e eeaseee e e et e eaeaeaeaeeseeaa s st e eaaaaaaeeeesaeaaaaannnannaeeeeeeens 122

7. CONCLUSIONS et e e e eaaes 123

APPENDIX A. BRIEF DESCRIPTION OF THE AUTOCON.......cccovviiiiiieiieeean, 128

REFERENGCES ...t eea e eaas 137

Glossary of terms

ALU — Arithmetic & Logic Unit

ASIC — Application Spedfic Integrated Circuit

AU — AddressUnit

AuToCon —Automated Tod generating Convdersimplemented in FPGAs
BR — Binary Representation

BSR —Block SeledRAM — large memory modue (e.g. in Virtex 4kb DP RAM)
Cccm — Configurable Computing Madine

CLB — Configurable Logic Block

CsS — Constrained Seach

CsD — Canoric Sign Digit

DAC — Distributed Arithmetic Convder

DAWR —Don't Care AddressWidth Reduction

DEA —Dired External Access

DKCM —Dynamic Constant Coefficient Multiplier

DKCM-D —DKCM with Dua Port RAM

DKCM-L —DKCM for which multiplexingisin logic (in CLB)
DKCM-P —DKCM for which two paral e set of RAMs are incorporated
DKCM-T —DKCM for which multiplexing isin tri-state buffers

DKLC — Dynamic Constant coefficients LUT based Convder
DMA —Dired Memory Access

DP — Dual Port (Memory)

DSP — Digital Signa Processor

DU — Data Unit

ES — Exhaustive Seach

FIR — Finite Impulse Resporse (Filter)
FA —Full Adder

FF — Hip-Flop (usualy D-type)
FPGA — Field Programmable Gate Array
GA — Genetic Algorithm

GAU — Global AddressUnit

GP — Genetic Programming

GrA — Gredly Algorithm

HA —Half Adder

HDL — Hardware Description Language

HLC — Hardware Loop Control

IDAC — Irregular Distributed Arithmetic Convder

KCM — Constant Coefficient Multiplier

KLC — Constant coefficients LUT-based Convder

LAF — Loca Acceptance Function

LAU — Local AddressUnit

LAWR — LSB AddressWidth Reduction

LC — LUT-based Convder

LE — Logic Element — element which basicdly contains asingle 4-inpu LUT (and an
associated flip-flop), roughly 1LE = %2 CLB Xilinx XC4000= ¥ CLB Virtex

LHC — LUT based Hybrid Convder

LM — LUT based Multiplier

LSB — Least Significant Bit

LUT — Look-Up Table (Memory)

MAC — Multiply and ACcumulate

MC — MultiplierlessConvder

MCSD — Modified Canoric Sign Digit conversion algorithm

MM — Multiplierless Multiplier

MM X — MultiMedia eXtension

MP — Master Processor

MS —Memory Sharing

MSB —Most Significant Bit

PFCU — Program Flow Control Unit

RAM —Randam Access Memory

ROM — Rea Only Memory

SA — Simulated Anneding

SIMD — Single Instruction-stream Multi ple Data-stream

SCO — Similar Coefficients Optimisation

SP — Single Port (Memory)

SS — Substructure Sharing

SE — Streaming SIMD Extensions

TC — Transfer Controll er

TOC — Trade Off Coefficient — a oefficient for which estimated cost of the MC is
higher than for the IDAC

TSB — Tri-State Buffer

VC —Video Controll er

VCM — Variable Coefficient Multiplier (fully functional multi plier)

VHDL —Very (High Speed Integrated Circuit) Hardware Description Language
VLIW —Very Long Instruction Word

VLS —Very Large Scde Integration

Thess:

Parameterised automated generation of convolers implemented in
FPGAs allows for generation of convolers for different convolution
parameters, in particular: input data range, convolution kernel size
and coefficient values. Such an automated generation allows for
effective FPGA utilisation by exploiting device-specific features and
searching through different architectural solutions, allowing designer
to achieve optimal performance and resource usage while minimising
the need for knowledge of low-level details, and significantly

reducing design time.

-10-

1. Introduction

1.1. Convolution Operation

It is hard to enumerate aspects of electricd engineaing where filtering is employed.
Examples of filtering operations include noise suppresson, enhancement of selected
frequency range, bandwidth limiting, etc. Analog filters suffer from sensitivity to nadse,
norineaiti es, dynamic range limitations, inacaraaes due to variations in comporent values,
ladk of flexibility and imperfed repeaability [Por97]. Consequently, digital filters (and FIR
filters - convders) are getting more and more dtradive. The major drawbadk of digital filters
is high computational requirements, especially for high frequency signals. Red time image
processng is an example of such a system. This thesis concentrates on image @nvdution
(two dimension FIR filtering), honvever similar conclusions can be drawn for 1D filters,
matrix multiplication, a partialy onartificial neural networks, etc.

This thesis briefly reviews computing machines which implement convdution, and as
a result, Field Programmable Gate Arrays (FPGAS) seem to be one of the most suitable
architedura solutions [DeH98, Bos99]. Different architedural solutions can be alopted in
FPGAS, e.g. coefficient values can be cnstant [Wia00b], variable [Wal64], or dynamicdly
changed [W0j98]. Consequently, a part of this thesis describes and compares different
solutions.

A two-dimensional convdution (or a2D FIR filter) is gedfied asfollows:

1 N-1M -1

by+N/2, x+tM /2 — B ;]:Z hi,j my+i,x+] (1'1)

where: N, M — size of the convolution kernel (usually odd numbers), a,x—inpu, by x —ouput,

hi ; — coefficient of the anvolution, D —comnon cenominator.

In this thesis, the assumption is made that al variables in eq. 1.1 are integers, which
significantly smplifies the achitedure of the mnvder. This assumption seldom confines the
filter charaderistic which can be ajust by a proper change of coefficient values and a value
of the common denominator D. Furthermore the denominator D is assumed to be apower of

two, consequently the division is sbstituted by a bit-shift. In some solutions, even

-11-

coefficients h;; are apower of two [Gon87,Tad92 and a multiplication can be substituted by
an addition. Examples of such filtersare given in Figure 1-1.

a) D=16 b) D=1) D=1
1] 2] 1 1] 2] 1 1] 1] 1
2| 4| 2 0| 0| 0 1| -8 1
1] 2| 1 1] 2| 1 1] 1| 1

Figure 1-1. Examples of standad image processng convolution kernels which do na require
multi pli cation: a) low-passb) Solel gradient c) Laplacean edge detedion

Convdution is frequently a cmputationally demanding operation. For example, for
image parameters: resolution 512x512 (Nx= 512, Ny= 512), number of frames Ng= 25/s and
kernel size NxM= 3x3, real time image @mnvdution [Wia98, Zam94, Zam95] requires Ly=
NxMyMNMNM= 58 982 400multiplies and La= NxMyMNANM-1)= 52 428 800 additi ons per
semnd. Such the amount of operations is a dalenge for nowadays architedures.
Furthermore, the parameters of the convdution can change; e.g. the size of the convdution
kernel 3x3 is one of the smallest and dften larger kernels are adopted, e.g. 63x63. The image
resolution and the refresh rate might increase [Wia98], which significantly increases
computational requirements of the convder.

Due to the high-performance requirements of the mnsidered systems, the bit-parall el
approad has been adopted in this thesis. Nevertheless there ae bit-serial solutions as: serial
distributed arithmetic [Pei99, Min92], employing multi ply-accumulate unit [Cho93, or bit-
seria FIR filters[Har90, Val9g].

The given example of the red time image cnvdution is presented ony to ill ustrate
implementation problems. Nevertheless a wnvdution operation (or avery similar operation:
sum of products) is a fundamental operation which quick and efficient implementation is a
crucia fador for variety of systems. For example, the devel oped system can be enployed as a
part of an artificial neural network [Meh97, Tad93, matrix multiplication, etc. In conclusion,
there is great presaure to produwce afaster and faster convder to cope with new, more

computationally demanding requirements.

1.2. Design Automated Toadls

Silicon techndogy now alows us to buld chips consisting of tens of millions of
transistors. This techndogy promises new levels of system integration orto asingle cip, bu
also presents sgnificant challenges to the cip designer [Ke&d8]. As a result, many ASIC
developers and silicon vendas are re-examining their design methoddogies, seaching for
ways to make eff ective use of the huge numbers of gates now avail able. These designers e

-12-

current design tools and methoddogies as inadequate for developing million-gate from
scratch, and rew design strategies are under development such as high level synthesis[Ele9g],
hardware/software codesign [Stad7], design reuse [Ke&d8], and core-based design [Rox00Q].

A core can be soft, firm or hard [Gup97]. A soft core mnsists of a synthesizable HDL
(Hardware Description Language) description that can be retargeted to dfferent
semiconductor processes. A firm coreis basicdly defined ongate level netlist that is ready for
pladng and routing. A hard core includes layout and techndogy depending timing
information. Also anovel classof parameterised cores which produce awide range of soft (or
in some caes firm) cores $1oud be introduced. A parameterised core can automaticdly
generate awide range of implementations [Luk96, Jam97, Jam99]. The parameterised core
solution is espedally adequate for convders for which a wide range of inpu parameters is
well defined. For reconfigurable computing such a mre can be apart of arewnfigurable wre
[Rox00]. Remonfigurable mres consist of a configuration ceta stream plus oftware to modify
the configuration deta stream based oncustomisation required at run-time.

The Automated Tod for generation 2D convders implemented in FPGAs (AuToCon)
is an example of a parameterised core. The AuToCon incorporates a C++ written program,
some VHDL-like templates [Jam97] and predefined VHDL files. More detail ed description o
the system is included in Appendix A, and a similar design approach has been described in
[Jam97, Jam99, Jam0Q]. The hybrid solution d C and VHDL has been introduced
independently and amost at the same time by the aithor of this thesis [Jam97] and Bramer et.
a. [Brad7]; and proved to be an efficient way for generating parameterised libraries. The
major advantage of such a system is that parametric spedficaion o structural VHDL is
achieved by the use of the C++ written program. This is an important factor as high-level
synthesis tods are still under development [Ele98], and a high-level synthesised circuit is
usually lesshardware-efficient than a correspondng lower-level courterpart. Furthermore, the
generated VHDL files are additional intermediate products which are not parameterised and
therefore easier to be analysed, which alows for better testing and understanding the
generated circuit. The generated VHDL files also significantly improve deteding design
errors, espedally when developing the hybrid system. More detail ed argument for the hybrid
solutionisincluded in [Jam99, JamQ(Q].

The AuToCon nd only speeds up development time, bu also the generated circuit
outperforms hand-crafted ore or generated by comparable aitomated todls. Thisis satisfied as
novel architectural solutions have been introduced and advance seach through dfferent
solutions gives superiors results.

-13-

1.3. Overview of thethesis

The structure of this thesis is as follows. Chapter 2 describes different architecural
solutions which can implement convdution operation. General-purpose procesors, DSHs,
dedicated VLS| and FPGA solutions are overviewed and compared. In conclusion, according
to the author strong believe, FPGA solution is most promising, and therefore there will be a
strong demand for an automated tod that will generate a FPGA-based description d
convders.

In most cases convdution coefficient values are fixed, and multiplication is a basic
operation for convdution. Chapter 3 approaches a Constant Coefficient Multiplier (KCM)
and dfferent architedures performing the KCM, such as Multiplierless Multiplicaion (MM)
and LUT-based Multiplication (LM). Implementation results for these techniques together
with some achitedura modificaion are included.

Chapter 4 studies multiplier architedures for which coefficient change is a feasible
fador influencing circuit design. Therefore, the KCM and fully functional multiplier, and a
midde-way solution - Dynamic Constant Coefficient Multiplier (DKCM) are investigated and
optimal multi plier architedures for different reconfiguration ogions sudied.

Multiplication is basicdly a fundamental operation for convdution. However, there
are architectural solutions, e.g. the Distributed Arithmetic, for which multipliers are not
incorporated in the convdution. Alternatively, several multi pliers combine with ead other to
form a more optimised circuit. Chapter 5 describes nat only these architedures but also
studies phisticaed algorithms which search for optimal solutions.

Addtion is extensively employed duing convdution, eg. for multiplierless
multi plicaion a convdution, addition is the only arithmetic operation employed. Therefore
adders gructure substantialy influences the drcuit area. Chapter 6 studies different
algorithms which opimise alders tree, including exhaustive seach, geedy algorithm,

simulated anneding and genetic programming.

-14-

2. Different machines implementing convolution

This chapter briefly describes passble achitedures performing convdution operation,
espedally 2D image mnvdution. At first, general-purpose processor and DSP solutions are
approached. Then an example of dedicated VLSI solution is dudied, and finally FPGASs are
introduced. The major intention d this chapter is to present aternative solutions to FPGAS.
These solutions, acording to the author believe, are more or less sturated, i.e. great increase
of the hardware complexity results in the insignificant computational speed-up. Conversely,
FPGAs have been rapidly developed recently (much quicker than the other architedures) and
therefore FPGA solutions are getting more and more dtradive for implementation d
convdution (and aher digital signal processes).

2.1. General purpose procesors

Most commonly used general-purpose processor is a family of 8086 pocessors
[And95, Bre97]. These procesors have mplex architectures that are not optima for
convdution, however, they are commonly used, and therefore can be quickly and easily
adopted as a onvdution grocessor.

To illustrate the 2D convdution processon a general-purpose procesor, an example
of C-language procedureisgivenin Listing 2-1.

Listing 2-1 can be further optimised by the foll owing procedures:

1. theloopsunrolling

2. rewriting the convdution procedure in the assmbler language

3. rewriting the assembler language procedure with respect to the superscalar architecture of
the Pentium processor

4. employing MMX processor and its Single Instruction-stream Multiple Data-stream
(SIMD) [Fly66] architedure

-15-

Listing 21. C-language procedure for the convolution

const int M= 3, N=3; // the size of the convolution kernel: M- horizontal; N- vertical

const int Nx= 512, Ny= 512 // image resolution: Nx- horizontal, Ny- vertical

const int D= 16; // the comnon denominator (see . 1.1)

BYTE aNy+1+N][Nx]; // the source image which has been enlarged to eliminate padding effed. The actual
imageisfromline 1+ N/2 to Ny+N/2. The rest of image a is gedfied to minimise the padding effed.

BY TE b[Ny][Nx]; // the destination image

int wN][M]={1,2,1, 2,4,2, 1,2,1}; // coefficients of the anvolution gven in Figure 1-1a

void
convol2()
{ BYTE*pa= &a[0][Nx-M/2]; // the painter to the source pixds (paints top-left pixd of the conv. window)
BYTE *pb= &b[0][Q]; // the pointer to the destination pxd
for(int y= 0; y<Ny; y++) // for evay line of theimage
{ for(int x=0; Xx<NX; x++, pb++, pat++) // for evay pixd intheline
{ register BYTE *pw=w([Q]; // the painter to the wefficients.
register BY TE *pal=pa; // pointer to the current source pixd
register int sum= D/2; // accumulation result —initially D/2 to minimise divison roundng error
for(int i= 0; i<N; i++) // vertical convolution
{ for(intj=0; j<M; j++) // horizontal convolution
sum+= *pw++ * * pal++; // the kenel of the convolution
pal+= Nx-M; // palwill point thefirst pixd inthe nex line

sum/= D; // division by the ammnon denominator (D isa power of two so it is substituted by a hit-shit)
*pb=(BY TE) sum; // conversion fromint (4 bytes) to 1 byte variable, savethe result.

}
}
}

2.1.1. Loop unrolling

In most cases, the size of the wnvdution kernel is fixed and therefore the wnvdution
loops (loops: i and j in Listing 2-1—- haizontal and verticd part of the cnvdution) can be
easily unrolled by writing down NxM times the multiplication and addition operations. The
loopinstruction contains two aseembler instructions:

e dec decrement the loopcounter
e jnz condtiona jump.

The loop umolling causes not only fewer instructions to be exeauted bu also fewer
procesor stalls occur. The stalls are caused by the condtional jump instructions which
interfere with pipeline achitedure of the processor [Mad95, Hwa93]. The pipelining causes
that every instruction is exeauted partially in subsequent clock cycles. For example, Pentium
75 exeautes an instructionin 5stages [And93:

1. fetching
deaoding (stage 1)
deaoding (stage 2)

exeaution

a bk 0N

updating registers

-16-

Instructions foll owing a branch shall not be exeauted uriessthe branch is not taken. As
a result of pipelining, the branch is finaly exeauted in the last stage, however the branch-
following instructions (which depend onwhether the branch is taken or not) shoud be dso
partially exeauted according to the pipeline scheme. Consequently in 80486 and dder
procesors, the instruction foll owing a branch is not exeauted urtil the branch has been finally
exeauted. This caused the procesor stalls. To improve Pentium processors performance
branch prediction together with a Branch Prediction Buffer (BPB) [And95,Int97a] have been
introduced. Consequently, the processors can efficiently exeaute instructions following
branches to keep the instruction gpeline full [INt970]. The drawback of the branch prediction
is that branches are predicted incorrectly with a aertain probabili ty, p>0. Each misprediction
causes arestart of the pipeline, which has smilar effeds as nat fetching the instructions until
the branch isfinally exeauted.

To deaease misprediction ratio, Pentium 75 wses a two-bit up-down courter with
saturation to keep track of the diredion a branch is more likely to take [Smt81, And93.
Taking into acoourt the mnvdution process (Listing 2-1) and the @owve branch prediction
procedure, an assumption can be made that the processor will predict the loopto be exeauted
infinitely [Wia00a], therefore every loop-braking causes the processor stalls.

The penalty for misprediction is even greder for the latest processors, as the number of
pipeline stages has increased, e.g. Pentium Pro has 12 stages [Int970]. This is confirmed by
implementation results presented in Table 2-1 where t /t,= 1.42for P75, and 2.22for Athlon
800MHz; where: t, - cdculation time withou loop unalling, t, - with loop umalling. The 2-
bit up-down courter prediction scheme is rather primitive, and navadays more sophisticaed
branch prediction procedures have been demonstrated, e.g. by Evers et. a. [Eve98] where
branch prediction scheme can deted loops and an additional |oop counter isincluded.

It shoud be noted that loop umolling not only decreases the number of instructions to
be exeauted, eliminates branches and lkranch misprediction effeds but also improves

instruction level parall €lism, which will be gproached in the next sedion.

2.1.2. Superscalar architecure

In a superscdar procesor [Hwa93] multiple instructions pipelines are used. This
implies that multiple instructions are issued per cycle and multiple results are generated per
cycle. Superscdar procesors are designed to exploit more instruction level paralelism in a
user program.

In Pentium 75 (P75), the superscdar architedure was introduced [And93 which

incorporates two paral el integer processng units:

-17-

* Integer unit U
* Integer unit V

The number of paralel units has incressed in the latest processors. For example,
Pentium Pro incorporates three-way superscalar architecture [Int97l, Pentium 4 incorporates
Rapid Exeaution Engine [Int0OQ] for which the ALUs run two times the frequency of the
Processor core.

Taking into accourt the P75, two integer instructions can be exeauted in a single dock
cycle. However, some instructions canna be exeauted in paralel, e.g. ‘V’ unit canna exeaite
shift instructions or two multiplicaion canna be exeauted in paralel [And95, Int97a).
Besides, instruction-level parallelism is deteriorated by register contention, when e.g. the
result of a‘U’ instructionwhich is currently exeauted, isinput toa‘V’ instruction.

In conclusion, all units of a superscdar processor are not fully exploited. Only
independent instructions can be exeauted in parale withou causing await state and therefore
asuperscalar processor depends grongly onan ogimising compil er to exploit parall eli sm.

As aresult of the ébove mnclusions, Listing 2-2b presents an assembler code which
better exploits the superscdar architecture of the P75 [Wia9%,, Wia99b, Wial0aq).
Nevertheless optimised code (Listing 2-2b) is exeauted orly 10% quicker (see Table 2-1 for
the P75) than nonoptimised code (Listing 2-2a). This tiny improvement can be explained as
follows. The multiplicaionis a cmplex instruction which requires sveral clock cyclesto be
exeauted and canna be crried ou in paralel. Besides nonoptimised code can aso exploit
the superscdar architedure of the processor. For convdution filters withou multiplication,
the optimised code is exeauted 23% quicker.

To further exploit the superscdar architedure, speculative exeaution hes been
introduced in the latest procesors, which allows for out-of-order exeaution —a ade is
internally optimised for a superscdar architedure of the particular processor. Consequently, a
programmer need na optimise a ©de every time the number of paralel units increases.
Nevertheless for speculative exeaution and threeparall €l units, the cdculationtimeis sorter
(up to 8%, see Table 2-1) for the two-way optimised code than for the non-optimised code.
This is becaise, probably, the speaulative exeaution algorithm is not optimal, and the
optimised code is easier to be exeauted ou-of-order. Besides the number of instructions in the
loop hes been reduced from 37 to 35for the optimised code.

-18-

Listing 22. A fragment of a 3x3 convolution asembler code for a) scalar, b) superscalar

architedure
a)
/I pixd 3 (top-right pixd in the convolution window)
xor edx,edx // clear edx

mov dl, byte ptr [exx+2] // load data a (pixd 3)

imul edx,dword ptr [edi+8h]//multiply: pixd3 * w[0][2]

add e, edx // accumulate the result of the multi pli cation

/I pixd 4 (left middle pixd)

xor edx,edx // clear edx

mov dl, byte ptr [ecx+200h] // load [xd 4

imul edx, dword ptr [edi+0Ch] // edx= pixd4 * w{1][O]

add e, edx // accumulate the result of the multi plication
b)

xor edx, edx //start of calculation for pixd 3: clear

imul ebx, dword ptr [edi+4] //pixd2: ebx=pel2*w[0][1]

mov dl, byte ptr [exx+2] // pixd 3: di=pel3

add e, ebx // end d calculation for pixd2: eax+= ebx

imul edx, dword ptr [edi+8] // pixd 3: edx=pel3*w[0][2]

xor ebx, ebx // start calculation for pixd 4: clear

add e, edx // end d calculation for pixd 3: eax+= edx

mov bl, byte ptr [ecx+200h] // pixd 4: bl= pel4

It has been observed that the average value of instructions exeauted in parallel is
around 2for code without loop umolli ng [Hwa93]. Even with loop umolli ng, instruction-issue
degreein a superscdar procesor has been limited to 2to 5in pradice [Hwa93, Tul95]. Let
consider the case of the Pentium proces=ors, it can be seen from Table 2-1 and Table 2-2 that
average number of instructions exeauted by the P300and Athlon 800in asingle dock cycleis
up to the 2.3, for P166it is abou 1.17 (option withou multiplication). It shoud be however
noted that the improvement for the P300 and Athlon 800 fas been also achieved by reducing
the number of clock cycles required to perform multiplicaion. In conclusion, a superscalar
architedure quickly gets sturated, i.e. increasing the number of paralel units requires much
greder hardware expense but resultsin insignificant improvements.

An alternative solution is smultaneous multithreading, a technique permitting several
independent threads to issue instructions to a superscalar’s multiple functional units in a
single cycle [Tul95]. This techniques allows for better utilisation o superscalar units as
different threals can issue their instructions in such a way that register contention, memory
missor conflict and even branch misprediction penalty is sgnificantly reduced. For example,
while one thread waits for data transfer from external memory, others can iswue their
instructions to keep all processng units busy.

-19-

2.1.3. Very Long Instruction Word (VLIW)

The superscalar architecture requires complex instruction decoding, dispatching and
speadlative exeaution unts. An aternative solution is a VLIW [Hwa93] architecture for
which dfferent fields of along instruction word correspondto dfferent functional units and
therefore decoding and dspatching instructions is much easier. Unfortunately, a VLIW code
has to be recompiled for a spedfied VLIW machine. Furthermore, for a superscdar processor,
code density is greder as the fixed VLIW format includes bits for non-exeautable operations,
whil e the superscalar procesor isaues only exeautabl e instructions.

The VLIW architedure is sldom employed in general purpaose processors as tasks of
the procesors are unspedfied and therefore it is rather difficult to ogtimise functions of the
procesors units. On the @ntrary, the cnvdution ogeration is well defined and requires
basicdly four (six - if processor does not suppat addressng with off set) different operations:
» load the wefficient (andincrement the wefficient painter),

* load theinpu pixel (andincrement the inpu pixel pointer),

* multiply,

e acawmulate.

Consequently, these four (six) operations can be exeauted as a single VLIW instruction in

DSPswhich are optimised for digital signal processng asit will be described in Sedion 2.2.

Crusoe procesor by Transmeta adopted a novel solution [Kla0Q]. This processor has a
VLIW architedure which is able to perform 3 integer and ore floating point operations in
parall el (see Figure 2-1).

128 bts
FADD ADD LD BRCC
Floating Integer Load/Save Branch
Point Unit ALU Unit Unit Unit

Figure 2-1. Crusoe procesor can execute up to four operationsin parall el

In comparison to Pentium processor, Crusoe procesor does not require the cmplex
deading and dspatching modue. Its gructure is smpler, and therefore it consumes much

lesspower. Furthermore, Crusoe procesor incorporates dynamic translation system, denoted

-20-

as Code Morphing which complies the x86 instruction set into the host VLIW instruction set.
The processor can therefore run standard x86 pogrammes because @de trangdlation is
invisible to the external system. It shoud be noted that Pentium processors decode and
dispatch instructions every time they are eeauted. Conversely, Transmeta's ftware
trandates instructions once, saving the resulting trandation in a translation cache [K1a00]. The
next time the (now translated) x86 code is exeauted, the system skips the translation step and
diredly exeautes the existing optimised transation. As in most cases code is exeauted several
times in a loop, trandation owerheads have little influence on the system performance.
Furthermore, the trandlationis carried ou only once and therefore it can implement a cmplex
algorithm which better optimises code than e.g. Pentium processor does. Besides, as an
applicaionis exeauted, Code Morphing ‘learns' more aou the program and improves it so it
will exeaute faster and faster. For example, aware of the branch history, the programs can
favour the most frequently taken path, o exeaute ade from both paths and seled the crred
result later if both paths are taken with equal probability. It is important to nae that Crusoe
hardware can achieve excdlent performance because it has been designed specificdly with
dynamic trandlationin mind.

New Pentium 4 processor adopted a similar but much simpler instruction decoding
solution. The hardware instruction decoder can decode maximum one instruction per clock
cycle. The deaded instructions are stored in an exeaution trace cache (TC) [Int00] and then
are exeauted dredly from the TC. This removes decding costs on frequently-exeauted code.

The TC can hdd upto 12X pops and can deliver up to threepops per cycle.

2.1.4.SIMD

A single Instruction strean over Multiple Data stream (SIMD) [Fly72] architecture
allows a single instruction to be exeauted on several independent data simultaneously. This
significantly simplifies the instruction deaoding process as only a single ontrol unit is
required.

In Pentium processors, a MultiMedia eXtension (MM X) [Int97h coprocessor has
been introduced which operates on 64 it data and therefore can processeight independent 8-
bit-wide data smultaneoudly. In the case of the image convdution, inpu pixels are in 8bit
unsigned format, howvever intermediate results are 16-bit wide, and therefore up to four data

can be processed simultaneously. Examples of MM X instructions are given in Figure 2-2.

-21-

a) b)

MMO| S | T | U [V | MMO| S | T | U | VvV |
X X X X X X X X

MM1| W | X | Y [Z | MM1| W | X | Y | Z |

MMO | sw | TX | Uy | vz | MMO | SW+TX | UN+VIZ |

Figure 2-2. Example of MMX instructions: a) multi pli cation PMULLW MMO, MM1,
b) multiply and accumulate (MAC) PMADDWD MMO, MM1

Additional computation paver is obtained by superscdar architedure of the MM X
coprocessor, as two MM X instructions can be exeauted in paralel provided that different
MM X resources are anployed.

Listing 23. Fragments of 3x3 convolution programs for different options and convolution
kernel givenin Figure 1-1a

m) n)

beg: // label for loop start beg: // label for loop start

movd mm0, dword pir [ecx] // load row 0 movd mmo0, dword pir [ecx] // load pixel (0,0)

movd mml, dword pir [ecx+200h] // load row 1 punpcklbw mmO, mm7 // convert byte to word; mm7= 0

movd mm2, dword ptr [ecx+400h] // load row 2

movd mm1, dword pir [ecx+1] // load pixel (0,1)
punpcklbw mmO, mmb5 // convert byte to word pmullw mmO, mmé6 // multiplication for pixel (0,0), mm6= 1,1,1,1
punpcklbw mm1, mm5 // mm5 —contains only zeros punpcklbw mm1, mm7 // convert byte to word, pixd (0,1)
punpcklbw mm2, mm5

movd mm2, dword pir [ecx+2] // load pixel (0,2)

pmaddwd mmO, mmé6 // MAC; mnb= 0, 1,2,1 pmullw mm1, mm5 // multiplication for pixel (0,1); mnb= 2,2,2,2
pmaddwd mm1, mm?7 // mni’= 0,2,4,2 punpcklbw mm2, mm7 // convert byte to word for pixel (0,2)
pmaddwd mm2, mm6 paddw mmO, mm1 // add products for pixels (0,0) and (0,1)

/I continue for therest of pixels
paddd mmO, mm1 // accumulating the MAC results

paddd mmO, mm2 // result in mnD pmullw mm2, mmé6 // multiplication for pixel (2,2), mm6=1,1,1,1
[/l integer units operations paddw mmO0, mm2 // the final result

movq [edi], mmO // save register MMX to memory

movd eax, mmO // load LSB half of the register MMX paddw mmO, mm3 //add to reduce rounding error, mn8= 8,8,8,8
add eax, [edi+4] // add LSB and MSB half of the register MMX psrlw mmO, 4 // divide by 16

add eax, 8 // add 8to reduce rounding err or packuswb mmO0, mm?7 // convert the result fromword to byte

inc esi // increment pointer to the destination add ecx, 4 // increment source pixels pointer

sar eax, 4 // division by 16 — prescaling movd dword ptr [esi], mmO // savethe result

inc ecx // increment pointer to the source pixel add esi,4 // increment the result pointer

mov byte ptr [esi], al. // load the result to memory dec ebp // deaement the loop count

dec ebp // deaement the loop count jnz beg // quit the loop?

jnz beg // finish the loop?

Convdution operation can be carried ou in two dfferent ways [Wia00g]. In the first
one, given in Listing 2-3m only one result is obtained at the time. This lution exploits the
MM X multi ply and accumulate (MAC) instruction (PMULLW), therefore it might seem that
this is the best solution. Unfortunately, input data format causes that every MAC operation
performs four multiplies (for every inpu row) but only three ae used (for 3x3 kernel).
Besides two partia results are obtained in two halves of the MM X register, and therefore
integer units have to be used to cary out the final addition. The dternative solution is

presented in Listing 2-3n, for which four results are obtained simultaneously. This option

-22-

performs multi ply and add instructions independently, bu inpu and ouput data match better
the onvdution process Consequently, MM X instructions are fully exploited (operate on four
independent data), and all i nstructions (except the loop instructions) employ only the MM X
unit. Summing up, the latest solution reduces cdculation time in comparison to the former
solution (seeTable 2-1). It shoud be noted that option n allows for saturating the result (e.g.
setting the output to the maximum value (255) if the result is overflowed (=256)) during
conversion from the word (16-bit) to byte (8-bit) format.

New Pentium 4 can operate on 1B-bit data using SSE2 instructions which are similar to
the MM X instructions [Int00]. Consequently, the speed-up by the use of SIMD instructions
will be even greater, and it seams that in the future, new releases of processors will be @le to
processgreder and greder data width in SIMD instructions.

2.1.5. Implementation results

Table 2-1 and Table 2-2 gves implementation results for different processors and
different options. The following convdution ogions have been implemented:
a) standard algorithm written in C language (Listing 21),
b) after unrolli ng the wnvdution kernel (loopsi, j in Listing 2-1) written in C language,
c) like option b but program is written drectly in assembler language,
d) like option c — after optimisation for the superscdar architedure,
e) like option ¢ but withou multiplicaion (only shifts are implemented, the convdution
kerndl isgivenin Figure 1-1a),
f) like option e — after optimisation for the superscalar architecture,
0) like option f but inpu and ouput data pointers are not incremented in order to avoid cash
Mises,
m) employing MM X coprocesor (Listing 2-3m),
n) employing MM X coprocessor, four pixels are cdculated simultaneously (Listing 2-3n).

All options, except option g, have been referred in the previous sedions. Therefore
only option g will be now approached. It can be seen from Listing 2-2 and Listing 2-3 that
approximately every sewnd instruction communicaes with memory and consequently
memory-transfer might be a bottleneck of the system. Fortunately, all tested procesors
incorporate internal cache memory [Hwa93, And9g, which significantly reduces external
memory transfers. Nevertheless cade misses might dtill deteriorate the processor
performance [Wia00a]. In option g inpu and ouput data pointers are not incremented and
therefore the mnvdution operates only on 9inpu and 1 output pixels which are in the cache

-23-

memory. As aresult, the mnvdutionis corrupted, conversely the external memory transfer is
not required. Option g, in comparison to the correspondng option f, gives up to 10%
improvement. For the latest versions of the processors, however, the overhead of cache misses
increases (see Table 2-1). It shoud be noted that SSE instructions allow software wntrolled

data-perfecting, which can eliminate the cache misses.

Option a b C d e f g m n
Number of instructions - - 42 42 37 35 35 21 43
in the loop
Time[mg]
486DX4-100 670 465 460 435 147 134 131
P75 587 414 403 366 95 [£3) 67.6 - -
P166 247 175 169 159 45 32 30 60 26
P300 486 | 258 226 228 166 156 140 221 9.1
Athlon 800MHz 258 | 116 104 9.9 6 55 5 126 7.2

Table 2-1. Number of asseembler instructionin the loop andcalculationtime for different
procesors and ogions

Option a b C d e f g m n
486DX4-100 256 177 175 166 56 51 50 - -
P75 168 118 115 105 27 201 193 - -
P166 156 111 107 101 28 203 190 380 165
P300 556 295 259 261 190 17.9 160 253 104
Athlon 800MHz 78.7 354 317 302 183 168 153 385 220

Table 2-2. Number of clock cydesrequired to calculate a single output pixd for different
processors and opions

2.2. Digital Signal Processors (DSPs)

DSP architedures are optimised for digital data processng, e.g. for convdution,
therefore DSPs perform convdution in more dficient way than general purpose processors
do. A DSP architedure and its influence on the @nvdution pocess is outlined for
TMS320C80 processor by Texas Instruments [Tex97]. The awnvdution processis performed
in a Parale Processor (PP), which will be gproached in the next sedion. Further in Section
2.2.2, the whde structure of the TMS320C80 is overviewed. Finally, a new DSP,
TigerSHARC by Analog Devicesis briefly described.

2.2.1. Paralld Processors

The PP, shown in Figure 2-3, is a 32-bit integer processor which incorporates the

following units:
1. DataUnit (DU).

-24-

2. AddressUnit (AU).
3. Program Flow Control Unit (PFCU).

These units are optimised for the cnvdution, and as aresult, al fundamental convdution
operations:
load the mefficient (exeauted by the AU)
increment coefficient pointer (exeauted by the AU)
load the inpu pixel (exeauted by the AU)
increment inpu pixel pointer (exeauted by the AU)
multiply, (exeauted by the DU)
acawmulate (exeauted by the DU)
control the loop (exeauted by the PFCU)
can be exeauted in parallel in a single dock cycle. The PP has aso three buses, for

N o g kM wbdRE

transferring a64 bt VLIW instruction and two (local and global) 32-bit datain asingle cycle.

Local Destination/Source
Global Sot
Global Destination

Program Flow Control Unit

Three Zero-Overhead -
Loop/Branch Controllers Instruction and Cache Control

32

64 32

Local Global Instruction IAP LAP GAP
DataPort Data Port Port

Figure 2-3. The PP block diagram

2.2.1.1. AddressUnit (AU)

The PP incorporates two addressunits: locad addressunit (LAU) and global address
unit (GAU) which operate independently of each ather. Each of them is resporsible for bath
aacessng memory and computing addresslocations. The data buses, locd and global one, are
associated with the AU, which allows two data transfers to be carried ou independently in a

-25-

single dock cycle. Eadh AU has five address and three index registers and dita path for
computing addresses.

Taking into account the cnvdution, each AU (global and local) alows for accessng
memory and simultaneously incrementing the addresspointer either by 1 (load the next pixel
or the next coefficient) or by Nx-M+1 (load the pixel from the next line, where Nx- horizontal
image size, M- convdution kernel horizontal size; Nx-M+1 is gored in the index register).
Consequently, the LAU is resporsible for feeding the data unit (DU) with coefficient values,
andthe GAU for feeding the DU with pixel values (or viceversa).

2.2.1.2. Data Unit (DU)

Data unit basicdly incorporates two paths. multiplier data path and ALU data path.
Consequently multi plication and addition are caried ou in paralel, and are exeauted in a
single dock cycle. The multiplier can perform two simultaneous 8-bit by 8-bit multiplies
referred as a split multiply. Similarly, two 16-bit additions (a split addition) can be performed
in paralel in the ALU. These SIMD operations allow two results to be obtained
simultaneously, therefore, in theory, doubing the PP computation pover. The ALU
instructions al ow aso for shifting and saturating, which speeds-up the fina processng on the

convdutionresult.

2.2.1.3. Program Flow Control Unit (PFCU)

The PFCU has a VLIW architecture, which significantly simplifies deading and
dispatching process The PFCU has a separate 64-bit instruction bus, and therefore fetching an
instruction daes nat interfere with the data paths. The PP incorporates three stages of
pipelining:

1. Instructionfetch
2. Addressunit computation
3. Exeaute data unit operation and memory transfer.

The pipelining of the PP, unike Pentium processors, must be wnsidered in the
program code for every branch or other instructions changing order of a program flow. Two
delay-dlot instructions following a branch must be legal operations. Listing 2-4 gves an
example of proper handling with a branch instruction. The branch instruction is exeauted in
the two delay slots therefore Instruction2 and Instruction3 are exeauted, although in Pentium
procesors only Instructionlis exeauted in the loop.

-26-

Listing 24. Example of delayed branch

Branchl: Instructionl; thefirst instructionin theloop
br = Branchl,; branch instruction, kranch to the beginning of the loop
Instruction2; delay slot 1
Instruction3; delay slot 2
Instructiond; theinstruction autside the loop

The delayed branch schedule in the PP eliminates a branch penalty and simplifies the
procesor architecture, as the branch prediction and ppeline flushing is not required. The
penalty of the delay branch solution is out-of-order program flow which must be mnsidered
by a compiler or assembler language programmer. Besides, in some caes a result of the
condtional branch is known orly after the last instruction d a loop has been exeauted
(Instruction3in Listing 2-4). In this case two additional nop (no goeration) instructions must
be inserted after the branch, and therefore the branch is exeauted with two-cycle penalty,

which has asimilar result li ke for pipeline flushing.

The PPincorporates hardware loop control (HLC) which eliminates the loop owerhead
completely, even the branch instruction is not included in the program code. The following
threesets of registers are anployed to control up to threeloops:

* LoopEndRegister: 1€2, lel o 1e0 which padnts to the last instruction in the loop. During
ead instruction fetch, the le is compared to the program courter (pc). When the le
matches the pc, the loop hardware adionisinvoked.

» Loop Start Register: 1s2, Isl or 1O which pants to the first instruction in the loop. The Is
register is copied over the pc when the loop hardware wants to hranch bad to the
beginning of the loop.

* LoopCourter Register: Ic2, Icl or IcO contains a wurter of the number of branches to the
start of the loop. The branch is taken provided that 1c>0; the Ic is deaemented each time
the branch is taken.

* LoopReload Register Ir2, Irl o IrO contains an initialisation value for the associated Ic.
This reiniti ali sation takes placeafter the last time through the loop. This prepares the loop
courter for the next time the loopis entered.

In conclusion, for the PPand the HLC, loop umolli ng gves, basically, noadditional processor

spead-up. The HLC is superior to the complex branch prediction solution implemented in the
genera-purpose procesrs. It shodd be noted that the HLC gives very good result if the

-27-

loop-court is well-defined (as it is the cae for the convdution), however in a general case,
unpredictable loop lre&king often takes place, which makes the HLC useless

To illustrate how the cnvdution is implemented in the PP, a fragment of the

convdution codeisgiven in Listing 2-5. This code is exeauted in asingle dock cycle.

Listing 25. Fragment of the cnvolution code for the PP

mult =m pixel * filter || ; Multiplication
result +=mult || ; Accumul ate the product of the previous multiplication
filter =b *Ga_filt++ || ; Loadthe next coefficient and increment the coefficient address

pixel =ub *(La_pt++=0offsetl) ; Loadthe next pixel andincrement the address to pant the nex line

input pixe

2.2.2. DSP TM S320C80

TMS320C80 incorporates (see Figure 2-4):

Four Parall el Processors (PP) described in Sedion 2.2.1.

Floating-point Master Processor (MP) which is a 32-bit RISC which primary role is to
perform the general-purpase computations necessary to direct the MP's on-chip resources.
Video Controller (VC) which provides the video interface to control two independent
frame systems.

On-chip 50KB memory (organised into 2KB blocks) accessed by crosdar switching
architedure.

Transfer Controller (TC) provides an interface between the TMS320C80 procesors — the
MP, PPRs, VC and external memory.

ADSP3 ADSP2 ADSP1 ADSPO MP
ocrR|-¢| VC
L G il |L e il | a il |L e i1||cm I
32 64 32 64) 32 64 32 64
32 32 32 132 32
e ? ¢] IEEE-
1291 Lo |
T D
64 32
o Gen
64 RPN
64

TC

ter RAM
ter RAM
ter RAM

Data RAM2
Data RAM1
Data RAMO
Instruction Cache
Parameter RAM
Data RAM2
Data RAM1
Data RAMO
Instruction Cache
Parameter RAM
Data RAM2
Data RAM1
Data RAMO
Instruction Cache
Data RAM2
Data RAM1
Data RAMO
Instruction Cache
Data Cache
Data Cache
Instruction Cache
Instruction Cache

Par.
Par:
Par.

Figure 2-4. Block diagram of TMS32@C80

-28-

Each PPcan perform two independent parall el data acesses to the on-chip shared RAMs and

one instruction fetch eadh cycle a each PPincorporates threeports:

» Instruction pat accesss instructions from the PP s instruction cache. Each PPhas its own
2K-byte instruction cache for storing up to the 256 &4-hit instructions. This amount of
cade memory islarge enough to store the mnvdution program code.

* Global Port conredsto any of the shared RAMSs. If the accessis attempted over the global
port to the aldressthat is nat in the on-chip RAM, a dired external access(DEA) request
is ent to the transfer controller. A DEA requires minimum 11 cycles for a load and 8
cyclesfor astore, therefore is not recommended urlessonly for afew bytes of data. For a
block transfer, the Transfer Controller shoud be programmed to exeaute a Pocket
Transfer which is performed in parall el with namal PPoperations.

* Loca Port conrects a PPto any of four local RAMs. If a PP attempt a memory access
over the locd port to an addressthat is nat in its locd RAMSs, the accssis diverted to the

global port andtried onthe foll owing cycle. This causes one cycle penalty.

Eadch memory block can be acessed oy once in a dock cycle. Therefore, taking into
acoun the onvdution ogeration, triple buffering technique shoud be enployed [Tex97], for
which three separate RAMs are used for inpu pixels, ouput pixels and padket transfers
to/from the external memory. Table 2.3 ill ustrates this technique for which dfferent memory
blocks are assgned for the different transfers, depending on the calculated ouput pixels. The

assgnment isrepeaed in acycle for every 6k ouput pixels.

Output Pixels [0, 2K [2K, 4K [4k, 6K)
RAMO Inpu Data Output Data Padet Transfer
RAM1 Padet Transfer Inpu Data Output Data
RAM?2 Output Data Padet Transfer Inpu Data

Table 2-3. Memory assgnment for different time intervals (output pixels)

The @owve dgorithm, howvever, does nat consider the input blocks overlapping (the
padding effed); e.g. for convdution kernel 5x5 and image size 512x512, to compute 1k
output pixels (2 image lines) more than 3kinpu pixels are required (additional 2 input image
lines before and after the crrespondng destination pixels). Table 2-4 shows a modified
algorithm. Nevertheless for a convdution kernel greaer than 5x5, this algorithm canna be
used, and more than three RAMs must be assgned to the PP and consequently another PP
might nat be &le to compute its own task.

-29-

The mnvdution pocesscan be eaily performed in paralel, every PP and even MP
cdculate aseparate output pixel block. TMS320C80 incorporates four parallel processors and
ead of them can cdculate a separate part of the output image; as aresult, the cdculation time
is, in theory, four times shorter. However, the proceswors (PPs, MP and TC) synchronisation
is a key issue. Therefore TMS320C80 incorporated spedal interprocesor commands:. reset,
halt, unhelt, task interrupt, message interrupt and instruction-cache reset.

Output Pix. | [0, 1K [1K, 2K [2K, 3K [3K, 4K [4K, 5K [5k, 6K
RAMO ID ID oD | ID oD PT ID
RAM1 PT ID ID ID oD | ID oD
RAM2 | OD | ID oD PT ID | ID ID

Table 2-4. Memory assgnment input blocks overlappng. Where: ID- Inpu Data, OD- Output
Data, PT- Pocke Transfer

Acoording to [Tex97] eat PP requires 11 cycles (8.5 cycles for split operation) to
perform 3x3 convdution. This for image size 512x512 and four parallel processors clocked
by 50 MHz gives convdution theoretica time 14.5ms (11.2ms for split operations).
Experimental result obtained by [Matrox] is 10.3ns.

Summing up, TMS320C80 is a very sophsticated processor which architedure is
optimised for convdution operation, thus it has been characterised hereby. Conversely, it is
rather difficult to be programmed, because of triple or even more buffering technique,
memory contentions, interprocesor synchronisation, etc. Besides it is clocked ory by
50MHz (designed in 1995and nd developed since then). Consequently TMS320C80 is not
recommended for new designs.

2.2.3. TigerSHARC

Current DSP architedures are more or less smilar to genera-purpose processors and
TMS320C80. TigerSHARC ADSR-TS001 by Analog Devices [Ana99] is an example of such
a DSP. TigerSHARC is clocked by 150MHz and incorporates the following blocks (see
Figure 2-5):

» Two Compute Blocks (CB) that can operate ather independently in paralel or asa SIMD
engine. The DSPcan isaue eab cycle up to two compute instructions per CB, instructing
the ALU, multiplier or shifter to perform independent, simultaneous operations. Taking
into acount the mnvdution, the multiplier block performs a single 32-bit MAC or quad
16-bit SIMD MACs (8 MACs in two CBs) in a cycle. Unfortunately, the multiplier does

-30-

not suppat the byte operations, howvever, the ALU can operate on 8bit arguments to
produce 16-bit results. The CBs operates in a very similar way like the PRs in
TMS320C80, havever each CB has only one data bus (there ae two data buses associated
with ead PPin TMS320C80). Conversely, data bus is 128-bit wide, therefore instead of
four consecutive 32-bit data acesses, asingle data accessis performed.

 Two Integer ALUs (IALU, denated as JALU and K-ALU in Figure 2-5) that provide
powerful addressgeneration capabiliti es and perform move operations.

* Program Sequencer has a static superscdar architedure. The term "static superscdar” is
applied because instruction-level parallelism is determined prior to run-time and encoded
in the program. Therefore decoding instruction is easier than in Pentium processors but
the compiler or programmer has to respect instruction dependency caused either by
resources saring or pipelining, etc. The DSP uses the following pipeline stages. three
instruction fetch (together with Instruction Alignment Buffer which incorporates
instructions FIFO buffer and dspatches instructions to the DSP units), a deade, integer,
operand access exeautel and exeaute2. Consequently to reduce branch stalls caused by
the pipelining, the DSPincorporates Branch Target Buffer (BTB). This lutionis smilar
to Pentium procesor, however, the branch prediction algorithm is much simpler in this
DSP-abranch istaken if the branch was also taken in the previousiteration d the loop.

* The TigerSHARC DSP contains three blocks of 2 Mbits ead of on-chip, 128bit wide
SRAM. The procesor has also three 128-hit wide buses, each one mnnrected to ore of the
internal memories. Memories (and their associated buses) are aresource that must be
shared between the CB, the IALUs, the program sequencer and the externa port. In
generd, if during a particular cycle more than ore unit in the procesor attempts to access
the same memory, ore of the cmpeting units is granted access whil e the other is held off
for further arbitration uril the following cycle. However, becaise of the large bandwidth
avail able from eaty memory block (128-bit memory accesg some bandwidth is avail able
for use by ancther unit.

* DMA peripheries. The most effedive way to accessexternal data in the TigerSHARC is
through the DMA. This runs in the badground, all owing the cre to continue processng

while new dataisreal in or processed datais written ou.
The TigerSHARC offers powerful features, tail ored to dff- chip multi-processng systems.

However, like for TMS320C80, paralel processng complicates the design, programming and

may cause bus conflicts overhead.

-31-

Figure 2-5. Block diagram of Tiger Shac by Analog Devices

2.3. Dedicated VL SI Convolution Processors

An aternative achitecture for performing convdution is a dedicaed VLS| processor
where the @mnvdution operation is built-in the silicon structure. Consequently, there is no
complex instruction deaoding and large cache modue. The architedure of the procesr is
optimised orly for the convdution operation. The typica structure of the VLSI processor is
given in Figure 2-6, and incorporates multi pli ers and adders to perform arithmetic operations,
and delay elements to feal the aithmetic block with proper data. Two dfferent delays are
required:

« Pixel buffer —flip-flops to delay inpu signal by a single dock cycle (z* blocks in Figure
2-6).

* Line buffer — First-In First-Out (FIFO) buffer to delay inpu signal by a whale image line
(in the considered solution, by 512 clock cycles).

Different vendas produce different VLSI convder chips, eg. HSR48908 ly Harris
[Har94], PDSP16488by Plessey [Ple90] or IMS-A110by SGS Thomson [Tho9(. Detail ed
description d these processors is outside the scope of thisthesis, andisincluded in [Wia99q)].
Hereby, oy IMS-A110will be further approached.

-32-

Input Q2 x+2 -1 A2 x+1 71 Ay+2x

W22 W21 W2,0

Line Buffer By+1x+2 71 e

Wi,.2 W1 Wi,0

+ —ybyﬂ’m Output

Wo,2 Wo,1 Wo,0

p| Line Buffer A2 A g [1] 8

Figure 2-6. VLS architedure for 3x3 convolution

IMS-A110, which bock structure is given in Figure 2-7, incorporates 3 arithmetic
blocks, 3 line buffers and asynchronous function Hock. Each arithmetic block performs up to
7 MACs; in total, 3x7 convdution kernel is sippated. The wefficients word width is 8 hits.
Two banks of coefficients are provided, thus in any instant one set of coefficientsisin use,
and the other set can be dtered. Three shift registers (line buffers) are 8 hit wide and each
programmable from 0 to 1120clock cycles in length, therefore different resolutions of the
image can be procesed on. IMS-A110 has aso an advance post-processng block which
allows for shifting right with roundng, basic statistics monitor (e.g. maximum and minimum
output value), saturation, Look-Up Table (LUT) for 8-bit to 8 kit transformation [Cas96].
IMS-A110 is controlled via a host microprocesr interface, which is independent to the

image processng data path.
Encble Asynchronous Function badkend
write bi look up table
Mem Dat Decod 2;?.8? it Configuration
em Data o Leg ice Update mefficient registers 256x8-hit and control
—> 9 P LUT RAM registers
m Current coefficient registers USR LSR
Clock
Cont_rol ¢ Reset
logic le
Synchronous Function
Datain § »| 1120 stages programmable 7 stagesMAC
shift register C aray C
L v
1120 stages programmable 7 stagesMAC
shift register B array B
v
L 1120 stages programmable 7 stagesMAC ?:g pﬁt Cascac
DataOut 8 shift register A array A B F()nor alisgtion 22/ Out
Cascade In 2/2 I%L’ saturation, and data "
> transformation

Figure 2-7. Block Diagram of IMSA110

-33-

IMS-A110 is clocked by 20 MHz (the dip was isued in 199Q which is rather
insignificant frequency. However, all operations are performed in parallel; hence for 3x3
convdution, 9MACs are computed in each clock cycle. In consequence, computation paver
of IMS-A100 is comparable to TMS320C80 which operates at 50 MHz. To increase the
convdution kernel, several IMS-A110 can be cacaded withou any additional logic or time
overheads. There ae other dedicaed VLSI convders [Wia00&a which can be docked with
greder frequency, e.g. PDSP-16488by Plesey [Ple9(] clocked at 40MHz. IMS-A110 hes
been described hereby because of its advance post-processng unit.

2.4. Field Programmable Gate Arr ays (FPGAYS)

A FPGA [Xil99b,Alt99] convdution processor [Jam01d is, similarly like the dedicaed
VLS| processor, implemented according to the block diagram presented in Figure 2-6.
Nevertheless in Chapter 5 additional modificaions of this circuit are presented, which
significantly reduces the hardware requirements of a FPGA-based convder. For FPGASs, a
designer defines the structure of the convder, therefore he has to be familiar with the digital
circuit design. Nonetheless there ae severa tools which automaticdly generate aithmetic,
delay units or a memory interface, e.g. CoreGenerator by Xilinx [Xil99] or the AuToCon
[Wia00b, Wia01a]. Conversely, the designer can allocate FPGA’s resources up to his nedls;
e.g. the size of the wnvdution kernel, multipliers and adders width, pcst-processng
operations, etc. For a dedicaed VLS| processor, the designer is constrained by its pre-
designed functions.

For FPGASs further savings can be obtained. Instead of employing a fully-functional,
denoted as Variable Coefficient Multiplier (VCM), the designer shoud employ a Constant
Coefficient Multiplier (KCM), as the mefficient values usually do nd change during a
cdculation pocess This causes sgnificant hardware savings [Wia0lal. In some caes, a
coefficient value is a power of two (e.g. for filtersin Figure 1-1), thus the multiplication can
be substituted by an addition and a bit-shift. When coefficient values are relatively constant,
e.g. changed every image frame, a dynamic constant coefficient multiplier [Wia00b] shoud
be employed, which is a midway solution between the KCM and VCM. In addition, FPGAs
can be quickly reconfigured, and this allows for (dynamic) change of FPGAs functions, e.g.
reconfiguration d the FPGA every time a oefficient is changed.

To illustrate the achitecture of FPGAS, an example of Virtex family by Xilinx [Xil99] is
given hereby. Basically Virtex comprises of four major comporents:

-34-

a) Inpu/Output Blocks (I0Bs) which interfacebetween chip internal and externa signals.

b) Configurable Logic Blocks (CLBs), shown in Figure 2-8, perform logic and arithmetic
functions. Logic functions are performed mainly in 16x1 Look-Up Tables (LUTS),
allowing to carry out any 4 input function. Instead of logic, ead LUT suppats a 16x1-bit
synchronows RAM. Furthermore, the two LUTs can be combined to create al6x2 or 32x1
RAM, or a16x1 dual-port RAM. A storage dement, which is usually configured as a D-
type flip-flop is asciated with each LUT. This alows for efficient implementation o
pipelining. A ripple carry addition [Omo94 S= A+B is performed acording to the

foll owing equations:

s=a b Oca (2-1)
[, if a #b

= 2-2

“=L ifa=b (2-2)

Eqg. 21 isperformed in the LUT (O_yt= & [J Iy) and the XOR gate (see Figure 2-8). The
multiplexing in eq. 22 is performed in CY multiplexer. It shoud be noted that carry logic
is produced in the dedicated and therefore very fast circuit. This allows for building very
fast and efficient adders in the FPGAs. The 16x1 LUT or RAM together with the
dedicaed cary logic andthe storage dement is further denoted as a Logic Element (LE).

c) Block SeledRAMSs (BSRs) of 4kbs eadh, have been introduced in Virtex FPGAs. The data
width of a BSR is programmableto 1, 2, 4, 8or 16 kts. For convdution, the BSRs are
generally employed as a line buffers (see Figure 2-6). The BSR of 8-bit width is 512in
depth, therefore ideally suits the 8-bit image data and 51512 image resolution. BSRs
can be dso employed as LUT memoriesin multipliers.

d) Programmable routing (PR) provides connedions between 10Bs, CLBs and BSRs. The
propagation time through the PR is comparable (or even greater) than the propagation
time through logic in CLBs. Therefore routing optimisation by a place-and-route software
isan important asped of every design and therefore a grea number of papers have studied
the subjead e.g. [Nag98]. Routing delays incresse with the deaease of free CLBs
resources, therefore it is not recommended to allocate more than 80-90% of avail able
CLBs. Furthermore, throughpu of the convder is grongly influenced by the FPGA logic
cgpacity and aher functional units implemented in the same FPGA. This makes system
benchmarking more difficult. The PR provides tri-state buffers, which all ows multi plexing
to be performed ouside CLBs. This multi plexing solution saves CLB resources, howvever,

is ggnificantly slower than multi plexing in CLBs.

-35-

[a¥n}
2e
K&
(=]
;
o<
K-

[o)o)
22
SIS
&
c
=
]
e
y
[s]

DI

Fof
AR F5
CK wso |[BYDG o
E —>X
A4 WsH [[BX DI Zli_L LD 1
|

o oo

I

CIN ds022_05_092000

Figure 2-8. Sructure of the VirtexSice= ¥2CLB

On average, 8x8 KCM occupies roughly 20 LE [Wia0la] and a 16-bit adder occupies
roughly 16 LEs. Virtex XCV320(E incorporates 104x156 CLB array which gves 64 8%
LEs, enough to fit roughly 1800a single dock cycle MACs. The dock frequency is up to the
130MHz [Xil00], which gives, in theory, 230 GMACs per seaond. Consequently, FPGAs
significantly outperform e.g. TigerSharc DSP which can perform, in theory, 1.2 GMACs or
Athlon 800MHz with 0.33GMACs per semnd.

2.5. Conclusions

A genera-purpose procesr, in spite of its complex architedure, is the eaiest
solution for implementation d convdution, kecaise the procesor and its development
environment are owmmonly available. Conversely, optimisation d the convdution code
requires assembler and system level programming which knowledge is limited. However the
primary drawbadk of the general-purpose procesr istasks saring; the mnvdution operation
may interfere with ather tasks and vice versa. Besides in spite of its rapid computational
spead-up olserved in the history, the procesor is gill not able to processlarge wnvdution
kernels and image resolutions.

An dternative solution is a DSP. DSP architedures are optimised for the convdution
operation, havever they evolve similarly like the achitedure of the genera-purpose
procesors. DSPs incorporates cadhe memories, branch prediction, sophisticated pipelining,

SIMD instructions. Similarly like for general-purpose procesors, complexity of DSPs

increases rapidly. It shoud be noted that clock frequency for DSFsis sgnificantly lower than
for the general-purpase procesor.

A dedicaed VLSI convdution processor initially seans to be the best solution
becaise the achitedure of the procesor is optimised ony for the @wnvdution operation.
Consequently, no complex instruction deaoding, branch prediction and cache memory is
required. Conversely, the dedicated processor design is not flexible, for example, an increase
of the cnvdution kernel or the image resolution, etc., may make the procesor useless
Consequently, a dedicaed processor often incorporates functions which are seldom
employed. For example, threeIMS-A110 chips can be cacaded to suppat 7x7 convdution
kernel. Nevertheless during system-development it might happen that 9x9 kernel is required,
this makes the design useless or only a 3x3 kernel is nealed therefore the design has two
chips overheads.

FPGAs are an ogion to the dedicated VLS| processors. FPGA's architecture can be
quickly modified which is an important issue because nat only the FPGA design is more
flexible but also design development and test are much gucker and easier. These ae maor
ressons why dedicated VLS| convdution processors are, nowadays, infrequently adopted.
Also manufaduring cost of the VLSI procesrs is often greaer than for FPGAS, as for
example Xili nx Inc. introduced cheap Spartan family for ASIC replacement.

Comparing FPGASs to the general-purpose processors and DSPs it can be seen that the
architedure of the microprocesors begins to saturate; a significant increase of hardware
complexity results in a much less sgnificant seed-up. Therefore in the future, further
development of the complex superscalar procesrs is unlikely. Instead many processors will
operate in paralel or a simultaneous-multithreading processor will be introduced. This
however will i ncrease the demand for the cache memory which occupies sgnificant chip area
Furthermore, parallel processng has sveral drawbacks like memory access contention,
multiple-threads synchronisation, etc. [Hwa94], which significantly complicaes the
architedure and programming of parale systems. Besides, oltained speed-up is often na
propartional to the number of additional parallel units. In the future, further increase of the
microprocesors computational power may be dso confined by CMOS techndogy limits
[Won9)]. Conversely, FPGAs are very scalable on highly concurrent tasks, esp. convdution.
Furthermore, taking into accourt the silicon area and throughpu, the FPGAs sgnificantly
outperform microprocessors [DeH98], and in the future the performance gap will further
increase. Microprocessors must confront overheding effed, which significantly constrains
design of the microprocesors. For FPGAS, however, this problem is much less sgnificant,
and dten, isnot considered at all.

-37-

Density (system gates)

‘ Billi ons of MACs per second
4

4 600GMACs
10M ——@ Virtex-ll
oM — Virtex-E

—0 Virtex 32 GMACs
M 2GMACs

»

! !
2000 2001 8 MACsProc. Virtex-E Virtex-II

!
1998 1999

Figure 2-9. History of Virtexfamily density grow, and number of MACs per seand according
to Xili nx Inc.

It shoud be noted that FPGAS density increases very rapidly (abou 10 times in two
yeas) and FPGAs expand much qucker than microprocessors do. According to Figure 2-9
FPGA convdution processors are cgable of performing roughly 100 times more MACs per
second than DSPs do. In conclusion, FPGAs «an to be the most efficient and prosperous
architedure for the future.

Asaresult, agrea number of FPGA-based coprocesors have been developed in order
to implement computationally demanding operations on FPGAs [DeH98, Hut97, Lis97,
Kos97]. Reconfiguration techniques have been also proposed for microprocessors to improve
their efficiency [Xu0(Q), and Configurable Computing Machines (CCMs) [Kur0Q], relaying on
FPGAS, have been constructed. High performance of CCMs is adiieved by (dynamicdly)
building custom computational operators, pathways, and [peline suited to spedfic properties
of the task. Furthermore FPGASs are often used as a part of embedded systems, for which
applicaion spedfic hardware together with software solutions are incorporated. Optimal
(automated) partitioning algorithms to hardware and software (denoted as codesign) is,

nowadays, amajor isaue for system designers [Dic98, Slo0(.

-38-

3. Constant Coefficient Multiplication (KCM)

Multiplication is a fundamental operation performed in the mnvdution. The way a
multiplication is caried ou in ASIC and FPGA designs initially seans to be very similar.
Both ASICs and FPGAs require the same dgorithms to be implemented. For example the
structure of parall el-array multipliers [Was78] or Wall acetreemultipliers [Wal64] for FPGAs
and ASICs are very similar. Nevertheless the most important advantage of FPGAs over
ASICsisreconfiguration which all ows for a change of the multi pli cation coefficient either by
the change of the multiplicand (an inpu to a fully functional multiplier denoted further as
Variable Coefficient Multiplier VCM) or by the change of a Constant Coefficient Multiplier
(KCM) circuit. The KCM, in comparison to the VCM, has much lower hardware
requirements [Cha96, Pet95, Wialla], and therefore is recommended providing that a
coefficient valueisrelatively constant during the clculation process[Wir97, Wia01a)].

FPGAs implement logic cells as a Look Up Table (LUT) memory, therefore the
inherent way of performing multiplication seems the LUT based Multiplicaion (LM) for
which large LUT memory is $lit and combined with adders [Chap94, Chap96, Pet95,
Wia00h. Conwversdly, ASIC solutions usualy implement the KCM employing a
Multiplierless Multiplicaiion (MM), where multi pli cation employs additions and subtradions
[Pir98, Par97]. Therefore, architedure of a multiplier for FPGAs and ASICs appears to be
different. However, after dedicated cary logic has been incorporated into FPGAS, a ripple
cary adder [Omo94 occupies half of the previous area and its geed has increased rapidly
[Xil96]. Thisimprovement has not been considered to re-establi sh the adual relation between
the MM and LM architedures, and therefore the MM architedure has been owerlooked.
Summing up, in this chapter, the LM and MM architedures and their cost/speal relations in
FPGAs are investigated.

Recantly, large memory blocks, which primary intention is to store large anount of
data, have been introduced to FPGAs. In some gplicaions, these memory blocks are not
occupied, which leads to a waste of chip area. However, these memory blocks can be used as
a part of a aithmetic unit very efficiently, therefore anovel synthesis approach is hereby
propcsed. This approach combines different memory blocks and finds the best architecure of
a multiplier acording to the ast-relations between FPGA resources [Wiad0bl. A similar

-39-

approad has been propaosed independently and almost at the same time for logic synthesis by
[Wil0Q], and is dencted as heterogeneous technd ogy mapping.

In the first part of the dhapter, the Multiplierless Multiplicaion (MM) employing the
Canonic Sign Digit (CSD) and Sub-structure Sharing (SS methods, is investigated. As the
consequence of restrictions put on the FPGA dedicated adders (or subtractors) structure, a
modified algorithm for conversion from two’s complement to CSD representation is derived,
which allows substantial hardware savings. In the next part of this chapter, the LUT based
Multiplicaion (LM) is gudied. A FPGA incorporates different memory modues (e.g. for
Virtex 16x1, 3x1, 2%x16, etc.) together with the dedicated adder circuit. Therefore, finding
the best architecture of a multiplier is a complex task which is addressed hereby, and nowl
architedura solutions are propased. In addition, some memory cells have ashorter address
width and two or more memory cdls may contain the same data, therefore asingle (common)
memory can be implemented instead. It shoud be noted that every part of the research is
followed by implementation results, which helps to analyse apects of the cnsidered

architedures.

3.1. Multiplierlessmultiplication (MM)

A constant coefficient multiplier is usually implemented in a multi pli erlessfashion by
using only shifts and adders from the binary representation (BR) of the multiplicand. For
example, A multiplied by B= 14= 111G can be implemented as (A<<1)+(A<<2)+(A<<3),
where ‘<<’ dencotes a shift to the left. It shoudd be noted that the hardware requirements
depend onthe chaiceof a coefficient, i.e. the number of 1'sin the binary representation d the
coefficient shoud be & low as possble. Therefore severa algorithms have been developed in
order to reduce hardware by a proper choice of the multiplicaion coefficient (e.g. for FIR
filters design [Sam89]). However, in this paper the asumption is made that the value of the
coefficient is an input parameter to the design and therefore the wefficient value caana be
changed.

3.1.1. Canonic Signed Digit Representation

This area reduction technique datempts to reduce the number of 1s required in the
coefficient’s two's complement representation by the use of canonc signed dgit (CSD)

representation [Gar65, Pir98]. The CSD representation is a signed power-of-two

-40-

representation where each of the bitsisintheset{ 01,1} (O — no ogration, 1 —addition, 1 —
subtradion).

In general, the mnversion d a two’s complement number B=by.1, bh2, ..., by to the
CSD form D= dy1, Gh2, ..., & can be described formally [Pir98] asin Figure 3-1.

Ci+1= bivaby Obici [Tbis1Ci
di= bi+¢-2Cis1
i=i+1

A 4

(Stop)

Figure 3-1. The CSD conversion dgorithm

The use of the CSD representation for each coefficient implies that the multiplicaion
can be mndwcted in a shift and add (or subtrad) fashion wing the lowest number of add
(subtraad) operations. In the given example: B= 14= 1110= 10010, therefore A multiplied

by B can be implemented as (A<<4)-(A<<1). The CSD representation requires only one
subtradion in comparison to the binary representation which requires two additions. One
average, a CSD representation contains approximately 33% fewer nonzero bits than its
binary courterpart [Har96]. This in turn implies hardware savings of abou 33% per
coefficient.

It shoudd be noted that in the éove CSD conversion algorithm a subtraction and
correspondng addition are cnsidered as the same cost operations. Addition S= A+B can be
defined as:

S= @ Xor by xor ¢; (3-1)

if & = by then ¢= & el'se G= ¢i.1. (3-2)
Similarly subtradion S= A—B can be expressd as

S= g Xor nat b xor ¢ (3-3)

if & = nat b; then ¢i= g else = ¢i.1. (3-4)

For FPGAs (e.g. Virtex), egs 3-1 and 33 are implemented in LUTs and the XOR gates (see
Figure 2-8). Egs 3-2 and 3-4 are implemented in the dedicated carry logic drcuit. It can be
also seen from eqgs 3-1+3-4, that the subtradion requires only the alditional bit negation o

-41-

the subtrahend, therefore the asumption o the equal cost of the aldition and subtradion
seans to be justified. However, in the case of the aldition for which the first argument is
shifted to the left, the least significant bits (LSBs) of the second argument can be diredly
copied to the alder output, therefore alditional hardware savings are adieved. Unfortunately,
for the subtraction, the subtrahend s bits next to the LSB canna be diredly copied on the
output because the subtrahend hbits have to be negated and a 1 forced into the crry inpu at the
least significant bit position. Consequently, the aldition and subtradion canna be mnsidered

as the same st operations.

3.1.2. Modified algorithm for conversion to the CSD representation

The standard agorithm for conversion from the two’s complement (TC) to the CSD
representation daes not consider the éove mnclusion, i.e. treats an addition and subtraction
as the same st operations. Therefore, a modified conversion algorithm has been
implemented [Wia00b], so that the mnwersionto the 1 symbal (subtraction) takes place only
if the total number of operations (non-zero symbals) decreases.

In order to describe the modified conversion agorithm, anew function Q(i,j) for j=>i will
be introduced. Let by is the j-th bit of two’s complement representation d the multiplicand B
(M= AB) and let define Q(i,j) in the iterative way as foll ows:
Q(,i)=0
i,j)+1 ifb, =1 3-5
Q(i’jﬂ):@i,};—l ifb:zo .

The function Q(i,j+1) is incremented if binary symbad bj.; is 1 and deaemented
otherwise.

The modified algorithm is dhown in Figure 3-2. It shoud be noted that the conversion
to CSD symbad 1 takes placeonly if the number of operations is reduced. This implies that
the number of 1sin successonfor TC representation shoud be & least three. If a O-bit breaks
the raw of 1sthen the number of the successve 1s (skipping the 0-bit) shoud be increased by
2, a equivalently the counter of ones shoud be decreased by 1 (asit is the cae for function
Q(i,)))- The processof courting 1s (function Q(i,j)) shoud be stopped whenever court Q(i,j)
is lessthan zero (consequently O or 1 symbal shoud be inserted) or isequal 2 (1 symbad is
inserted).

-42-

i=0
carry= false

Y

or

Q(i,j)<2
and not
(Y<Oand j=w)

(b=1andcarry)

(b=0and nd carry)

di:O

(sign hit)

An example of results for the standard and modified CSD conversion (MCSD) is
given in Table 3-1. In can be seen that for the mefficient values: 3, 11and 13symbad 1 has

Figure 3-2. The modified agorithm for the anversion from the two’ s complement to CSD
representation; b;- i-th bit of the binary coefficient, Q()- function defined in eq. 3-5, w- the
index of the MSB of multi plicand B

not been inserted for the MCSD as the number of operation would na deaease.

Coefficient Binary (TC) CSD MCSD
3 11 101 11
7 111 1001 1001
11 1011 1001 1011
23 10111 14001 11001

Table 3-1. An example of results for the standad CSD andModified CSD (MCSD)

corveasions

-43-

3.1.3. Substructure sharing

Additional areareduction can aso be atieved by Sub-structure Sharing (SS [Har96,
Par97]. For example, multiplication by 27=1101% can be implemented by the use of an
intermediate variable tmp, asit is $rown in the foll owing equations:

tmp= a+ (a<<1) (3-6)

27@= tmp + (tmp<< 3).

By the use of the SSthe number of required additions has been reduced from 3 to 2.

It shoud be noted that the SS area-reduction may be implemented also onthe CSD,
therefore the combination d the SSand CSD tedhniques sioud be dso considered during the
optimisation process Conversely, the CSD may interfere with the SStherefore the SSshoud
be mnsidered separately on bdh the two’'s complement and CSD representations.

3.1.4. Experimental results

The mmparison d the aeareduction techniques presented in this sdion is rather
difficult, as the best algorithm depends on a wefficient value. However some statistics:

average and maximum circuit costs and the best algorithm occurrence can be derived.

K Average Maximum Best algorithm occurrence
CLBs| L |CLBs| L |Coeff.|] TC | CSD | SS | CSD-
SS

3 271 | 057 5.5 1 7 6 1 0 0

4 413 | 0.87 9 2 11 12 3 0 0

5 552 | 1.16 10 2 23 22 9 0 0

6 6.92 | 1.44| 145 3 43 39 17 4 0

7 844 | 1.75 15 3 75 68 43 16 0

8 9.8 2.03 17 3 183 114 94 44 3

9 111 231| 205 4 309 188 193 10y 1%
10 123 257 235 4 747 30(407 254 62
11 136 | 2.83] 245 4 1463 478 79y 579 193
12 149 3.08] 275 4 3381 746 1510 1285 5%4

Table 3-2. Average and maximum number of CLBs (XC4000) and correspondng number of
operations L (addtions and subtractions), andthe most hardware cnsuming coefficient

Results for 8-bit unsigned inpu (the most common data format for image processng)
and coefficient width K=3-12 (coefficient values [1, 2°-1]) are shown in Table 3-2. These
results were obtained for the best algorithm (selected separately for every coefficient) of two's
complement representation (TC), CSD, SS and CSD-SS — applying the SS on the CSD
representation. The best agorithm occurrence presents how many times ead agorithm gives

-44-

the best result. If results of two algorithms are the same, the simplest (former) solution is
taken.

It can be seen from Table 3-2 that the optimisation techniques (CSD, SS CSD-S§ are
more dtractive for large wefficient widths. The average number of operations L for the TC is
roughly K/2-1, which for K= 12 gives L= 5 in comparison with L= 3.08for the optimisation.
However the st of a multiplier increases amost linealy with the increase of a wefficient
size K as it is hown in Figure 3-3. In conclusion, the st does nat only depend onthe
number of operations. Therefore the choice of the best technique canna be taken orly from
the final number of operations (additions/subtradions) but the overall circuits cost has to be

considered.

25 A~ —e—Avg.
+

20 4 Max
[72]
Q15 .
o /

10 A

5 | /

0 ‘ ‘ ‘ ‘

2 4 6 8 10 12

Figure 3-3. Average and maximum area occupied by the 8-bit input multi plier for different
widths of coefficients K

i I

CLBs
o> o o
%
il
|

\

|

|

|
—

0 50 100 150 200 250

coeff

Figure 3-4. Cost of the 8-bit-wide input multi plier for XC4000 anddifferent coefficients

-45-

Cost of the multiplier depends drongly on a given coefficient value, which is shown in
Figure 3-4. It can be seen that the stliest multipliers are for the efficient valuesin 60-75%

of the wefficient full binary range.

3.2. LUT based M ultiplication (LM)

3.2.1. Concept

In principle, the evaluation d any finite function can be arried ou using a look-up
table (LUT) memory that is addressed with the agument for the evaluation and whose output
isthe result of the evaluation. This, in theory, gives the fastest posgble implementation, since
no adual arithmetic is required. Unfortunately, the use of asingle LUT for the multiplication
is unlikely to be practicd for any but the smallest argument, becaise the table size grows
rapidly with the width of the agument. For example, for the L-bits wide agument and K-bits
wide mefficient, the size of memory is (L+K)Z", which for K=8, L= 8 gives 4k hits. It is,
however, pcssble to creae apradicd implementation d the LM by combining a number of
small LUTs and adders. The ideais to split the agument, use LUTS, and then use atree of
adders [Chap96,0mo95. An example of the multiplier circuit for K=8 and L=8 is diown in
Figure 3-5.

inpu
s
o gy
LUT LUT
B A
T2 T12
8
Adder 14
T2
- 16
output

Figure 3-5. The LM for inpu argument width L=8 andcoefficient width K=8

The LUT contents for the multiplicaion Y= AB can be evaluated drectly from the

multiplication asit isgiven in the examplein Table 3-3.

-46-

Address Vaue Ys Y4 Y3 Y2 Y1 Yo
0 0 0 0 0 0 0 0

1 19 0 1 0 0 1 1

2 38 1 0 0 1 1 0

3 57 1 1 1 0 0 1
addresswidth 1 1 2 2 2 1

Table 3-3. The contents of the memory (ys-Yo) for different addressvalues andthe wefficient
equd 19. Addresswidth —the width of addressbus for each memory cél

It can be eaily proved that an ouput bit of the LUT depends only on the aldress bits
which weights are lower or equal to the output bit weight. In the example, the memory cdl yo
depends only on the aldressline ap, memory cdl y; depends on ap and ay, etc. In genera an
output bit y; depends onthe MAX(i+1, n) addresslines, where n denactes the width of the LUT
address bus. In consequence, (n-1) LSBs require smaller memory modues, which implies
substantial hardware savings. These hardware savings will be denoted as LSBs Address
Width Reduction (LAWR).

An additional deaease of the addresswidth may be observed when the contents of the
memory do nd depend ona aurtain address line. This address width reduction canna be
generalised and dffers for different coefficient values and LUT addresswidths. Therefore, a
complex search algorithm has to be enployed to find a don't-care aldressline. This sving is
denoted as Don't-care AddressWidth Reduction (DAWR). In the example given in Table 3-3,
the DAWR is observed for memory cdlsys andy;. It shoud be noted that the DAWR usually
occurs for MSBs of the product.

Further savings can be adieved by Memory Sharing (MS). In the given example,
memory cdlsyp and y, are the same therefore only one of them is needed. This optimisation

requires smilar complex seach asthe DAWR does.

3.2.2. Implementation in FPGAs

The split of the multi plicaion argument shoud be carried ou with respect to the size-
cost relation d memory blocks and adders' cost. The XC4000family incorporates 16x1 and
32x1-memory modues. The st of the 32x1-memory modue is 2 LEs (2LEs= 1 CLB for
XC4000 o ¥2 CLB of Virtex), which is twice the st of 16x1-memory modue (1 LE). The
cost of the alder is 1 LE/bit. In addition, there exists a virtual memory modue 2x1 which
does not occupy any CLB’s area and can be implemented as either a @nrection from the
input argument to the adder input or as feeding the alder with a zero.

Finding optimum combination d different memory modues and adders is a difficult
task, and the best solution degpends on a size of inpu data and a given coefficient value. The

-47-

LM incorporating only 16x1 memory modues has been presented in [Cha96, Gre97, Pas01,
W0j99], 16x1 o 32x1 [Ser0l], howvever no hint for optimal combination d different
memories or implementation d any of optimisation techniques described in Sedion 3.2.1 las
been given.

As aresult of the aithor reseach, the following conclusion hes been derived. For the
input width much greater than 4,the preferable memory blocks are 16x1. Unfortunately, if the
input width canna be divided by 4, dfferent memory blocks may be used.

An example of different multiplier architedures for the inpu data width equal 6 is
shown in Figure 3-6. The hardware requirements for these drcuits for coefficient equal 43
are: @) 11 Y2, h 12 and ¢) 12 CLBs of XC4000, therefore the difference is very dlight. In
general, however, there is a rule of thumb that the best or almost the best circuit is generated
by the use of only 16x1 RAMs (and the dired connedion to an adder if the remained inpu
buswidthis1).

a) in b) in 9 in
/I/G }s /|/6
A4 2 A4 A5
Mem Mem Mem Mem
16x1 16x1 16x1 32x1
I | L
Adder Adder Adder
out out out

Figure 3-6. Different reasonalde methods for implementing the multi plier with the input bus
width equds 6

The design task is even more mplicaed for Virtex family. Virtex FPGAs
incorporate several large BlockSelectRAM (BSR) memories which are 4 kbin size and may
have different data bus width: 4kx1, 2kx2, 1kx4, 518, 25616 [Xil99%)]. The aeain sili con,
occupied by a BSR is equivalent to roughly 16 Virtex CLBs (64 LEs). However the actual
cost of these memories may differ with respect to free FPGA resources, e.g. adesign does not
implement any BSRs but uses al CLBs. Consequently, trade-off for distributed RAMs and

BSRs is design-dependent. However general conclusions can be derived from Figure 3-7. On

-48-

average, the euivalent cost of the BSR 256x16 is abou 8+11 Virtex CLBs (VCLBS)
(=32-44 LEs).

It shoud be noted that the BSR blocks are rather large and therefore it is difficult to find
an architecture for which the BSR is fully used. The efficiency of the BSR usage strongly
influences its equivaent cost. Consequently, for a small input and coefficient width (<8), the
equivaent cost of the BSR is rather small (see Figure 3-7). For the width up to 13 the
equivaent cost of the BSRs increases. However for the width greater than 13, two or more
BSRs and an additional adder are required, therefore the efficiency of the BSRs usage
deaeases as an effect of quantization and dstribution d the large BSR. For the input width
equal 16 the number of BSRs increases rapidly as the BSRs are grouped into pairs to form a
single 256x32 memory which implies low equivalent BSRs cost. As the width again increases
the euivalent cost is growing. It seems, however that the equivalent cost equal 11 is a
maximum value that is never surpassed.

12

0 T T T T T T T
4 6 8 10 12 14 16 18 20 22 24
Input data and coefficient width

Figure 3-7. The area o the LM for the different input and coefficient width. A- area (in Virtex
CLB) scaled of 1:10, for the LM using oy distributed 16x1 and 3Z1 RAMSs, B- number of
used 256x16 BSRs, C- equivalent cost (in Virtex CLB) of a BSR in comparisonto dstributed

RAMs- only option

Figure 3-7A shows aso the st for multipliers using only small distributed RAMSs. It
can be seen a rapid grow of the st for the width equal 9, 13, 17, 21, ..when the width
surpasses the number divided by 4.

In this thesis to find an oggimal solution d a multiplier, an exhaustive search algorithm
(with some obvious smplificaions) has been implemented for which BSRs together with

-49-

distributed RAMs and adders were cmbined and the best circuit taken. In order to ill ustrate
considered architectures, an example of the LM for input and coefficient width equal 14 is
shown in Figure 3-8. In this example a ombination d BSRs and dstributed RAMSs is
implemented. The given example may be even more complicated if a @mncrete efficient
value is given, however in this edion, general cases are investigated for which the MS and
DAWR optimisations have not been considered.

7
V JE J J K 15 s
256x16 32x1 3x16x1 | 2x1 | 256<16 || 32x1 3x16x1 | 2x1
t16 1 Ts t16 1 Fs H

t21 J21
14
Adder A7

21
28

Figure 3-8. ALM for input and coefficient width equd 14

It shoud be noted that the AuToCon daes not assume any initial relations between
memory modues and adders' costs, therefore memory modues can be freely seleded and the
program can generate drcuits for any FPGA family or even for ASICs. The inpu parameters
to the program are alders and memories Szes and costs.

In this thesis only Xilinx XC4000and Virtex families have been thoroughly studied,
but aimost the same properties have dso dfferent FPGAs. For example, Altera Apex 20K
family [Alt99] has amost the same wst-relation as Virtex has; the Apex family implements
16x1 LUTs or dedicaed carry logic in each Logic Element (LE) and aso incorporates a large
memory (128x16, 256¢8, 5124, 10242 or 2048x1) in each Embedded System Block (ESB).
The size of Apex ESB RAMSs is half the size of the Virtex BSR, howvever in most cases the
Virtex BSR is naot fully used therefore the main difference between Apex and Virtex seansto
be the ladk of 32x1 distributed RAMs for Apex family.

While implementing LMs, it can be seen that the Virtex BSR has not optimal
parameters and dten are not fully exploited. Memory modues 4kx1, 2kx2, 1kx4 and 518
have never been implemented, oy 256x16 RAMs have been used. Even 256<16 memory

modues are very seldom fully exploited. For example in Figure 3-8, ore aldressline is not

-50-

used, which causes that only half of the memory is used. Therefore aquestion arises what
optimal memory sizeis. A genera answer isthat memory data width shoud satisfy:

Wh= We + Wa - WL (37
where: Wp — memory data width, We — width of the aefficient, Wa- memory addresswidth,
W, - addresswidth of smaller andlesscosty LUTs, W = 5 for Virtex(32x1).

From eq. 3-7 it can be seen that for We= 13 and W= 8 the result is Wp= 16 which
corresponds with the 256x16 memory modue, therefore the maximum of the equivalent BSR
cost is observed in Figure 3-7 for the inpu width equal 13.

It shoud be dso nded that the number of used BSRs depends on the st relations.
For example, for a 16-bit wide muiltiplier, the number of BSRs gradually increeses as the BSR

cost deaeases, see Table 3-4.

Cost BSR #BSRs LUT RAMs Cost | AddersCost | BSR egq. Cost
VCLBs VCLBs VCLBs VCLBs
>7.75 0 19 16 -
>6.5 2 9.5 10 7.75
<6.25 4 0 6 7.25
Table 3-4. The BSRs cost andits influence on the best architedure; area in Vertex CLBs,
1VCLB= 4LEs

Additional hardware savings can be obtained if not full binary range of inpu data is
used. For example, for the inpu data range 0-127 (binary range) and 0-99 (dedmal range) and
the oefficient equal 81 the implementation results are 14.5 and 13.5 XC4000 CLBs
respedively.

Further design optimisation can be achieved for negative numbers. In genera a design
can be divided into 4regions:

» Coefficient andinpu data ae positive —there is not negative number optimisation.

* The wefficient is positive, inpu data is in two's complement format (negative or
paositive). In this case only the MSBs LUT operates on two’'s complement format.
However the MSB LUT output can be ather positive or negative therefore design
optimisation canna be implemented.

e The negative mefficient and paitive inpu. All LUTs operate on two's complement
numbers, bu it can be seen that the LUT outputs are dways negative. Therefore alditions
can be substituted by subtradions and in this way al LUTs will operate only on positive
data. In consequence, the LUT sign hit coding is «kipped and therefore the width of eath
LUT is one bit shorter. However the doule subtradion (s=-a-b) canna be implemented

-51-

in FPGAs and will be postpored to the next level of addition (s= -(a+b)), which implies
that the result of the aldtions (s= -a-b-c-d-...= -(a+b+c+d+...)) shoud be negated.
This, however, requires an additional circuit. Therefore the best solution is to implement
substations for all but the LSB LUT. Thisimplies that doulde subtradion chain is broken,
andthe wpy of LSBs (see Sedion 3.1.) isachieved.

* The negative mefficient, two’s complement input data. In thiscase dl but the MSBs LUT,
operate on orly negative numbers and shoud be implemented as in the previous region.
The MSBs LUT operates on either positive or negative numbers, therefore might be
implemented as an addition. However this addition dstrads subtradion-addition chain
and causes that the LSBs copy does not occur. In conclusion the MSB LUT shoud be
also implemented with a subtradion therefore the drcuit is implemented in the same way

asin the previous region.

3.3. Comparison of the multipliers

3.3.1. Area

In this chapter two dfferent multiplicaion techniques have been presented: the
multi pli erless multiplicaion (MM) and the LUT based multiplication (LM). Therefore a
guestion arises which o them is more hardware dficient. The statisticd cost-relation between
the MM and LM for XC4000is shown in Figure 3-9. Accordingly, the LM is usually more
attradive for the inpu and coefficient width lessthan 5, for the greaer widths a better result
is usualy obtained by the use of the MM. It shoud be noted that the doice of the best
architedure depends on the actual coefficient value and Figure 3-9 shows only statisticd
relationship. Therefore both architectures shoud be @nsidered and the best of them chasen.
However, from Figure 3-9 it can be seen that the gain from considering best of the LM and
MM isinsignificant for K greaer than 5.
The general conclusion can be drawn from Figure 3-9. The MM optimisation
tedhniques (CSD and SS are more and more efficient with the increase of width K. Therefore
for greater K, the MM is getting more and more dtractive in comparison to the LM.

The next question is how much hardware reduction is achieved by the use of the
DAWR and MS for the LM. Experimental results how that the gain is on average 5+20%
depending onthe inpu width K.

-52-

1.5+ —

O LM/MM _—
1.4 B MM/best = NIl
1.3 B — et
1.2 — et

1.1+

3 4 5 6 7 8 9 10 11 12 13 14 15 K

Figure 3-9. Relation between average area of XC4000 acupied by: LM/MM — using orly LM
and oy MM; MM/best — using oly MM andthe best of LM and MM. Results for the
different input width K (input range 0+2¢-1) and coefficient values 1+2¢-1

3.3.2. Spedd

In the previous sction ony area occupied by the multipliers has been considered.
However, relation between the design cost and speed shoud be dso considered. Consequently
in order to increase the design throughpu, design pipelining has been implemented. FPGAS
incorporate aflip-flop after ead logic cdl. Therefore amnceptualy design pipelining can be
implemented withou any hardware overheads. However, some design paths do nd require
any logic, therefore frequently flip-flops have to be inserted withou assciated logic
(acording to cut-set method [Pir98]). In consequence, for afully pipelined circuit (aflip-flop
inserted after every logic dement), the areais defined by the number of flip-fli ps rather than
the number of logic cell s, and as a result, there is a pipelining overhead of abou 0+50%. This
overhead disappears if the number of pipeline stages is decreased (flip-flops are not inserted
after every logic cdl) but in consequence the drcuit speed decreases. Conversely, design
pipelining considerably increases the throughpu, therefore the design efficiency [Pir98] is
usually improved and therefore the slight hardware overhead can be neglected. It shoud be
noted that the design pipelining has been also taken under consideration when searching for
the optima architedure. For example, the sub-structure sharing architedure tends to

incorporate more fli p-flops than the CSD architedure.

-B53-

Area Speed

18 18
16 - 16 ___
14 — 14 +— []
@ 12 - 12 1|
S 10 L 10] N
o (7)) —
S 8 | £ gl |
<
S 61— - 61—
4 - 41—
2 4+ - 2
O T 1 0 T T T T - 1
MM LB CoreGen MM MMPipe LB LBPipe CoreGen CoreGen

Pipe

Figure 3-10. Average area withou pipelining andsystem period withou andwith pipelining
for the MM, LM and Core Generator [Xil99] multiplier. Implementation results for
XC400CE-1 andfor the 8-bit unsigned inpu andrandamly chasen coefficients equd: 41, 108,
132, 190, 225

Figure 3-10 shows average hardware requirements and the system clock for the MM
and LM multipliers. It can be seen that the MM multipliers are generaly more hardware
efficient than the LM counterparts. Besides, the MM and LM developed during the course of
this work, surpass the multipliers generated by Core Generator [Xil99%] — a commercid

program.

3.4. Conclusions

This chapter investigates two dfferent methods of implementing multiplication: the
LUT based multiplication (LM) and multi pli erless multi plication (MM). The implementation
results show that for asmall i npu width, the LM is usually the best choice, bu with the width
increase, the MM s getting more and more dtradive due to greater efficiency of the CSD and
SSmethodks.

Furthermore, an improved agorithm for conversion from the two’s complement to the
CSD representation is introduced. This algorithm considers that the cost of the subtradion is
often higher than the cost of the aldition as the @py of the LSBs canna be achieved for the
subtradion. Consequently, a subtraction (CSD representation 1) is implemented ony if the
total number of operations deaeases.

This chapter thoroughly studies the LM and presents different optimisation techniques
which are rather intuitive but have never been presented. Firstly, the combination d different
memory modues has been introduced. This aspect is very important as FPGASs incorporate

-54-

different memories and therefore finding the optimal memory configuration is a wmplex task
that is tadkled hereby. Furthermore, diff erent optimisation methods are presented for the LM:
LSB Address Width Reduction (LAWR), Don't cae Address Width Reduction (DAWR),
Memory Sharing (MS) and regative number optimisation techniques. At the end, the
cost/speeal relationship between presented architectures are presented for Xilinx Virtex or
XC4000family.

-B55-

4. Architeaures of Multipliers

Bit-parallel multiplication can be arried ou implementing three different
methoddogies. The first is a variable wefficient (fully functional) multiplier (VCM) which
can be implemented using for example parall el-array multipliers [Omo94 or Wallacetree
multipliers [Wal64]. For the VCM, a wefficient value can be freely changed bu the
disadvantage of this lution is a relatively high cost. The dternative solution is a Constant
Coefficient Multiplier (KCM) which in comparison to the VCM has much lower hardware
requirements [Cha96, Pet95], and therefore is recommended provided that the wefficient is
constant during a calculation process For ASIC designs the wefficient value once determined
canna be danged. Conwversely for FPGAs, the diange of a wefficient value can be
implemented by remnfiguring the FPGA structure. The process of recnfiguration wsually
takes sveral ms[Xil99h|; therefore if the cdculation processcan be paused for that time and
the wefficient isrelatively constant during data processng [Wir97], the KCM solution shoud
be wnsidered. The reconfiguration time can be however reduced by the use of a partialy
reconfigurable FPGA, e.g. aVirtex FPGA [Xil99h]. The KCM solution has anather drawback
that the multiplier circuit hasto be redesigned for a diff erent coefficient value. Fortunately, by
the use of an automated tod (e.g. AuToCon), the KCM can be redesigned within the time of
semnds. However a new design has to re-employ a place and route program which fits the
new design into the FPGA. The fitting process is usualy time-consuming and takes
approximately 1min + 1hou. In conclusion, the change of a wefficient value for the KCM
requires not only the FPGA to be reconfigured bu also the whole design cycle to be re-
implied. This causes that the change of a wefficient value for the KCM solution is onerous
and therefore often the more-hardware-consuming VCM solution taken instead.

An dternative solution is a Dynamic Constant Coefficient Multiplier (DKCM). The
DKCM is aLook uptable based Multiplicaion (LM) for which the change of the wefficient
can be atieved by a proper change of LUT memory contents. This slution can implement
in-circuit coefficient reconfiguration therefore the multiplier configuration time is shorter and
the design fitting into the FPGA need na be re-implied. A drawback of this lution is that

the DKCM occupies more areain comparison with the KCM.

-56-

At the first part of this chapter the LUT based multiplicaion (LM) and its modificaion
— the DKCM is presented. For the DKCM three different options. multiplexing in logic,
multiplexing in tri-state buffers and dwl port memories are studied. Then, a comparison d
the KCM, DKCM and VCM and their implementation results are given.

4.1. Dynamic Constant Coefficient Multiplier (DKCM)

The DKCM [Xil99] (or self-configurable binary multiplier [W0j98, W0j99]) isthe LUT
based multiplier for which ROMs are replaced by RAMs. The idea behind the dynamic
change of a wefficient value is to properly change the wntents of the memories. This,
however, requires an additional RAM programming interface and imposes constrains on the
DKCM architecture in comparison to the KCM.

input
P] AddressPr. , 4
7 Coefficient
4 L4 RAM S
44 1 A4 A
Program L oad
Mux 2:1 Mux 2:1 ming
Unit
(RPU)
4 A 4 DataPr.
Addres
RAM RAM P I;/r\:;glee Not Reedx
B A —
Data Out 12
12 8
Adder
e
F12 14
416
output

Figure 4-1. An example of the DKCM for inpu data andcoefficient width equd 8

The aditional RAM programming interface ca be divided into two parts. The first part
allows the RAMs to be programmed and wually consists of addressand (rather seldom) data
multiplexers. The seand part of the additiona circuit is RAM Programming Unit (RPU)
which produwces proper data and address sequences and control signals for RAM
programming. An example of the DKCM is hown in Figure 4-1. It shoud be noted that this
exampleis equivalent to the KCM given in Figure 3-5.

-57-

4.2. Memory Multiplexers

It can be seen from Figure 4-1 that RAM memories usually have separated paths for
datareads and data writes [Xil 990, therefore data multi plexing is nat required. Unfortunately,
the adress bus is the same for reads and writes to the RAMSs, therefore alditional
multi plexers for switching between these addresses have to be implemented. The multi plexing
processcan be carried ou using Logic Elements (LE) in Configurable Logic Blocks (CLBS)
or tri-state buffers (TSBs) [Xil99h. The latest solution consumes no logic aea, though uses
the programmable interconrect resources which are often limited and slower than
multiplexing in LES. The multiplexing process can be skipped by the use of dual-port (DP)
RAMs. The DP-RAM solution is usually quicker (withou multiplexers delay) but consumes
more aea For example, for Virtex, a 16x1DP distributed RAM consumes the aea of two
correspondng single-port (SP RAMs. However, Virtex incorporates a large 4kb Block
SeledRAM (BSR) DP RAM therefore DP-RAM can be anployed withou any hardware
overheads. Summing up, design ogimisation shoud consider threedifferent options:

» Multiplexing using logic (LES) resources (denoted as DKCM-L)

» Multiplexing using programmable interconrect (TSB) resources (DKCM-T)

e Using dual-port RAMs (DKCM-D).

4.3. RAM programming unit (RPU)

The main task of the RPU isto provide the memory with write aldressand dbta. Let
consider, at first, the cae when input data is always paositive and al memory modues have
the same aldresswidth. In this case during programming, all memories are fed with the same
address and data (like in Figure 4-1), therefore the RPU consists of address courter and the
acamulator which starts from value zero and is incremented every clock cycle by the
coefficient value [W0j98]. In consequence, the data sequenceis as foll ows:

do=0

di= do+ coeff= coeff

do= dy+coeff= 2/0oeff 4-1)

where di- write data for addressvaluei, coeff- the mefficient value
It shoud be noted that the number of memory writes (the number of the multiplier idle dock
cycles) depends on the memory size, e.g. for RAM 16x1, sixteen memory writes are required.

Therefore in some gplications, it may be beneficial to use only a part of memory in order to

-58-

reduce the multiplier idle time. However, this causes that the multiplier consumes more
hardware [W0j98].

The RPU bemmes more complicated if memory sizes (address widths) are different
because ather different memory modues have been implemented or the input data width can
not be evenly distributed into separate memories. In this case, each memory write-enable
signal shoud be disas=rted whenever the write addressoverflows the memory addresswidth.
This however may require alditional write-enable logic to be implemented. The write-enable
problem can be solved by progranming RAMs from the highest address (all ones) down to
zero. In this lution, all memories can be written disregarding address width because the
latest memory writes are dways proper and owerwrite the previous (improper) writes. The
data sequencefor programming RAMs is therefore & foll ows:

ds1= (coeff<<w)-coeff= (s-1)[Coeff;
dso= ds-coeff= (s-2) [Coeff

do= d; - coeff= 0 (4-2)
where: coeff<<w - the coefficient shifted w bits to the left, w- maximum width of memory
address s- maximum size of memory s= 2".

The drawbadk of the @owve solutionis that an multiplexer 2:1 is required (instead of the reset
circuit for eq. 4-1) for feeding the subtractor either with (coeff<<w) or di. ;.

The RPU is further complicaed for negative (two’s complement) inpus. In this case
al RAMs except from the MSBs RAM, operate on paitive inpus therefore can be
programmed as above. For the MSB RAM and for the MSB (sign hit) equal zero, the MSB
RAM is programmed as the rest of RAMs. Conversely, if the sign bit is asserted then the
RAM has to be programmed with a different data sequence which can be generated by
continuing eg. 42, asfollows:

do: dl —coeff= 0
d.1= dg — coeff= -coeff
d.= d.; — coeff= -2/0oeff (4-3)

d.si= d.gn+1— coeff= -sn [Eoeff
where: sn- the size of the MSB RAM divided by 2.
It shoud be noted that eq. 43 does naot require alditional hardware, it uses the same
address counter and subtractor as eq. 42. However, progranming two’'s complement input

multiplier requires additional control logic for write-enable signals. Consequently, the MSB

-59-

RAM write-enable is asserted during whole programming process for the rest of the RAMSs,
the write-enable signal is asserted orly for eg. 4-2 and dsasserted for the rest of eq. 4-3. It
shodd be noted that the two's complement inpu format causes that the multiplier

programming (idle) timeislonger.

4.4. |mplementation resultsfor the DKCM

The optima architedure of the DKCM depends grongly on a given FPGA device
therefore & first implementation results for Xilinx XC4000 family [Xil990 will be studied.
The multi pli caion requires mainly 2:1 multi plexing, addition and RAM units, therefore only
these modues will be considered here. The XC4000incorporates sngle-port (SP) 16x1 and
32x1 and dud-port (DP) 16x1 dstributed RAMs at the st of 1, 2 and 2 Logic Elements
(ILE = 4-inpu LUT = %2 XC4000CLB) respectable, and an adder with dedicated ripple cary
logic & the cost of 1 LE/bit. A 2:1 multiplexer consumes 1 LE if implemented in logic, or

only programmable interconreds resources if implemented as atri-state buffer.

300

250 -

200 / —
——Logic
-=- Tri-State
- DP /
150
o M

50 -

Area [LE]

Figure4-2. Area occupied by the DKCM for different input and maximum coefficient widths
K. Implementation for XC4000 and uagned coefficients andinpus

It can be dso seen from Figure 4-2 that the best solution seems to be the DKCM-T for
which multiplexers are implemented as tri-state buffers. However the drawback of the
DKCM-T is that tri-state-buffer multi plexers are usually slower than logic multi plexers are

-60-

(seeFigure 4-3). This may cause that commonly used AT product [Sei84)] is worse than for
other multipliers. It shoud be noted from Figure 4-3 that the tri-state-buffers propagation
delay is even lessacceptable for pipeline achitedures. Conversaly, in arder to speal upthe
multi pli er the DP memories shoud be used. The DP RAM solution has however a drawbadk,
the st of DP RAM istwiceof the SPRAM and the speed of the drcuit isimproved ony for
non-pipelined architedures. However, if the wst of SP and DP RAMSs is the same the DP
RAMs shoud be taken.

There isaso ancther virtual DP 2x1 RAM which can be implemented as a 2-inpu AND
gate (apMp). The ast of this modue is 1 LE which is lower than 2 LE for 16x1 DP RAMSs,
this memory modue shoud be therefore implemented to cdculate every LSB of the LUT (for
which addresswidth is 1). Similarly, a virtual 4x1DP memory can be implemented using a
16x1 LUT (aplby [J a1 Mhp) to cdculate the next bit to the LSB of every LUT. Furthermore, the
parale-array multiplier [Omo94 can be obtained if only AND gates instead of RAMs are

implemented.
Up to naw, XC4000family, which incorporates only small distributed RAMs, has been

considered, bu additional RAM resources are avail able in Virtex which incorporates large DP
4kx1, 2k<2, 1kx4, 5128 and 256<16 BlockSeled RAMs (BSRs).

25 —

20 —

T [ns]

T L D T Pipe L Pipe D Pipe

Figure 4-3. The maximum propagdion celay for different architectures of the DPCM without
andwith pipelining. Results for XC400&E-1 andK=8

Constructing the optimal multiplier using large BSRs, distributed RAMs and adders is
however adifficult task which involves many trade-offs:

-61-

Cost relations between BSRs, distributed (small) SP and DP RAMs, multiplexers and
adders. The dhip areaoccupied by 1 BSR is equivaent to roughly 64 LEs, bu the red
cost-relation is application- and resources-dependent, as free BSRs can be implemented
instead of fully used logic dements and vice-versa.

The multiplier programming time is propational to the memory size, therefore in
applicaions where operation idle time is a aiticd factor, smaler memory blocks are
preferable.

Multiplication delay time tends to be lower with larger memory blocks as the number of
arithmetic blocks decreases. Conversely, the memory accesstime usually increases with
the memory size, and routing large RAMs with arithmetic modues is more difficult as the
BSRs have fixed pasition in FPGAs and canna be freely mixed with adders as it is the
case for small distributed memories. The case is even more complicated for pipelined
architeaures where acost of additiona flip-flops and a frequency of the system clock

have to be onsidered.

160 »

140 ~
—&— LEs Virtex/XC4000 (Only LES)

—— LEs Virtex/XC4000 (combination)
—A&— BSRs x20 (combination)

120 +— —%¢—LE Apex

—*%—ESB x20 Apex

-

o

o
|

LEs/BSRs/ESBs
o)
o
3
b
»

(o)}
o
I

40

20 H

0 B T 1
2 4 6 8 10 12 14 16

Figure 4-4. Number of LEsandBSRs (scaled 20 1) for Virtex(usinglarge BSR), and rumber
of LEs for XC4000QVirtex (using orly small distributed RAMS), and number of LEs and ESBs
(scaled 201) for Apex The RPU isnot considered, the equivalent costs: 1 BSR= 1 ESB= 20

LEs

The implementation results for combination d large BSRs and small distributed RAMs,

and for only small distributed RAMs is iown in Figure 4-4. Note that the number of used

-62-

BSRs depends on the equivalent cost of the BSR; and for the equivalent cost greater than
roughly 44 LEs- the BSRs are not used at all.

Altera Apex 20K [AIt99] family aso incorporates dedicated ripple carry logic & the st
of roughly 1 LE/bit; but in comparison with the Xili nx FPGAs can implement only large DP
RAMs: 2kx1, 1kx2, 514, 256<8 or 128x16, ore in ead Embedded System Block (ESB).
Consequently, as it can be seen in Figure 4-4, the number of required ESBs in comparison
with BSRs is greater, hovever the number of LEs is reduced. The next consequence of the
ladk of distributed RAMs in Apex FPGASs is the longer coefficient reprogramming time in
comparison with the Xili nx FPGAs when only distributed RAMs are used.

The AuToCon wses advance full seach agorithm which generates the best solution
from the given inpu parameters. inpu data range, coefficient range and cost relations
between adders, memories, multi plexers and flip-flops, etc. In order to ill ustrate achitedures
analysed by the AuToCon, an example of the optimum structure of the multiplier for K= 12is
given in Figure 4-5. Note that in this example only dual port memories are implemented
therefore the input multi plexing is not required. However it might seem that it is better to use
multiplexers instead o DP RAMs acording to the results in Figure 4-2, revertheless in

Figure 4-5 only one 16x1DP RAM is nedaled, therefore the use of multiplexers canna be

justified.
5 {12

=7
//7 1 //7 //3 2 //1
256x16 | 2x1 256x16 || 161 4x1DP | 2x1
DP | | AND DP DP | 16x1SP AND
16 1 X16 41 1 1

417 119

= LSBs
MSBs 112
Adder A

17
24

Figure 4-5. An example of the multiplier for input and coefficient range 0+2'%1. The optimal
architedure for Virtex FPGAs and equivalent cost 1BSR= 20LEs = 5 CLBs. The RPU isnot
shown

-63-

4.5. Implementation of the DKCM versusthe KCM

Initidly, the architedure of the DKCM does not sean to be much dfferent in
comparison with the KCM, ony the alditional RAM Programming Unit (RPU) and address
multiplexing are required (see Figure 3-5 vs. Figure 4-1). However, the KCM can be
implemented using either the LM or MM (see Chapter 3). The MM is getting more and more
atradive & the oefficient width increases becaise more dficient optimisation techniques
such as Canonc Sign Digit CSD and / or Sub-structure Sharing (S are employed.
Consequently, for Xilinx XC4000, and input and coefficient width greaer than 5, the LM
consumes on average 25+50% more areain comparison with the wrrespondng MM, as it is

shown in Figure 3-9.

Furthermore, even the LM can employ advance optimisation techniques which are
suitable only for the KCM. These techniques are enumerated below:

» Simplificaion for even coefficients - in this case the LSB(s) of the product has (have) a
fixed zero value. Furthermore, for coefficients: 1, 2,4, 8,€tc., the KCM can be replaced
by the agument hardwired shift, which does not consume any hardware.

* Reduction d memory size -Don't care Address Width Reduction (DAWR), see Sedion
3.2.1.

* Memory sharing (MS)

» Skipping coding of the sign kbt — for fixed coefficient, LUT outputs are usually either
always pasiti ve or negative, and therefore sign hit need na be mded seeSection 3.2.2.

The DKCM in comparison with the KCM can implement a great range of coefficient
values, for which, conversely, different KCMs shoud be developed. Furthermore, a KCM
architedure varies sgnificantly for different coefficients, which causes a great differencein
areaoccupied by the KCM. Therefore, to compare the DKCM with the @rrespondng KCMs,
threedifferent statistica costs of the KCM can be used:

1. Average aeaoccupied by aKCM for agiven coefficient range (usually 1+2%-1). This cost
is suitable for static configurable systems [San99,, for which the st of a static KCM and
its equivalent static DKCM is compared. The average aeaof the KCM can also be used
for dynamic configurable systems [San99 for which a gread number of KCMs are
considered at the time, therefore usage average statisticd valueisjustified.

2. Maximum areafor a given coefficient range — is recommended for dynamic configurable
systems, for which the wefficient is changed by FPGA rewnfiguration.

-64-

3. Maximum areafor a given coefficient set - asin pant 2, bu in the cae when the number
of possble wefficientsisrelatively small. This value seems the best for defined designs,
however may constrain further design changes. This slution hovever canna be
generdised and therefore is nat further referred to.

The omparison d the KCM and DKCM is given in Figure 4-6. For small values of K,
areaoccupied by the DKCM is much greater than for the KCMs due to the strong influence of
the RPU; on Figure 4-6 the ast of the RPU is ill ustrated as the diff erence between DKCM-T
and maximum cost of the KCM-LM. As K increases, the relative cst of the RPU deaeases
(for K= 3 and K=16, the RPU occupies 63% and 236 of the whoe DKCM-L area
respedively), and addtional cost of the DKCM over the KCM is related rather to the
comparison strategy (the average or maximum cost of the KCM). For example, for K= 15 the
DKCM overhead is 39% and 1384 for the maximum and average KCM arearespectively. It
shoud be dso nded that architectural (LM vs. MM) overhead increases with growing K as it
is shown in Figure 4-6 (max KCM-LM vs. max KCM).

180

160

Oavg KCM
Emax KCM
Omax KCM-LM
ADKCM-T

140 +—

120

100

Area (LE)

80

60

40

20 -

3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 4-6. Area for Xilinx XC4000, @cupied by: the DKCM-T, maximum area of the KCM-
LM andKCM (the best architedure of the MM or LM) and average area for the KCM. The
input range 0-2%-1 andthe wefficient range 1+2¢-1

4.6. Implementation of the DKCM versusthe VCM

The VCM is a fully functional multiplier, usually implemented using AND-gates and
adders [Omo94, Wa64], for which a mefficient-change penalty is not observed. The

-65-

drawback of the VCM, as can be seen from Figure 4-7, isitslarge @st in comparison with the
DKCM. For small multiplier width K, however, the st of the DKCM is dominated by the
RPU, therefore the VCM isrecommended.

400

350 15 BKreNT

EVCM

300 ~

250 -

200

Area (LEs)

150

100

50 -

0+

Figure 4-7. Area (Xili nx XC400Q0) for the DKCM-T andVCM for different K

According to Figure 4-7, the DKCM shoud be implemented for K>7. Nevertheless
Figure 4-7 presents the best results for the DKCM as in rea applicaions the DKCM requires
RAMs programming (idle) cycles which decrease the design throughpu and may require
design modifications (additional cost). In consequence, two dfferent groups of application
can be distinguished:

A) Designs without reconfiguration overheads — the dhange of the wefficient occurs
very seldom and / or does not disrupt the system work. For example, a real time image
processng system for which a diange of the wefficient is carried ou during image blank
time, or so seldom that corrupted data is invisible. In this case, the DKCM can be
implemented withou addtional overheals. In this case, the KCM and a (dynamic)
reconfiguration system instead of DKCM shoud be dso considered to allow additional
savings.

It shoud be noted that for the DKCM-D (dua port DKCM) and for adaptive systems
where the difference between the present and new coefficient is very dlight, the product
obtained while RAM programming is usualy only dlightly corrupted. Furthermore, for
pasitive inpus (or sign and magnitude inpu data format) and RAM programming schedule

- 66 -

acording to eg. 4-1, the multiplication result is in the range of the results cdculated for the
old and rew coefficient. This is proved below for multiplicaion M= AB. To simplify the
prove, multiplier consists of only two LUTS, however the prove can be eaily extended for a
greaer number of LUTS.
The multiplication result is given as:

M= (BAvss)<<k+ BA.s (4-4)
where: B- multiplication coefficient, Ayss- MSBs part of the inpu, A ss- LSBs part of the
inpu, k- addresswidth of the LSBsLUT

During the LUTs programming, ead address location d the LUTs gores either new
Bn/Awss, (BnBALss for the LSB LUT) or old Bol/Auss (Bo/ALss) value depending if the aldress
locaion seleded by the inpu data has or has nat been programmed. Therefore the result of

the multi plicaion can be & follows:

Mo= (BolAwss)<<k+ BolA ss (4-5)
Mco= (BolAvss)<<k + BnAss (4-6)
Mci= (BnBwss)<<k+ BolA s (4-7)
Mn= (BnAvss)<<k + BnAiss (4-8)

In eq. 45 the multiplier cdculates a proper vaue for the old coefficient. In eq. 48 a proper
new result is cdculated. Only eq. 4-6 and 4.7 give corrupted results, however it can be seen
that for A ss=0 (always true) and Ayss=0 (hadlds for positive inpus) the Mcoand Mc; arein the
range of Mo and My (Consider two cases. Bo<By, which gives MosMc<My, and Bo>By,
which gives MysMc<Mo).

Egs. 4-5 + 4-8 hdd provided that a simultaneous read and write to the same DP RAM
addresslocaionis alowed and well defined. However, thisis usually the cae, e.g. for Xilinx
XC4000 161 DP.

B) Designs with reconfiguration overheads - the efficient changes frequently or its
change interferes with the system work. In this case, four different approaces can be
implemented:

e DKCM-P - two pardldd RAMs sts and additional multiplexers are used [W0j98],
which alows a RAMs st to be programmed while ancther is operating and \ice-
versa,

» DKCM-D - as described in the point A (output data may be slightly corrupted!), bu
architeadura overhead is considered as the DP-RAM solutionis usually lesshardware-
efficient than the SPRAM courterpart.

-67-

* VCM, which has no coefficient change penalty.
* DKCM - the multiplier for which multiplicaion processis sopped whenever RAM is
programmed. In some caes, however, this lution canna be implemented, as the

multi plier canna stop its operation without heavy influence on the other units.

To qudify the benefits from using the DKCM recorfiguration approad, let define a
functional density D [Wir97, Wir98]:

-1
ALT

The functional density for the DKCM shoud consider the idle time nealed to program the
LUTs:

(4-9)

D= 1 (4-10)

AT+
n
where: D, A, T — functiond density, area and critical delay respedivdy; r- number of
reconfiguration cydes, n- number of execution cydes between two consecutive
reconfigurations.

For the DKCM, areconfiguration penalty fador r/n has been introduced. The penalty can
be deaeased either by the increase of n - the number of exeaution cycles between two
consequtive reconfigurations; or by a decrease of the number of reconfigurationcyclesr.

It can be seen from Figure 4-8 and for the DKCM-T8, for which the number of
reconfiguration cyclesr isreduced from r= 16to r= 8 (only half of the 16x1 RAMs is used),
that the deaease of r causes only dight increase of system performance for small n. For small
r, memory blocks are not fully used and therefore the multiplier occupies more aea ad has
longer propagationtime. In consequence, for small n, the VCM shoud be rather implemented.
An dternative solution is the DKCM-D for n>16, for which the wefficient change penalty is
not observed, provided that coefficient changes are very glight and the product can be dlightly
corrupted. For the DKCM-P, the aldtiona RAM set and multiplexers increase the design
area and propagation time, which causes that this multiplier is usually not recommended for
XC4000.

-68-

0.8

0.7
0.6 /"//
0.5

bos /_---:

0.3

02 --VCR
—— DKCM-T16
= DKCM-T8

0.1 — DKCM-D

f —— DKCM-P
O T T T T T T T T T 1
0 10 20 30 40 50 60 70 80 90 100

Figure 4-8. Functiond density D [/LE/us] as a function d the number of n, results for K= 8
for XC400FE-1 (XC400= for the DCKM-P), for foll owing ogions (enumerating fromthe top
for n=100): DKCM-D, DKCM-T16, DKCM-T8, DKCM-P (TSB option), VCM

4.7. Conclusions

A proper choice of the multiplier architecture in FPGAsis, asit is snown in this chapter,
a difficult task. For ASICs, two choices. the VCM and KCM can be eaily distinguished.
However, for FPGAs the boarder between these two solutions canna be smoathly defined as
FPGAs can be quickly reconfigured. Therefore, implementation d the KCM instead of the
VCM is drongly recommended as the KCM occupies 17-23% on average or 29-41% on
maximum, areaof the VCM for multiplier width K= 3+15. Furthermore, lower area of the
design causes usually shorter propagation time, and consequently a significant increase in
design functionality D. Conversdly, coefficient change for the KCM has a penaty of
operation idle time which decreases design functionality according to eq. 4-10. Consequently,
to deaease the idle, reconfiguration time there is a tendency to use apartia recnfiguration
for which orly the multi plier circuit is reconfigured.

The reconfiguration time can be further decreased by in-circuit reconfiguration, i.e. by
the use of the DKCM. The DKCM offers much quicker reconfiguration bu occupies more
areain comparison with the KCM, therefore is a middle-way solution ketween the VCM and

-69-

KCM. The DKCM requires additiona RAM Programming Unit (RPU) which significantly
influences the DKCM cost for small multipli er widths.

For adaptive signal processng, the DKCM solution is even more atractive & the
DKCM-D has no remnfiguration penalty provided that the product can be slightly corrupted
and the number of exeaution cycles is greater than memory size. Furthermore, the process of
coefficient change for the KCM requires not only FPGA reconfiguration bu aso redesigning
and re-routing of the KCM which consumes sgnificant amount of time (about 1min+1hour)

and therefore this slutionis usually unacceptable for adaptive systems.

-70-

5. Convolution in FPGASs

The onvdution besicdly consists of sum of (delayed) products, therefore
multiplication is an essntial operation. Consequently, ead multiplier can be implemented
separately, and then the aldition applied. Nevertheless disregarding the multiplier entities
allows for further optimisations. For example, for the LM, instead of considering separately
additions within the multipliers and then the final addition, a single adders block can be
formed, which allows for better grouping the alders, and therefore for implementing a more
hardware-efficient circuit. This design approacd to the group d the LMs is further denoted as
LUT based Convdution (LC).

In addition, a (parall el) Distributed Arithmetic Convder (DAC) —a mmpletely different
architedura solution can be implemented. This lution is Smilar to the LM, nevertheless
the order of multi pli cations and additions is disregarded, which all ows for memory data width
reduction, in comparison to the LC. This chapter presents also a novel approach: an Irregular
Distributed Arithmetic Convder (IDAC) which isa cmmbination o the DAC and LC.

Unlike for multi pli erless multi plicaion (MM), for convdution common substructure is
not considered separately within eady multiplier, but substructure sharing is applied for all
coefficient altogether. Therefore aterm, MultiplierlessConvdution (MC), instead of the MM,
Is introduced. This causes that trading-off between the (LUT based) IDAC versus the MC is
more complex than it is the cae for the multiplicaion and the LM vs. MM. Consequently a
sophisticaed algorithm has been developed to confront the problem.

For convdution interdependence between coefficients is often very strong, as
symmetric filters are often implemented. Consequently, additional algorithm for automatic
deteding and groupng simil ar coefficientsis also implemented.

5.1. Previous Works

For ASICs, several FIR filter silicon compilers [Jai91, Las92, Haw96] have been
developed. Nevertheless FPGA designs differ significantly from the ASICs, as FPGAs
usually incorporate dedicaed ripple-carry logic, which makes that the different adders
approadh is adopted. Furthermore, FPGAS implement logic employing Look-Up Tables and
therefore LUT-based multiplication a convdution is an alternative solution to be taken into

acourt.

-71-

An automatic implementation d FIR filters on FPGASs has been presented in [Moh93.
This tod employs inverted form 1D FIR filters [Moh93 and techniques adopted for ASICs,
such as power-of-two coefficient space [Lim83] (denoted hereby as the multiplierless
multi pli cation), cary-save adders [Omo94] for XC3000family [Xil93] (XC3000family does
not incorporate dedicated ripple-carry logic) and dedicated ripple-carry adders for XC4000
[Eva94]. Up to the author’s knowledge, the SS has nat been implemented in [Moh93, only
CSD representation is used. Employing inverted form FIR filtersinstead of dired form filters
(implemented by the AuToCon) excludes implementation o distributed arithmetic.
Furthermore, adders operate on wider arguments in comparison to the direct-form filters.
Besides inverted form filters are not recmmended for 2D filters as wider line buffers are
required. Nevertheless a 2D filter can be constructed from severa inverted form 1D filters.
Conwversdly, the structure of inverted form filters is more moduar. Furthermore, a lot of
design effort in [Moh93 has been pu into mapping (optimising placment and routing) to
increment clock frequency. Pipelining is (somehow) built-in the structure of the inverted form
filters, therefore, in comparison to the pipeline achitedure of the dired-form filter, it might
seam that lessflip-flops are required. However inverted-form filters require wider pipelining
registers. Summing up, drect-form filters allow more achitectural solutions to be alopted,
and more design parameters to be specified in comparison to the inverted-form filters.
Therefore, the dired-form solution hes been adopted in the AuToCon, nevertheless more
thorough research is required to compare these two dfferent architedural solutions. Besides
direa form filters can be employed as a sum of products, etc.

Core Generator [Xil99], program distributed by Xili nx Inc., automaticdly generates FIR
filters employing only (paralel) distributed arithmetic. Nevertheless implementation results
obtained for the AuToCon ouperform the results obtained for Core Generator, as the
AuToCon considers different architedural solutions and applies more sophsticaed
optimisation techniques. The Core Generator takes into account mapping of element into the
FPGA. Conwversely, the AuToCon generates circuits on hgher level using VHDL-approad,
therefore it might seem that the throughpu for the Core Generator circuit is greater.
Implementation results proved that thisis nat the case.

Xilinx Inc. also provides a VHDL-based FIR filter description employing inverted-form
and KCM approach [PasD1]. Nevertheless the inpu width is fixed and orly number of taps
and coefficient values can be dhanged. Besides, the KCM LUTS operate on 4times the inpu
clock frequency, therefore comparison with the AuToCon is impaossble. It shoudd be noted

-72-

that there is a tendency for FPGAs to describe systems on hgh level (e.g. VHDL) and
disregard relative placement of elements. This alows for reducing design time and/or

implementing more sophisticaed optimisation techniques.

5.2. Symmetry of Convolution Coefficients

Vaues of coefficients, in general, can be selected withou any restrictions, however
filters with symmetry are usually implemented, e.g. to oltain linea phase filters [Vai93]. The
filters given in Figure 1-1 are dso with symmetry (or asymmetry in the cae of Sobel gradient
filter). Table 5-1 gives posshble 3x3 convdution kernels for diff erent symmetries.

a) C) €
Woo | Wo1 | Wop2 Wopo | Woa | Wop Woo | Woa | Wop
Wio | Wi1 | Wio Wig | Wig | Wy Wo1 | Wit | Wos
Wio | Wo1 | Woo Woo | Wo1 | Wop2 Woo | Wo1 | Wop
b) d)
Woo | Woa | Woo Woo | Woi | Wop
Wio | Wis | Wip Wio | Wis | Wip
Woo | Was | Wap Woo | Wo1 | Wop

Table 5-1. Different filter symnetries: a) withou symnetry, b) horizontal, c) vertical, d)
horizontal-vertical €) point symnetry

The symmetry of the filter allows further optimisation d the drcuit. The same
coefficient inpus shoud be & first added, and then the common multiplicaion performed.
Figure 5-1 shows the drcuit simplificaions, and Table 5-2 number of adders and multi pliers
after symmetry has been taken into accourt. It can be seen that for horizontal and ertical
symmetry the number of multipliers is the same. However the number of adders and pxel
delay elements is reduced for verticd symmetry because for this symmetry, only a single
adder is needed for every common line. For the point symmetry, the number of multipliersis
further reduced. It shodd be noted that for 3x3 convdution kernels, savings are less
significant than for large kernel sizes, for which the number of multipliers is halved for
horizontal or verticd symmetry, quartered for horizontal-vertical symmetry and reduced to
1/8 for point symmetry. It shoud be noted that for some 2D filters with the point symmetry, it
may be beneficial to implement two independent verticd and horizontal 1D filtering [Cas96].
Thisis often the cae for wavelet transforms [Cas96].

-73-

o

Line Buf.

+ by+1,¥+1
» Output
d)

b)

Input —»—g
A2, x+2

A1 x+2

Line Buf.

Figure 5-1. Convoler 3x3 architedure for different symmetry options. a) withou symmnetry,
b) harizontal symmetry, c) vertical symmetry, d) horizontal-vertical €) point symmetry

Symmetry # adders #multipliersL | #ad. 3x3 | #mul. 3x3
No-symmetry N -1 NIV 8 9
Horizontal NM -1 N M /20 8 6
Verticd ON/20CH ON/20M - 1 ON/20M 6 6
Hor.-Vert. | ON/20H+ IN/2OM - 1 ON/20TM /20 6 4
Point N=M | ON/20+ ON/200N - 1 | (1+0N/20)TIN/2012 6 3

Table 5-2. Number of adders and multipliers for different symmetry options andfor a gven
convolution size 3x3. M- horizontal, N- vertical kernel size

5.3. LUT based Convoler (LC)

5.3.1. Concept

The structure of the LUT based Convder (LC) is smilar to the sum of prodicts.

However to ogimise the structure of the alders, al additions are performed within a single

-74-

adders block, therefore multiplier entities are disregarded. To ill ustrate savings obtained by
the use of the LC instead o the sum of the LMs, an example is given in Figure 5-2, for
convdution kernel size equal 1x2 and 88 multipliers. Let consider savings obtained by
disregarding the multiplier bounds, for LUT output width equal w= 12 and LUT address
width (shift between the same multiplier LUTS) s= 4. For the LM, the adder width within a
multi plier equals roughly w. The final adder width equals roughly w+s. Therefore total adders
width for the sum of the LM is equal

Wim= 36+, (5-1)
For the LC, three alders of width equal w are employed, and therefore total number of Full /
Half Addersisequal

Wi c= 3. (5-2
Consequently, a penalty factor, a result of employing sum of LMs instead o the LC, is
roughly

= — = 5'3
P = (5-3)

The aowve penalty factor is further employed for substructure sharing adders when two
arguments are shifted by s. It shoud be dso naed that employing the LC rather than the sum
of LMs reduces the maximum width of the alder from roughly w+s to w, and therefore
reduces maximum propagation time.

8 7! 8 !
|n // | In // |
4 |a la |a 4 |4 la |a
LUT LUT LUT LUT LUT LUT LUT LUT
Mo || Lo ML || L1 Mo || Lo ML || L1
eef——, [, 2 13 12 J
1
Adderl Adder0 Adderl |4t | Addero
4
13 13 g
—;Ck 9 — e
Adder2 Adder2
Adders Block T
B) 18
A 8

Figure 5-2. The structure of the mnvoler for Y= ABg+ Z*/A/B; for input and coefficient
width K= 8. A) LC, B) sum of products

The LC is constructed in similar way as the LM, the same optimisation techniques are
employed. However exhaustive search technique, which ogimises all LUT memories and
adders, is impradica to be implemented. Consequently for the LC, only local full seach

-75-

optimisation is implemented, for which each multiplier is optimised separately using the full
seach technique and then all adders are merged into the adders block which is then separately
optimised by tedhniques described in the next chapter.

5.3.2. Constant coefficients LUT based Convoler (KLC)

The KLC employs the same optimisation techniques as the KCM: LSB Address Width
Reduction (LAWR), Don't Care Address Width Reduction (DAWR) and Memory Sharing

(MS). In addition, ogimisation techniques characteristic only for convders are anployed.

Similar Coefficients Optimisation (SCO)

Sedion 5.2 ascribes the symmetries of filters. However, aso dfferent symmetries and
coefficient combinations can be used [Lu9Z. Therefore, the AuToCon compares all
coefficients and groups them into similar coefficients blocks. Coefficients grouped together
can be shifted and regated. Grouped inpus are shifted in respect to the wefficient value and
then added (subtraded). Finally, a single multiplier is only implemented. This method all ows
for reducing the number of multipliers.

For example, for thefilter:

H(2)= Hi(2) + 5" - 5&' - 10@* + 202 (5-4)
similar coefficient inpus are alded:

As= 7 -2 -2+ 44, (5-5)
andthefina result is:

H(2) = Hi(2) + 58 (5-6)

In this example the number of multi pli ers has been reduced by 3.

Pipelining Optimisation

Similarly like for the multipliers, the AuToCon generates a @nvder with a
sophisticaed pipelining architedure, for which additional parameter p defines maximum
number of logic dements between pipelining registers. Figure 5-3a shows an example of a
convder with straightforward pipelining architedure. For this method, havever, additional
pipelining registers are often required to compensate different pipelining delays. To reduce
this drawbadk, pipelining optimisation is implemented, for which feeding points of arithmetic
units are relocated in oder to reduce unrecessry registers (similar optimisation is
implemented in [Har96]). A result of the optimisation is $iown in Figure 5-3b. It shoud be
noted that the total convder pipelining delay is often reduced in this method. This

optimisationtechnique is implemented for every architecture described in this chapter.

-76-

a) b)

LUT LUT
x5 x5
+ +
T — flip-flops T

Figure 5-3. Implementation o (2 + 57" - 57°) filter for pipelining paameter p= 1 anda)
withou b) with pipelining ogimisation

5.3.3. Dynamic Constant coefficients LUT based Convoler (DKL C)

For the DKLC, the value of coefficients can be changed in similar way, as it isin the
case for the DKCM; rearranging the order of adders does not influence the LUTSs
programming schedule. For the DKCM, addressmultiplexing is performed onthe inpu of the
multiplier. Similarly for the DKLC, the multiplexer can be placed on the inpu of eah
multiplier. Let denote this option as DKLC-M. An alternative solution, denoted as DKLC-C,
isto placethe multiplexer onthe cnvder inpu and so the address gquencefor programming
LUTs will propagate through the mnvdution delay elements to the input of the LUTs. The
drawback of this method is more sophsticaed control logic. Besides, the number of
programming cycles increases because of additional propagation time through the filter delay
elements. In order to reduce this time the multiplexers $ioud be rather placed at the
beginning of ead line. Therefore the programming sequence will propagate only through
pixel delay elements. Summing up, MxN (M- horizontal; N- verticd kernel size) convder
requires N multi plexers and M-1 additional programming cycles for dynamic reanfiguration.
In thisoption, havever, similar coefficient adders (for symmetric filters, etc.) distract memory
addressng and make the gproach more wmplicaed.

It shodd be noted that the LUTs can be programmed either in serial: a single
multiplier is programmed at the time, or in perallel, when al multipliers are programmed
simultaneously. The seria option hes longer programming time but a single RAM
Programming Unit (RPU) is required. The parallel option hes dhort programming time but
eat multiplier requires its own RPU and therefore this option cccupies more hardware. The
choice between the serial and parale option shoud be taken after considering the average
time between coefficients changes in similar way as it was described in Sedion 4.6.

-77-

It shoud be noted that so far only self-programming architecture of the DKCM and
DKLC has been considered. However, the LUTs can be programmed using an df-chip
interface. In this case new LUT contents can be pre-cdculated by a system processor and then
written to the LUT memories. In this case the RPU is nat required. Conversely, off-chip
transfers are slower than internal ones and invalve the system procesor, which may not be
aacepted in some designs.

The DKLC can be implement with many different options. This is one of the reasons
that the AuToCon canna generate astomaticadly any DKLC. Consequently including the
DKLC to the AuToCon might be a suggestion for further work. Nevertheless Virtex Il
incorporates built-in fully functional multipliers, which makes the DKLC option less
atradive.

5.4. Distributed Arithmetic Convoler (DAC)

5.4.1. Concept

The idea behind the DAC [Bur77, Min92, D099 is to compute the @mnvdution in
different order than for the LC. The following mathematicd transformation hes been
employed:

Zlhi @1 = :Zhi izj @1] = sz %hi @” (5_7)

where: N- size of the convolution kernel, L- width of the input argument a (in hits), h- i-

th coefficient of the wnvolution, a;- -j-th bit of thei-th input argument.

Q0 Ap .- AN-10 d1 A1 .. N1 QL1 AL-1 - AN-LL-L
|| | || | || |
LUT LUT o LUT
Woac 1~ S Si<<1 SLa<<(L-1)

Adder

v

Figure 5-4. Diagram of the Distributed Arithmetic Convoler

In comparison with the LC, the LUT data bus width of the DAC is gnaler, asit can be

seen from eq. 5-8.

-78-

Woac=K+ Moga(N+1) [Wie= K+Win (5-8)
where: Wpac - data width of LUTSs for the DAC, W ¢ - data width of LUTSs for the LC, Wiy -
width of the input of the LUTSs, K- width o the mefficients of the convolution, N- the size of
the convolution kernel.

The data width of the LUTsisadirect sum for the LC, andis a sum of the logarithm of
the number of inpusto the LUT for the DAC. Thisis a cmnsequence that inpu bits are & the
same significance for the DAC. The lower output width of the LUTs causes substantia
FPGAs area savings, because not only smaller memory modues but also shorter adders are
required. As aresult, the DAC is preferable to the LC. The drawbadk of the DAC solutionis
that the dynamic change of the wefficient is much more difficult in comparison to the LC,
which makes this approach rather impracticd for dynamic systems.

A diagram of the DAC is shown in Figure 5-4. Similarly as for the LM, the size of the
LUT memory grows rapidly with the size of the mnvdution kernel N. Therefore the LUT
memory shoud be split into two or more independent LUTS, and then adders employed
similarly like for the LM. The split of the memory shoud be implemented with resped to the
cost relation ketween dff erent memory modues and adders.

Consequently, in some @ases the LUT based Hybrid Convder (LHC) [Wia00c, Wia00d
- the hybrid of the LM and DAC, may be implemented, as the optimum memory split isaueis
concerned. For example, for the 3x3 convdution N=9=3/3, coefficient width K=8 and inpu
width L=8, two dfferent memory modues shoud be used: four and five inpu memory
blocks (4+5=9), bu the 32x1 memory modue occupies twice the aea of the 16x1 modue.
Therefore the dternative LHC may employ the DAC for N=8 and a single LM. The st for
the pure DAC is 226 XC4000 CLBs and 209CLBs for the LHC [Wia00c]. Therefore 17
CLBs are saved by the use of the LHC.

5.4.2. Irregular Distributed Arithmetic Convoler (IDAC)

The previous lution assumes that the structure of the DAC is the same for different
significance of inpu bits. However, this need na be the case, and hts of different
significance can be grouped together in the same LUT. Therefore more or lessa combination
of the LC and DAC is obtained. This nowel, introduced by the author of this thesis, design
approach is denoted as Irregular Distributed Arithmetic Convder (IDAC). An IDAC
optimisation algorithm shoud optimise rather the addressand data widths of memories and
adder widths, and the bit-significance of inpus is only an inpu parameter which influences
the LUT datawidths.

-79-

A gredaly algorithm for IDAC is propased. This algorithm optimises a partial solution,
i.e. determines the LUT addresswidth and the LUT inpus, according to the dgorithm given
in Listing 5-1. Before the optimisation algorithm is applied, every coefficient is difted to the
left until it is made odd. This reduces the data width of the LUT as the LSB of an even
coefficient is fixed to zero. The input bit for which the coefficient is ifted is further treated
astheinpu bit with significance increased by the number of shifts.

The dgorithm in Listing 5-1 at first asggns inpu bits with the lowest shift 5 (step S1).
Step S2 tends to al ocate firstly inputs for which coefficient width is the lowest and this depis
applied only to inpu bits at the lowest shift, i.e. for input bits returned at step S1. Step S3
optimises sgn o the output, i.e. alocaes at first inpu bits which representation (either
pasitive or two’s complement) corresponds with the representation d the LUT output. Step
S3, however, is of the lowest importance and is considered orly if two previous geps do nd

give the best solution.

Listing 51. Algorithm choacsing the best partial solution for the IDAC

Coes= [J (Initial conditions)
width= 1
Start of the loop
S1: Find an unassigned input bit with the lowest shift 5
S2: If two or more input bits are foundwith the lowest shift s, take the input with the lowest
coefficient width w.
S3: If two o more input bits are foundin step S2, take the one which output sign corresponds
with the output sign of the LUT.
S4: Calculate average mst ¢, per input bit (consider also inpus foundin the previous iterations
of thisloop)
S5: If Ca<Cpes then C= Cueg (the better circuit has been fourd)
S6: width= width+1
S7: If width>max_width
then finish the dgorithm and return the drcuit with the lowest cost Cpeg
else go to the start of the loop

where:

width — address width of the considered IDAC LUT

max_width — maximum address width for the considered memories (or the number of unassgned
input-bitsif smaller)

s — shift of the input bit, s= significance of the inpu bit + shift of the coefficient (while making
coefficient an oddvalue)

w; —width of the coefficient after the aefficient is difted (made odd).

C.— average ¢t of theinput bit, ¢_ = COSt—memorz;?OSt—adder

Wi

Cost_memory — cost of the memory modue which addresswidth is equal or greder than width and
data width is obtained from output range of the memory.

Cost_adder —adder cost which width is equal the width of the memory data + 1.

Coest — the lowest average st per input bit —this cost is associated with the best-foundcircuit.

-80-

Step HA cdculates the average @st (per inpu bit) of the memory modue and the
asciated adder. In this gep, an asumption is made that the width o the addersis equal the
memory data width plus one. Actual width of the alder depends on routing the alders in the
adders block (seethe next chapter). Step S5 determines the best circuit, i.e. the drcuit for
which average st per bit is the lowest. The next steps S6 and S7 are loop control
instructions. An example of circuit obtained by this agorithm isgivenin Sedion 5.7.

The a&owve dgorithm is a novel algorithm which deds with the problem which has not
been considered so far. Probably better optimisation techniques can be derived that employ
better optimisation criteria in the greedy algorithm. Furthermore, optimisation tedniques,
which focus on global optimisation, shoud be implemented; some of these techniques are

described in the next chapter.

5.5. MultiplierlessConvolution (M C)

The MC employs smilar optimisation methods as the Multiplierless Multiplicaion
(MM) does. However for the MC, these methods are much more sophisticated as the convder
compases of many multi pliers and ogimisationis not constrained to asingle multiplier asit is
for the LC, bu the whole convder circuit is optimised al together. The design devel opments
combines the foll owing solutions:

1. Canoricd Sign Digit optimisation (CSD) — the same method as described in Sedion 3.1.2,
therefore this optimisationis not further described.

2. Substructure sharing (SS.

3. Pipeline Optimisation (PO) — described in Sedion 5.3.2.

5.5.1. Substructure Sharing (S

The SShas been already described for the KCM, however in the cae of the mnvder
the optimisation techniques are much more complicaed and some trade-offs have to be
considered.

The choiceof which substructure to choose & each iterationis a substantial problem as the
seledions in the ealy stages of optimisation influence the possble optimisations at the next
steps. In the AuToCon, similarly like in the other similar systems [Pas99, Har96, Pot96,
Cha93], the Grealy Algorithm (GrA) [Cor94] has been employed. The proposed agorithm
takes the best partial solutionwhich isfoundin the exhaustive search [Cor94], i.e. al passble

two-inpu sub-expresgons are tested and the best of them taken.

-81-

In the cae of a multiplier, the best partial solutionis sleded according to the number
of timest a mmon two-inpu sub-expresson accurs, as the number of adders (subtradors) is
reduced by t-1 after the SSoptimisation. In the cae of a wnvder, a artain nunber d of delay
elements (flip-flops) is often required, as the common sub-expresson is often needed in
different time slots. This is illustrated in an example of a wnvder design in Section 5.7.2.
The st of these alditional delay elements shoud be dso considered when seleding the best
partial solution.

To increase t by 1 (or more), a large number, denoted as di.q, of additional delay
elements is often required. However, the st of di.1 delay elements may be greder than the
cost of the ammon sub-expresson adder. Therefore it is beneficial to implement the
additional adder rather than the large number d..; of flip-flops. An aternative aad more
appropriate solution is to stop this optimisation step after t-th occurrence of the cmmmon sub-
expressons and to consider (t+1)-th and rext occurrences of the common sub-expresson in
the next optimisation steps. The latest solution all ows optimisation program to select the best
partial solution in more unconstrained way, which is beneficial to the dgorithm results. For a
2D convder, some sub-expressons may be even required after being delayed by aline buffer,
which is impradicd and shoud be regected at the ealy stages of the optimisation.
Consequently, the maximum number dmax (Ok+1<Omax) Of delay elements between two
successvetime slots which are used in the next design stages, shoud be defined as:
< Caan

max —
Cer

d (59)

where: Cagq- cost of the adder, Cee- cost of the delay dement (fli p-flops).

The @ove equation can be justified, as an increase of t by 1 decreases the number of adders
by 1, therefore the alditional cost of the delay elements must be lower than the st of the
adder. Nevertheless (t+1)-th occurrence of the cmmon sub-expresson may be included in
other sub-expresgons in the next optimisation steps and including these inpus in this
optimisation step usually makes the next optimisation steps less efficient, therefore . 5-9
shoud be mnsidered asthe inequality.

In order to reduce the output width of a c@mmon substructure alder, the inpus to the
common sub-expressons adder shoud be & the same bit-significance Consequently a
penalty fador, givenin eq. 53 and rewritten hereby,

=_>_ 5-10
=2 (5-10

-82-

is introduced. This fador takes into accourt the shift between arguments. To simplify the
optimisation program, width w is assumed to be constant for al adders and equal the width of
the inpu datato the convder.

In the cae when the subtrahend is ifted to the right in a SSadder, the LSBs canna
be wpied drectly to the output, therefore in this case, the @mmmon sub-expresson shoud be
negated. As a result, the minuend is now shifted to the right and therefore the LSBs can be
diredly copied to the output, see &so Sedion 5.7.

In the cae when two or more sub-expressons are found, for which savings are the
same, some aditional condtions are ansidered. In order to reduce the level of dependency
between substructure sharing adders and so to alow better pipeline optimisation, it is
beneficial to reduced the number of layers of the @mmon substructure alders (an ouput of a
common substructure alder is an input to the next common substructure alder, which forms
an additional layer of adders). Consequently, a sub-expresson which inpus are & lower layer
(to simplify the dgorithm the input with lower index, see Sedion 5.7 and Table 5-5) is
seleded first. In the cae when inpus are & the same layer, which is the case only for the
direa inpus (because the dgorithm considers the index rather than the layer number) the sub-
expresson which inpus are dosest to each aher, is taken. This allows for reducing routing

resources.

Summing up, in oder to seled the best partial solution, the following fadors are
considered:
1. How many times the cmmmon substructure occurs - t.
How many additional delay elements arerequired - d.
Bit-shift between inpus of the cmmon substructure adder - s.
Maximum number of delay elements between two subsequent time slots- A
Layer of the SSadders and pasition d the inpu.

a b~ N

Thefirst threepoints conclude in the foll owing equation:
: s
Savings= (t _1_ﬁv) [Crgg —dC (5-11)

and the fourth pant concludes:
O+ 1 < Omax (5-12

-83-

The sub-expresson with the gredest savings is taken. The optimisation pocessis sopped
when no sub-expresson with savings greder than zero can be found. If the savings are the

same for two or more sub-expressons, the 5 paint is considered.

The AuToCon implements design in a similar way to [Har96]. However, [Har96]
considers more sophisticaed delay optimisation (together with pipelining registers and
change in a register court). Conversely the AuToCon constrains the maximum number of
delay elements between two subsequent feeding points (eq. 512) and takes into accourt shifts
between inpus (eg. 5-11).

5.6.IDAC versusMC

The dhoice between the IDAC and the MC depends on the ast of the memories, adders
and flip-flops within a seleded FPGA device Furthermore, the wst-relation between these
elements differs for different designs, e.g. some designs may contain a lot of free memory
resources but adders and flip-flops resources are drealy occupied, and therefore it is
beneficial to employ more memory blocks than adders. This can be achieved by a decrease of
memory costs. Even convder parameters influencethe st of FPGA resources. For example,
numbers of flip-flops and 16x1 LUTs are usually the same, as each LUT is associated with a
flip-flop. Therefore, pipelining parameter p which defines the maximum number of logic
elements between pipelining flip-flops, strongly influences relation ketween the number of
incorporated LUTs and flip-flops. Consequently for p=1 the areais usually defined by the
number of flip-flops and therefore the aost of flip-flopsisrelatively high in comparison to the
cost of adders and memories. Conversely, for p>3, the aeais usualy defined by the number
of adders and memory modues, consequently the st of flip-flops is relatively low.
Summing up, parameters of the design strongly influence eg. eq. 59 and eg. 511, and
therefore the best solution dffers sgnificantly for different inpu parameters.

In conclusion, the dhoice between the IDAC and the MC depends grongly on the given
FPGA device and inpus parameters. Besides, the areaoccupied by the MC depends grongly
by the given coefficient values as some numbers require less non-zero hits and alows for
better substructure optimisation than ahers. Conversely, for the IDAC, the width o the
coefficients is the most important fador. In conclusion, for some efficients, the IDAC is

preferable, and the MC is a better choicefor others.

-84-

As a result of the @ove mnclusions, the AuToCon dces not make aty predefined
asumptions and automaticdly trade-offs between these two architedures and implements
some mefficients employing the IDAC, and aher coefficients employing the MC. The trade-
off between the IDAC andthe MC canna be mnsidered separately for each coefficient (as for
the KCM, see Sedion 3.3 as the SS depends drongly on relation ketween coefficients.
Initially it might seem that the best solution can be obtained by cheding all paossble
solutions, i.e. considering al possble @mbinations, for which each coefficient is
implemented either as the MC or the IDAC. The number of combinationsis equal 2V (NxM-
size of the kernel) and therefore this algorithm is impradicad even for smal convdution

kernels.

MC vs. IDAC Algorithm
A novel implementation algorithm which trade-offs between the MC and the IDAC is
introduced below:

Listing 52. MC vs. IDAC Algorithm

1. Determinethe st of every coefficient for the IDAC architecture (seeSection 5.7).
2. Set optimisation optionto all.
3. Mark all coefficients as (implemented employing) the MC.
(beginning of the optimisationloop)
4. Determinethe MC circuit considering only coefficients which are marked as the MC.
5. Calculate the st for each coefficient which is marked asthe MC (see Section 57).
6. Find total cost of the circuit summing the st of the IDAC coefficients and the cost of the MC
coefficients.
7. If thetotal costisequal or lower than the best total cost then accept changes
else restore the best circuit (mark all coefficients as the IDAC or the MC as it was for the best
circuit)
and
If option=all then set optionto one.
If option=o0ne then finish the agorithm.
8a. If option=all then for every coefficient marked as the MC, compare the wefficient cost for the
IDAC and the MC architectures and mark acarding to the better result.
8b. If option=one then find a wefficient for which difference of costs for the IDAC andthe MC isthe
gredest and mark this coefficient asthe IDAC.
9. Gotostep 4

The &owve dgorithm assumes that the st of the IDAC is rather not sensitive on
whether the rest of the efficients are implemented employing the IDAC or the MC. The st
of the IDAC circuits is the lowest when the wefficients are & same width and inpus at the
same bit-significance (shift) are grouped in a single LUT. Therefore implementing a
coefficient employing the MC rather than the IDAC may caused that the rest of the
coefficients canna be grouped so efficiently; i.e. the wefficients at different width are

grouped to a single LUT, which increases the LUT data width and consequently the st of
-85-

the IDAC. However the increase of the IDAC cost is rather insignificant, especially when
coefficient widths are simil ar.

The &owve dgorithm requires knowledge of each coefficient cost, howvever only the st
of the whole wnvder is known, as the program disregards bound between each multiplier.
Consequently an algorithm that caculates the st of each coefficient has been developed and
isdescribed in Sedion 5.7.

In the third pant of the dgorithm, initially al coefficients are assumed to be
implemented as the MC. In the next iteration steps, more and more mefficients are
implemented using the IDAC if the ast of individual coefficient employing the MC is greater
than for the IDAC. Initidly it seans that only one iteration step is required, however each
coefficient marked as the IDAC, is nat avail able in the next iterations of the SSoptimisation
and therefore the rest of the MC coefficients canna be optimised so efficiently as they were
in the previous iteration steps. Consequently, the st of some alditional MC coefficients may
be greder than the st of the @rrespondng IDAC coefficients and therefore these
coefficients froud beimplemented employing IDAC, and so on.

Let denote wefficients, for which cost of the IDAC is lower than for the MC as trade-
off coefficients (TOCs). Marking TOCs as IDAC causes that the TOCs are implemented more
efficiently. Conversely, the total cost of the arcuit may increase, as the rest of the wefficients
are less efficiently optimised by the SS optimisation. In this case, better global result is
obtained when the TOCs are implemented using the MC rather than the IDAC architedure,
and therefore the TOCs soud be marked as the MC, or equivalently, the drcuit from the
previous optimisation step shoud be restored.

In the previous paragraph al TOCs were mnsidered atogether (optimisation option=
all), however some of the TOCs when implemented as the IDAC may decrease the total cost
of the arcuit. Therefore two dfferent optimisation ogions are mnsidered in the MC vs.
IDAC optimisation agorithm. Initially (option= all), all TOCs are marked as IDAC in every
optimisation step urtil the total cost of the drcuit decreases. Afterwards (option= one), only a
single TOC, for which alocal cost gain oltained by implementing the IDAC instead o the
MC is the greatest, is implemented as the IDAC. This dep is continued urtil the total circuit
cost deaeases.

It can be seen that in most cases the best solutionis obtained when only option= oneis
implemented. However introduwing option= all reduces the calculation time and wualy

influences the overall performanceinsignificantly.

- 86-

5.7. Implementation Results

This dion describes design steps for the given example of 1D filter:
H(2)= 59+ 183Z* + 16272 - 7/Z° - 48F* + 12Z° + 9Z° + 217’ (5-13)
Thefilter can beill ustrated as foll ows:

bit\coeff. | 1 |z* |z | z2° |z | 22| z°| 2’
7 101] - | -
6 0] 0| - |1
5 1] 1] 1] - 0
4 1/1]0] -1]1
3 110, 0| 1| 0] 1] 1
2 0| 1] 0] 0] O] 1] O
1 11|21 0f O] O] O| 1
0 1/12]0|] 1] 0] 0] 1| O

Table 5-3. Thefilter representation, *-* — for negative numbers sgn kit exension

5.7.1. Canonic Sign Digit (CSD) conversion

After CSD conversion the number of non-zero hits has decreased from 23 to 19.To
better ill ustrate the optimisation techniques the zero bitsare invisible.

bit\coeff. | 1 |21 |z 23| z2*| 22| z2° | 2
7 1] 1
6 111 -1
5 1
4 1
3 -1 -1 1 1
2 -1 1
1 1 1
0 -1 -1 1 1

Table 5-4. Filter representation ater CSD conversion

5.7.2. Sub-structure sharing (S

In the first step of the SSoptimisation, substructure S= 1 + ztisintroduced (Table 5-
5, S isdenoted as 2 and 0,). Substructure S, ocaurs three times in the following expressons:
-1+ ZY + 20 + ZY + 2'ZM@ + 7Y, and only a single delay element (zY) is required to
obtain expresson: 2’ Z*(1+Z7"). Sub-expresson 8Z°[(1 + z%) can aso be implemented using

sub-expresson S, however, this would require alditional delay di.1= 4 (4 delay elements)

-87-

and Ou1>dmax= 1 (see @. 512), therefore this sub-expresson is not included in this
optimisation step.

Expresson S,'= -1+Z° also ocaurs three times: 4[(1+2°) + Z'[(}1+Z°) + 8Z*[(}1+Z°) and
requires also one delay element and shift between inpus is aso equal zero. However, for S,
inpu Z° is delayed by 5 clocks in comparison to the fist input. For S, the secondinpu Z* is
delayed by only 1 clock, and consequently to save routing resources, sub-expresson S is
seleded.

Bit\coeff. | 1 |z1|z%| 23| 2% | 2° | Z2° | 7
7 210
6 210 -1
5 1
4 1
3 3 -1 1|0
2 3 (03
1 1 1
0 210 1 1

Table 5-5. Filter representation dter two sub-expresson ogimisations (S, and S) have been
implemented. In italic — expressons which cannd be shared in sub-expresson 2 kecause
dt+1>dr'nax

In the next steps of optimisation the foll owing sub-expressons are introduced:

S=-1+2° S= S+ 2°2° (5-14)
S=z%+ 2°z* S= S+ 2'5%
Bit\coeff. | 1 |z1|z%| 23| z* 22| 2° | 2”7

7 Os2| O,

6 Os2| O -1

5 1

4 0s

3 643 -1 G | O3

2 643 03

1 5 (0

0 210 5 Oy

Table 5-6. Filter representation dter all sub-expresson ogimisation have been implemented.
0, —zero inserted as a result of i-th sub-expresson sharing

In the case of subtraction between two expressons, the order of subtradion (a-b or b-
a) can be freely chosen, therefore shoud be seleded to alow for direct copy of the LSBs
(subtrahend shoud be shifted left). For example, for Ss= 1- 2%z, sub-expresson shoud be
negated to all ow copping the LSB, i.e. sub-expresson S; = -1 + 2%z shoud be taken.

- 88-

5.7.3. Multiplierless Convoler

The drcuit obtained from Table 5-6 is $own in Figure 5-5. It can be seen from Figure 5-5
that the alditional number of flip-flopsis sgnificantly reduced in comparison to estimations
made during the SSoptimisation. Additional fli p-flops after adder A, As, A4 are nat required,
as al delayed sub-expressons are included to adder As. Even inpu expresson InZ’ is
obtained in additional delay element after adder As.

-1, -2 -3 -4 -5 -6
In= FE In_ﬁr FE Inljr FE Inljr FE Inljr FF In_IEl' FF In[Z
vy vy vl v I
Add Add Add
A5 A3
Az L R
Add
A,
v Vv
Add o FF
Ao | FF
\ 4 A A h 4 Y ¥ Y h 4
Add
*Out

Figure 5-5. Block diagram of the MC circuit withou pipelining. FF- flip-flops, Add- Adders

-1 -2 -3 -4 -5 -6 -7
In= = Inﬁ= = Inﬁ' FE Inﬁ= FE Inﬁ= FE Inﬁ= FE Inﬁt FE InZ
I —‘
A A A + +
Add Add Add
A
A2 A5 \ 3
Add
I,
v v
FF Add » FF
- Er==
A v Y h 4 A A A
Add
*Out

Figure 5-6. Block diagram of the MC circuit with pipelining. Pipeli ning fli p-flops are inserted
after evey arithmetic unit

-89-

To speead upthe a&ove drcuit, pipelining isintroduced, i.e. flip-flops are inserted after
every arithmetic unit (pipelining parameter p= 1). Additiona pipeline optimisation is
implemented for which in arder to compensate different delays introduced by pipelining, the
feeding points to the aithmetic units are redl ocated rather than additional fli p-flops inserted
a the end d the aithmetic units. Figure 5-6 shows pipelined and opimised circuit
correspondng to the drcuit presented Figure 5-5.

Figure 5-6, in comparison to Figure 5-5, incorporates (disregarding pipeli ning fli p-flops
asociated with every arithmetic unit) only 2 additional flip-flop sets: to generate IniZ” and
AoZ*. It shoud be noted that the AuToCon alows for defining pipelining parameter p to be

any integer from 1 to +1.

MC implementation results

Table 5-7 shows implementation results for different pipelining and synthesis options.

p Areaby #FFs XCV100CS144-6 XCV100CS144-6
AuToCon (Synthesised Adders) (Predefined Adders)
[LES] T Area T Area D
[ng] [LES] [ng] [LEs] |[1/LEms]

1 83 183 7.4 92 7.4 71 0.738

2 83 138 8.9 91 8.5 68 0.853

3 83 102 12.7 88 11.4 72 0.860

4 83 100 141 92 13.9 71 0.719

5 83 85 17.4 90 17.8 72 0.661
+0 83 61 20.4 89 19.6 72 0.615

Table 5-7. Implementation results (area, minimum clock period T, functiond density D=
V/AD) for different pipelining andsynthesis options

Two dfferent results are presented hereby. The first one uses VHDL-synthesised
adders. For example, the adder which input widths are 4-bit wide and ouput width is 5-bit
wide when generated by FPGA Express (from Synopsys), a VHDL synthesis program,
occupies 7 LEs (7 4-inpu LUTS). The estimated number of LES for this adder isonly 5 LEs.
This adder does not use dedicated carry logic, which is the reason d the diff erence between
estimated and reported number of LEs. This is only the cae for Virtex family; for XC4000
family, adders are sinthesised properly.

An dternative and lketter solution, as it can be seen from Table 5-7, is to implement
adders employing predefined adders which were previously generated by CORE Generator
[Xil994]. In the latest solution, dedicaed carry logic is employed. For the predefined adders
the reported number of LEs is snaler than the estimated number of LEs because the
implementation report considers only usage of 4-inpu LUTs. Nevertheless for dedicaed

-90-

cary logic, the carry out signal (e.g. the 5-th MSB of the alder output for which inpus are 4-
bit wide) does nat use LUT logic, howvever the LUT associated with the carry out signal
canna be rather used by other logic. Therefore, the estimated number of LEs $oud also
include the carry out signals.

The numbers of flip-flops estimated by the AuToCon and reported by Foundcition 3.1
(distributed by Xilinx Inc.) are the same (they include alditional flip-flops inserted at the
input and ouput of the mnvder, additional 18 fli p-flops).

5.7.4. Irregular Distributed Arithmetic Convoler

The implementation results for the example given in eq. 5-13 and for the IDAC

optimisation algorithm presented in Listing 5-1 isgiven in Figure 5-7 and Listing 5-3.

DO | DL = | D2 = | D3+ | D4 = |O5[& |D6[= LD7

D8

LUT9 LUT10 LUT11 LUT12 LUT13 LUT14 LUT15

Adder

v

Figure 5-7. Block Diagram of the IDAC

Before the dgorithm given in Listing 5-1 is applied, similar coefficients are first grouped and
additior/subtradion on grouped inpus implemented. Similar coefficients are efficients
which values are shifted and/or negated with respect to each ather. In the given filter example,
coefficients: -48Z* + 12(Z° are similar, therefore aociated inpus are shifted and subtracted
from one ancother, and a single multiplicaionis applied (signal D8 in Figure 5-7).

Listing 53. A fragment of VHDL code that describes IDAC LUT given in Figure B-3.
data(i)(j) denates sgnd d; in Figure B-3 andj-th hit of this sgnd

d9: dadg generic map(-- LUT output shift= 0 —IDAC LUT number 9
coeffO0=> 9, coeffl=> -7, coeff2=> 59, coeff3=> 183 width_dout=> 9, insert_ff=>0)
port map (clk=>dk, ce=>ce,
din0=> data(6)(0), din1=> data(3)(0), din2=> data(0)(0), din3=> data(1)(0), dout=> data(9)(8 downto 0));

-01-

d10: dadg generic map(-- LUT output shift= 1
coeff0=> 9, coeffl=> -7, coeff2=> 59, coeff3=> 81, width_dout=> 9, insert_ff=> 0)
port map (clk=>dk, ce=>ce,
din0=> data(6)(1), din1=> data(3)(1), din2=> data(0)(1), din3=> data(2)(0), dout=> data(10)(8 downto Q));
d11: dadg generic map(-- LUT output shift= 1
coeffO=> 183, coeff 1=> 6, coeff2=> 18, coeff3=>-14, width_dout=> 9, insert_ff=>0)
port map (clk=>clk, ce=>ce,
din0=> data(1)(1), din1=> data(8)(0), din2=> data(6)(2), din3=> data(3)(2), dout=> data(11)(8 downto 0));
d12: dadg generic map(-- LUT output shift= 2
coeffO=> 59, coeff1=> 81, coeff2=> 183 coeff 3=> 6, width_dout=> 9, insert_ff=> Q)
port map (clk=>dk, ce=>ce,
din0=> data(0)(2), din1=> data(2)(1), din2=> data(1)(2), din3=> data(8)(1), dout=> data(12)(8 downto Q));
d13: dadg generic map(-- LUT output shift= 3
coeff0=> 9, coeffl=> -7, coeff2=> 59, coeff3=> 81, width_dout=> 9, insert_ff=> 0)
port map (clk=>dk, ce=>ce,
din0=> data(6)(3), din1=> data(3)(3), din2=> data(0)(3), din3=> data(2)(2), dout=> data(13)(8 dowvnto 0));
d14: dadg generic map(-- LUT output shift= 3
coeffO=> 183, coeff 1=> 6, coeff2=> 162, coeff 3=> 12, width_dout=> 9, insert_ff=> 0)
port map (clk=>dk, ce=>ce,
din0=> data(1)(3), din1=> data(8)(2), din2=> data(2)(3), din3=> data(8)(3), dout=> data(14)(8 dowvnto 0));
d15: da3g generic map(-- LUT output shift= 6
coeffO0=> 3, coeffl=> 6, coeff2=> -12, width_dout=> 5, insert_ff=> 0)
port map (clk=>dk, ce=>ce,
din0=> data(8)(4), din1=> data(8)(5), din2=> data(8)(6), dout=> data(15)(4 dovnto 0));

5.7.5. Approximated coefficients’ cost for the M C and IDAC

In order to compare the st of the MC and the IDAC, the st of each individual

coefficient must be found.

Multiplierless Convolution
At first, savings obtained by introducing common substructure ae cdculated. It can be
seen that by introducing a sub-expressgon shared t times, the total number of addersisreduced
by t-1, and 2ffinpus are involved. Therefore an average saving (in number of adders) per SS
inpu is:
t-1
S, = BT
Introducing each sub-expresson dten requires additional delay elements, which cost

(5-19)

reduces the savings. Furthermore, inpus to the sub-expresson adder are often shifted to each
ancther, which increases the width of the alders in the next cdculation stages. Therefore in
this approad, the alditional cost of delay elements and increased width of adders is evenly
shared by all sub-expresson inpus. Consequently, the gproximated savings (in number of
adders) introduced by a SSare & follows:

s dWIC,
3w C,
2(1

where: d- the number of delay dements, Cre- cost of a delay dement (fli p-flop), Ca — cost of

t-1-

S= (5-16)

the adder, s- shift between arguments, w- width of the arguments.

-92-

Savings for the drcuit in Table 5-6, oltained by introducing sub-expressons Ss and Sg
are given in Table 5-8. The wmst of a delay element is WIC:r/Ca= 0.4, (W= 4). It shoud be
noted that adual shift between arguments for & is ss= 6 (initially it might sean to be equal
4); ss= 3.

Bit \coeff. | 1 z?! z° z° z* z° z° z’
7 0.025
6 0.025
5
4 0.088
3 0.025 0.088
2 0.025
1 0.088
0 0.088

Table 5-8. Saing oldained by introducing sub-expressons S andSg

The savings obtained in the latest stages of the optimisation (the gredest indices) are evenly
divided to two invaved inpus. For example, for input 2’ ", saving S= 0.025is divided (by
2) into inpus 2’Z* and 2’72 and then savings S= 0.267 (sub-expresson S, t=3, d=1, s=0)
added, in total S= 0.279 Further optimisation savings are alded to the previous ones. As the

result the following final savings are obtained.

Bit \ coeff. 1 7t z° z3 z* z° z° z’
7 0.279| 0.279
6 0.279| 0.279 0
5 0
4 0.088
3 0.210 0 0.088 0.21¢
2 0.210 0.210
1 0.088 0.121
0 0.267| 0.267 0.088§ 0.121

Table 5-9. Total savings obtained by the SS

The total cost of each coefficient is propartional to the number of non-zero CSD bits minus
the total SSsavings obtained for the wefficient, plus an approximated number of pipelining
flip-flops

Cc= CallNa - 2§) + ((W+3)[CrrMa)>> (p-1)) (5-17)
where: Cc — appoximated cost of a coefficient, Na — number of nonzero CSD bits, p —

pipelining paameter, >> - a shift to the right.

-03-

Bit \ coeff. 1 z?! z° z° z* z° z° z’
7 0.721| 0.721
6 0.721| 0.721 1
5 1
4 0.912
3 0.790 1 0.912 0.790
2 0.790 0.790
1 0.912 0.879
0 0.733| 0.733 0.917 0.879
MC Na 2.244 | 2965 2.633 1912 1912 1.702 1.669 0.879
MC [LES] 15.7 20.8 18.4 13.4 13.4 11.9 11.7 6.2
IDAC[LES] 19 23 21 15 13 11 15 9

Table 5-10. Approximated cost (for p=[J) of non-zero CSD bits and coefficients, andthe st
of the alternative IDAC solution, Cost RAM 16x1= 1, cost adder = 1LE/bit

It shodd be noted that for FPGAs the st of adders depends on the alder width.
Therefore to simplify the éove cnsiderations, al adders are wnsidered to be & the same

width equal width o the cnvdutioninpu plus 3.

Irregular Distributed Arithmetic Convoler

For the IDAC, the mst of ead coefficient depends on the width of the efficient rather
than number of nonzero hits and SS optimisation result. Consequently different circuit cost
may be obtained for the IDAC and the MC architectures, and therefore these two architedures
are ompared with ead ather separately for every coefficient, and the better coefficient
circuit istaken.

The previous sction described the dgorithm for calculating the st of the MC for

every coefficient. Now a similar algorithm for the IDAC is derived:

1. Calculate the widths of coefficient weoer. At this dep, even coefficients are shifted to the
right until the odd coefficients are obtained. The shifts are implemented because for the even
coefficients the LSBs of the result are dways zero.

2. For all different kind d memory modues:

a) Calculate datawidth of each IDAC block:

Wata= Weoetf + 100 (1+ W) [(5-18
where: Wyao- data width of the considered IDAC memory, W~ COefficient width calcul ated
in the first paint, wi,- addresswidth of the memory modue.

The &owve guationis smilar to eq. 58 and assumes that all coefficients grouped inalDAC
ROM are & the same width, and inpu bits are & the same bit-significance Therefore the

-94-

adua width of the data may be greaer. Conversely, the caeling function is employed, which
tends to increment the actual datawidth of the IDAC ROM.
b) Calculate the number of required memory modues and adders:

0w

n, = peas . (5-19)
D md D Wma

n, = (5-20)
W

where: n- number of required memory modues for a single efficient, n,- number of adders
required for a single wefficient, wyy- addresswidth of the considered memory modue, wiq-
width of theinpu data to the cnvoler.
c) Calculate the st of a coefficient

C = NmlCyvem + Nalladd(Waatat 1) + Crrmem + Crradd (5-21)
where: Cyem- cost of the ansidered memory modue, Cagd(Wgaat+ 1)- cost of the adder which is
(Wyatat 1)-bit wide, Cervem — approximated cost of pipelining flip-flops inserted after memory
blocks (only for asynchronous memories), Cepagq — appoximated cost of pipelining flip-flops
inserted after adders

M forp=3
CFFMem =0 (5'22)
n, [C.. forp<2

data

Crradd = NalWaatat 1)>>(p-1) (5-23)
where: p — gpelining paameter, Crr— cost of a fli p-flop.

It shoud be noted that the average width of the adder is incremented by 1 for the IDAC, in
comparison to the MC for which the alder width in incremented by 3. This assumption is
made because the alder inpus are usually at better bit-alignment for the IDAC; and for the
MC, adder width tends to increase after the SS

d) Compare the aurrent cost with the best obtained cost, and store the best of them.

In the cnsidered example, for coefficient 162 (=281, Weoei= 7):
o for 16x1 (Wna= 4, Wpg= 1) memory and Win= 4, Cyen= 1 LE, Caqa(11)= 11 LES the
foll owing values are obtained: wya,= 10, = 10, n= 1,C= 21 LEs.

5.7.6. MC vs. IDAC Algorithm

The MC vs. IDAC agorithm was described in Sedion 5.6, lere only an example of

the dgorithm implementation is given. The st of the IDAC in comparison to the MC is

-05-

given in Table 5-11. For coefficients z* and z° cost of the MC is higher than for the IDAC
(seeTable 5-10), therefore these mefficients are marked as the IDAC. Table 5-11 shows an

intermediate result of the dgorithm.

bit \ coeff. 1 P2 B2 A | 2]

7 4 0,

6 4, 0,

5 3

4

3 -3 (03 | I 1

2 -1 D D

1 Oz A A 04

0 -2 o 1 C C 04
MC [LES] 17.1) 21.4] 17.5| 13.2 13.8 6.8
IDAC[LES] 19.0f 23.0| 21.0, 15.0f 13.0/ 11.0| 15.0 9.0

Table 5-11. MC representation d the wnvoler andrelative st (in numnber of MC adders) of
non-zero hits

Excluding coefficients Z* and z° from the SSoptimisation causes that the SSoptimisation is
altered and therefore aost of other coefficients may be greder than the st for the IDAC, etc.
For this example, the st of coefficient 1 has increased from 15.7 LEs to 17.1.Conversely,
the st of coefficient z? has decreased from 18.4to 17.5LEs. Nevertheless by introducing
the IDAC, the total cost of the drcuit has increassed from 111.4LEsto 114.1LEs. Therefore
the old circuit (without the IDAC) is restored. In the next step of optimisation orly a single
coefficient for which the difference between the st of the MC and the IDAC is the greatest,
is marked as the IDAC. In the given example mefficient Z° is implemented using the IDAC
architeadure. The overall cost of such a drcuit is 114.2LEswhich is dightly more than for the
MC architedure. In conclusion, the final circuit employs only the MC as shown in Tables 5-6
and 510.

If cost of a flip-flop is incremented from 0.4 to 1.0 LE then the st of the MC
increases (mostly because dnax=0, see . 5-9) and the final circuit is as s.own in Figure 5-8
where only coefficients z' and coefficients z* and z° are implemented using the IDAC. It
shoud be noted that 1-input LUT is implemented as a dired connedion to the final adder
block, therefore this LUT does nat occupy any hardware.

-906-

OO Fr 121 Fr 1220 rr |23 e [D40 Fr [25] Fr |29 R |27
—
+ -
D8 D9
LUT10 LUl LUT12 | LUTI3 LUT14

Adder

v

Figure 5-8. An example of the drcuit when bah the MC andIDAC architedures are
employed

I mplementation Results
Table 5-12 presents implementation results for Xilinx XC4005XLPC84-09. The AuToCon
outperforms Core Generator, which generates only Distributed Arithmetic drcuit for 1-D
convdution. Furthermore in Core Generator, the pipelining option canna: be specified.

Circuits 2 and 4in Table 5-12 are & in Figures 5-5 and 56 respedable. Circuit 3 is
similar asin Figure 5-5, however some pipeli ning modifications are implemented. Circuit 5 is
as in Figure 5-8. Circuit 6 is Smilar as in Figure 5-8. This circuit is generated when the
pipelining flip-flops are not taken into accourt when trading off between the MC and IDAC.
The estimated number of flip-flops $roud be smaller than for e.g. circuit 4. However this
circuit requires more LUTSs than the cmunterpart, and therefore more pipelining flip-flops are
inserted. Consequently, pipelining flip-flops $oud be dso taken into account when trading
off between the IDAC and MC, which is the case for circuits 7 and 8. Therefore drcuit 8
consumes less FFs in comparison to circuit 6. Summing up, the generated circuits are
different not only for different cost relations between FPGA resources but also depends onthe
pipelining parameter.

Table 5-12 urcovers an inacairacy of the AuToCon. For p=[Jand Cgr= 1, CLytiea=1
the total cost of the drcuit 2 is C= 83 + 43= 126, and the total cost of circuit 5is C= 134 +
28= 162, that is, the result for circuit 5 is worse than for circuit 2. The reason d this
inacaracy is that for the drcuit 2, shown in Figure 5-5, additional flip-flops after adder 2, 3,

4 are not required, as all delayed sub-expressons are included in adder 6. This, however, is

-97-

of flip-flopsis not considered by the achitectural trade-off agorithm.

difficult to be estimated duing design optimisation and therefore the reduction d the number

Circuit # 16x1 LUTs #FFs T [ns]
1) Core Generator 169 201 12.1
2) AuToCon p=00 C=0.4 83 43 39.6
3) AuToCon p=2 C=0.4 83 119 17
4) AuToCon p=1 C=0.4 84(83) 163(159 11
5) AuToCon p=[1] Ce=1 134(136) 28 36
6) AuToCon p=1 Ce=1 135(136) 208(210 11.8
7) AuToCon p=2 Cge=1 107(109 116 16
8) AuToCon p=1 Ce=1 107(105 178 12.2

Table 5-12. Implementation results for Core Generator [Xil99a] andthe AuToCon for
different pipelining paameter p andcost of flip-flops Cr, ()- values estimated by the
AuToConiif different from implementation results

Consequently to improve the dgorithm, the AuToCon shoud consider the actual (not
estimated) circuit cost during searching for the optima circuit. This however would
significantly increase drcuit generation time. However, for small designs, the AuToCon
generates a drcuit within a second, which is only a small fradion d the time required to
implement the design in a FPGA. Consequently, this algorithm improvement might be a
suggestion for afuture work.

5.8. Conclusions

In this chapter a novel agorithm for the IDAC has been presented. This algorithm
disregards regular structure of the DAC, and therefore dlows for further optimisation d the
circuit. Similarly like for the multipliers the MC proven to be more efficient architecture than
the IDAC or LC. One of the most important fegures of the AuToCon is that cost-relation
between FPGA resources is user-defined and noarchitectural assumptionis made. Therefore a
novel architectural algorithm has been presented which trade-off between the IDAC and the
MC.

Implementation examples and results have been presented in Sedion 5.7,and as a
result, the drcuit generated by the AuToCon significantly outperforms the commercial

courterpart.

-08-

6. Optimisation of the adderstree

Addition is a fundamental operation for the @nvdution, as for example, the MC
incorporates only adders, and appropriate routing of the alders sgnificantly influence the
total cost of the drcuit. Different optimisation techniques for carry-save-adders have been
studied e.g. in [Kim98, Kim0Q]. According to the author knowledge, no reseach has been
dorein order to oggimise the ripple-carry-adders network. For example, Thien-Toan Do et. al.
[Do99g constructed the structure of the LM and DA and showed the final adders tree but the
order of the alditions sams to be intuitive rather than based on a thorough reseach. This
draws a mnclusion that general rules for constructing adders tree shoud be given and/or a
design automated tod has to be developed in order to find an optimal network of adders
[Jam01a, Jam01b,JamOic].

This chapter studies also sophisticated input parameters of the alders block. Basicaly,
only inpu widths are required, however, to acieve hardware savings, the inpu ranges and
even inpus correlation shoud be wnsidered. Furthermore, correlation between inpus
depends on the architedure: the MM, LM or DAC, which makes implementation more
difficult. Further, different heuristics for finding the optimal adders tree ae investigated.
Implementation approaches and results are included to illustrate how the adders tree is
optimised.

6.1. Implementation of addersin FPGASs

For ASIC designs, the dassc problem of cary propagation is resolved by numerous
techniques, e.g. carry-look-ahead, carry-select [Omo94], which reduce the delay of carry
propagation at the expense of great increase in hardware complexity. Another approach to the
cary propagation poblem is to remove it completely through carry-save aldition [Omo94].
Consequently, in ASICs, carry-save adition is a substantial technique implemented in
convder designs [Haw96].

FPGAs incorporate adedicated carry propagate drcuit [Xil99b, Alt99] which is o fast
and efficient that conventional speed-up methods are meaninglesseven at the 16-bit level, and
of marginal benefit at the 32-bit level [Xil99b, Xin9§. Furthermore the dedicaed carry-
propagate drcuit isimplemented ouside the standard logic (LUT), which results in the adder

-99-

area reduction. Consequently, using only ripple-carry adders in FPGA designs is the best
solution with resped to the propagation time and accupied area[Xin9§.

As a result, there is a substantial difference between pipelining the ASIC and FPGA
adders. For ASIC designs, pipelining flip-flops sioud be inserted every N-logic blocks
(where N is an integer which value is application spedfic), therefore the cary-propagation
chain is broken as it is $own in Figure 6-1. For FPGAS, the fast build-in carry logic
significantly reduces cary-propagation time and therefore pipelining flip-flops shoud be
rather inserted after every K additions (seeFigure 6-1).

dinl(3) din0@3) dinl(2) dind@ dinl(l) dino(l) dinl(0) din0(O)
I vy v |
FA e FA e I FA e HA
= T - T
dind3) din2(3) [dind2) din22) |dind@) din(l) | din3(0) din2(0)
v vy v v
4, FA g FA g FA | HA
A _V— A 4 A A _V— A A
! FA e FA e FA e HA
{ 3 7 3
dout(3) dout(2) dout(1) dout(0)

== Pipelining FFs for FPGAs — Pipelining FFs for ASICs

Figure 6-1. An example for different pipelining strategies for ASC’'s and FPGA’ s addtions
for the equation: dou= din0O+ dinl+ din2+ din3. Pipelining paameters: N=2 (ASC), K=1
(FPGA)

Nevertheless the build-in cary logic canot nullify the cary propagation time, and
therefore for FPGAS, the most time aiticd path is the cary-propagate drcuit. For example,
for Xilinx XC4000, aday through LUT logic, e.g. sum-generation circuit, is approximately
six times longer than delay through the carry-propagate drcuit. However, when the
programmable interconnects delays are included, which esentially influence overall system
performance, the arry propagate delay is much less sgnificant. This hods as FPGAs
incorporate dedicaed and therefore very fast routing circuit from the carry-out to the cary-in.
Furthermore the propagation time through the programmable interconneds is usualy
comparable or even greater than the propagation time through LUT logic.

Nevertheless in FPGAs, a long-width adder can be divided into severa parts by
inserting pipelining flip-flops every M carry-propagate blocks (like for VLSISs). This lution
shoud be used together with the pipelining solution presented for FPGAs; i.e. a hybrid

-100-

solution d the FPGA and ASIC designs (see Figure 6-1) is employed. This, howvever, would
compli cae the system design and require alditional flip-flops to be inserted according to the
cut - set pipelining rule [Pir98]. Therefore, this lution has nat been implemented in the
presented system, however, is considered in the next step o the design development. This
hybrid solution ouperforms delayed addition technique [Luo99 for which a carry-in daes not
propagate to carry-out. Conversely, each 4-2 adder has the standard carry-out logic end 2
outputs and therefore 2 fli p-flops are required for each 4-2 adder.

Summing up, for FPGAs the best solution seams to be the usage of dedicated adders
and ppelining after every K additions asit is siown in Figure 6-1 and the FPGA option.

6.2. Addition parameters

6.2.1. Input parameters

The previous chapters describe methods of implementing convders. Now, let consider
the alders tree block alone. This block is independent of these methods and therefore let
define inpu parameters which determine the alders block.

The first intuitive parameter is the number of inpus and their bus widths or the
minimum and maximum input values. Consequently, for the aldition: y= a+ b, the relation
between the inputs and the output rangesiis as foll ows:

Ymin= @min + Drin Ymex= Amax + Drmax (6-1)

It shoud be noted that for a subtradion the &ove eguation also hdds. The use of minimum
and maximum values instead of the bus widths can cause hardware savings, as ome inpus
might not use the full binary range. For example, for inpu range from 0 to 9 adding three
such inpus gives output range from 0 to 27, which requires 5-bit wide bus. If only the bus
width is considered, the output will be 6-bit wide. Besides, using datarange instead of the bus
width allows for easy deding with pasitive and regative numbers without additional hardware
overheads — allows kipping sign-bit coding if possble.

In addition, some inpus may have the LSBs fixed to zero as the argument is ifted to
the left, therefore an additional shift parameter sis also included.

6.2.2. Corr elation between inputs

To further deaease ader widths, correlation between inpus odd be nsidered.
Because an assumption is made that inpus a; (see @. 1-1, in arder to simplify notation orly

1-D convdution is hereby considered) are uncorrelated, the correlation is observed ony

-101-

within the multiplicaion hy/d@ when the aldition o the partial products of the same
multiplication takes place eg. addtion d shifted & for the MM. Consequently, the
correlationis considered separately for each multi pli caion, and therefore in this sdion rather

amulti plicaion than awhole mnvder is considered.

The wrrelation shoud be mnsidered for every intermediate aldition; e.g. for the
addition: y= a + b + c, a first intermediate aldition, y,,= a + b, takes place and therefore
only correlation between inpus a and b shoud be considered. Furthermore, the @rrelation
shoud be cdculated from the very beginning for every intermediate aldition; i.e. only inpus
to the intermediate adders block shoud be taken into acourt, and therefore the acual adders
conredion retwork within the intermediate adders block is disregarded.

To describe arrelation between inpus, different architectures will be further

approached.

6.2.2.1. MultiplierlessMultiplication
For the MM, no correlation is observed uriessa subtradion y= a — b, where a= 2'b,
between the same argument takes place In this case, the aj. 6-1 shoud be replaced by:
Ymin= @min - Drin Ymax= @max - Drmax (6-2)

6.2.2.2. LUT-based Multiplication

The @rrelation is more complicaed in the cae of the LM. Let lg, |4, ... I be the inpus to
LUT memories for a single multi plication, where I represents the inpu to the LSBs LUT and
Ik the input to the MSBs LUT; and wy, Wi, ... Wi represent the input (address) width of the

j-1
LUTS, s, S, ... S represent the shift to the left of ead LUT: S = ZWl , and s denotes the

shift of the adders block output. It can be seen that inpus to all LUTs but the MSBs LUT

operate on the pasitive binary range:

lj me= 2-1 lj nin= O forj= 0 ..k-1. (6-3)
The MSBs LUT is an exception for which the following equation hdds:
Ik max= Imax™> S Ik min= Imin>> S« (6-4)

where: |y, Imin —maximum and minimum inpu values to the multiplier, >>s- denotes a shift
to theright by s-bits.
The LUT output range can be defined as:

O max= NI O min= "l vin for h=0

O ma= Nl min O min= Nl yax for h<O (6-5)

-102-

where: h —the multi pli cation coefficient.

It shoud be noted that the total output range of the multiplicaion: Opax, Omin Can aso be
obtained by employing the . 65 — orly index | disappeas. The relation between the LUT
output rangesis gedfied:

k k
Omax < [Z (OJ max << Sj)] >>S Omin 2 [Z (O] min << Sj] >>S (6_6)
1= 1=

The aowve inequality beaomes the eyudlity if thereis no correlation between ouputs O; or the

correlationis not taken into acourt.

The dgorithm which determines the @rrelated maximum and minimum of an
intermediate alder A (the set A contains indices of al inpus to the intermediate adder block)
is based onconstructing a mrrelation set C (CLJA). The set C contains the MSBs LUT ki if the
LUT k feeds the intermediate alder A, i.e. K[JA, otherwise the set C is empty (no correlationis
observed). The set C is further constructed in an iterative way, starting from the index j= k-1.
The index | belongs to the rrelation set C if and orly if the index j+1 aso belongs to.
Consequently, C contains siccessve dements: |, j+1, ...,k-1, k, where j-1 is the greatest index
of the LUT which is nat included in the intermediate addition Hock, i.e. (j-1)[JA. The input
range of the of set C is cdculated in a similar way as inpu range of the MSB LUT (eq. 6-4)
and can be expressed as foll ows:

lemax = Ima™> Sc lemin = Imin™>> Sc (6-7)

where: s, :w—;wj = Spinc) » MIN(C) - the small est indexin the set C.
I

The output range of set C can be cdculated in the foll owing equation which is smilar to eq.
6-5.

Camax= NIE max Ca min= D& min for h=0

Camax= hllE min Ca min= hlIE max for h<0 (6-8)
Finally, the output range of the intermediate adder A is cdculated as foll ows:

C)Amin = [(CAmin << SC) + Z (O| min << S)] >> SA

iOA-C

OAmax = [(CAmax << SC) + z (OI max << SI)] >> SA (6-9)

iffA=c
where: sa - the shift of the intermediate adder A; sa= min(s) for all i LJA.
It shoud be noted that the crrelation set Cisempty if the MSBs LUT is nat included into an
intermediate aldition Hock, i.e. kCJA. In this case: Camin= 0, Camax= 0.

It is important to nae that the correlation is not observed for the binary or two's

complement full range of the inpu argument, e.g. for inpu range: 0to 2550r —128to 127

- 103-

Example 6-1
Let consider the example from Figure 3-5, for input range: —99 to 99 (8-bit wide inpu) and

coefficient h=100. Consequently, from eq. 6-3 and 64, the input rangeislo= 0to 15and |;=
—71t0 6. Employing eq. 6-5, we obtain the output range: Ogmin= 0, Oomax= 1500and Oyyin= -
700, Oymax= 600. When the correlation is not taken into acourt, the output range of the
additionis (from eg. 6-:6) Oa= -11200to 11100. Otherwise (from eg. 6-9), Oa= -9900 to 9
900.

Hardware savings, after the rrelation is taken into accourt, are more significant for
lesswide MSB LUTs. For example, for inpu range—9to 9 (5 hit wide input divided into 4-bit
wide LUT and a 1-bit wide LUT), lo= 0 to 15and I;,= —1 to 0. Consequently, uncorrelated
(from eq. 6-6) addition range is -1600 to 1500,in comparison to —900 to 900 when the

correlationistaken into acourt.

Correlation savings are even more efficient if the multiplicaion coefficient can be
changed by employing the DKCM. In this case, instead of multiplication coefficient h,
coefficient range hpin and hyex Shoud be used. Consequently, eq. 6-5 shoud be replaceby:

O max= Max (Ml maxs Perim/L{ min)

Oj min= Min (Mm@ min, hrinllf mex) (6-10)

It shoud be noted that for the DKCM, there is correlation between arguments even if full
inpu binary range is used.

Example 6-2
Let consider the example from Figure 4-1 for inpu range —99to 99 (8-bit wide inpu) and the

coefficient vaues hyj,= -100 and hya= 100. Consequently, lo = 0to 15and ;= —7to 6. The
output ranges are: Ogmin= -1500, Ogmax= 1500and O1pin= -700, O1max= 700. Output range of
the adition, when the arrelation is not taken into accourt is Oa= -12700 to 12700
Otherwise, Op= -9 900to 9900.

6.2.2.3. Distributed Arithmetic

For the DAC (or IDAC), the crrelation shoud be mnsidered in a similar way as for
the LM. However inpus to the LUT are from different filter inpus a; (see €. 1-1 and 57).
Therefore eab inpu to the LUT shoud have aseparate arrelation entry ki, Cimin, Cimax (S€€
Sedion 6.2.3 and shoud be regarded as an one-input LUT. This however complicates the

-104-

inpu parameters set (one input has evera correlation entiti es). Furthermore, the crrelation
is also much more difficult to be cnsidered within the aldition Hock, which significantly
increases the cdculationtime.

Consequently, a simplified approach shoud be rather employed, for which the
correlation is considered coll ectively for the set of inpus a;. Accordingly, kj, Cimin, Cjmax are
cdculated na for a single multiplicaion bu for the sum of products. This, howvever, causes
that if a single multiplicaion from the set does not comply to the @rrelation rules, i.e. an
inpu missoccurs only for asingle DA-LUT, the crrelation d all inpus less sgnificant than
the missinpu is disregarded. Therefore, the simplified approach may result in the hardware
overheads. However, the misscase can be diminated in most cases by sorting the crrelation
set — the more significant output of the DA LUT the larger index of the DA LUT.

6.2.3. Summary of theinput parameters

In aur approach for every inpu j, the foll owing inpu parameters are spedfied:
Input shift: 5
Input width: w;
Inpu range (e.g. for the LM, ouput of the LUTS) : Ojin, Ojmax
Kind d operation: addtion/ subtraction

Correlation parameters:

For MM :

e The multiplicaion inpu index: k. If two o more inpus have the same index k then for
subtradion, the &. 6-2 instead of eg. 6-1 shoud be enployed.

For LM and DA:

Correlationindex : k—index of the MSBs LUT of: &) multiplicaion, for the LM b) sum of
products for the DA.

* Correlationrange: Ci min, Ci max, these values are cdculated in eg. 6-8 for the wrrelation set
C={j,j+1, ...,k If dl inpus from j to k are invalved in a intermediate aldition A then
variables Camin, Camax rather then Ojmin, Ojmax @nd eq. 6-1 shoud be enployed.

The arrelation for the LM and DA is calculated corredly according to the @ove schedule if

indices are @rredly assgned. Correspondngly, for the LM, ouput indices are assgned

incrementally and separately for every multi pli cation, according to increasing bit-significance
of LUTs. Similar procedure is employed for the DA, however al inpus associated with the

DA shoud be mnsidered together.

- 105-

6.2.4. Addition tree structure

Additional assumptions and rules for constructing the aldition tree must also be
spedfied. A binary tree is employed for which the number of inpus to the next adder layer is
halved. An example of abinary adder tree for 6 inpusis given in Figure 6-2. This assumption
is rather intuitive and minimises the inpu-output delay. It shoudd be however noted that for
some ca&es when the delay time is disregarded, this assumption might exclude the best

solution. This, however, isarare case and therefore this assumption seems to be justified.

Inpus
4 b d gl
+ + + layer 1
o e
+ layer 2
abcat‘ — .
+ layer 3 _ flip-flops (inserted for p=1)
~ fli p-flops (inserted for p= 1 or
output

Figure 6-2. An example of the adders treefor 6 inpus

The most complex part of the design is paring inpus to form two inpus adders. This
task must be caried ou with respect to the aea of the adders gructure. Therefore, the st of
a Full Adder (FA) shoud be aother user-defined parameter. An aternative, universal
solutionis defining the st of the alder for every possble alder width, e.g. from 1 to 32,as
the average st of a FA may depend onthe alder width, as it is the cae for e.g. carry look
ahead adders [Om094]. Furthermore, the latter solution allows for area-time trade-offs, i.e. the
cost of the alder increases rapidly with the increase of the alder width as the delay through
the alder increases with the adder width. Consequently, the st of the alders for different
widths can be specified with resped to na only the occupied chip areabut the delay time &
well .

It shoud be noted that the adual width of an adder may be small er than the width of the
addition result in the cae when the one agument is sifted to another. An example of shifted
arguments is given in Figure 3-5, for which 4 LSBs are diredly copied to the output. For
subtradion, havever, the LSBs of the subtrahend canna be @pied because wnwersion to

two’s complement has to be carried ou on the subtrahend before the adition is implemented.

- 106-

Consequently, subtraction and addition have to be treaed in a slightly different way [Wia00b|
and dfferent optimisation rules applied for additions and subtradions.

In order to speed-up the addition, ppelining is implemented. Consequently, additional
user-defined parameter: level of pipelining p has been introduced. Parameter p defines that
pipelining flip-flops are inserted after every p-layers of adders. An example of pipelining is
given in Figure 6-2. For p= 1, flip-flops are inserted after every addition layer; for p= 2, flip-
flops are inserted ony after layer: 2, 4, 6, etc. It shodd be noted that flip-flops are
incorporated in FPGAs after every logic dement, therefore, it might seem that no additi onal
chip area is occupied by the pipelining flip-flops. However, some bits of an addition result
may be diredly copied to the output. This happens when either inpus are shifted to each ather
(the cae discussed in the previous paragraph) or an input canna be paired (e.g. signal ef in
Figure 6-2). Therefore, in these caes no logic cdl is required and consequently pipelining
flip-flops are nat attached to any logic. Consequently, the design areamay be spedfied by the
number of fli p-flops rather than the number of logic dements; and this causes the increase of
the chip area. Summing up, for adders blocks, the chip areais usually defined by the number
of flip-flops for pipelining parameter p= 1 and by the number of logic dements for p=>2.
However, for increasing p the design throughpu is reduced, therefore acompromise between

area and throughpu is observed.

6.2.5. Filters Example

Implementation results of different algorithm have been given for different filters. Table

6-1 shows parameters of thesefilters.

Filter | #inpusto Inpu | #taps | Cost [# FA] for the GrA
addershl. range

a 16 015 5x5 111

b 11 015 5x5 74

C 13 -99-99 8 128

d 39 0199 41 413

e 85 09999 41 1358

f 290 09999 41 3730

Table 6-1. Parameters of the implemented FIR filters

-107-

6.3. Greedy algorithm

A Greedy Algorithm (GrA) [Cor94] considers the estimated best partial solution. The
drawback of this algorithm is that taking series of the best partial solutions often dces not lead
to the best overall solution, therefore an approximate solution is usually obtained. The GrA is
the quickest algorithm from all algorithms considered in this paper and very often gives an
aaceptable solution. The most significant part of the GrA, which strongly influences the
overal result, is criteriawhich defines prioriti es according to which a partial solutionis taken.
In this project, different criteria have been spedfied for the first input and for the secondinpu
to an adder. The following rules has been seleded:

1. First input

1.1. Takeinpu with the small est input shift s;. If two or more inpus have the same inpu shift
1, consider the next rule for these inpus.

1.2.Take inpu with the small est input width w.

2. Seoond input

2.1. Take inpu with the smallest significance of the MSB m,= s,+ws,. Disregard this rule if
the significance of the MSB of the first input my= s;+ws is greaer or equal than m, (m; =
my). If two or more inpus have the same small est m, or my > my, consider the next rule for
these inpus.

2.2. Take inpu with the small est shift s,. If two or more inpus have the same shift s, consider
the next rule.

2.3. Take inpu, which daes not generate carry out of the aldition (the input with the small est
addition result). If two or more inpus have the same small est addition width consider the
next rule for these inpus.

2.4. Take inpu with the greatest input maximum value | yax.

Rule 1.1 causes that the first inpu is taken to sort inpus acwrding to their shifts.
Consequently, this rule considers the overall solution rather than the best partial solution as
the unattached inpus tend to be of a greaer shift and therefore eaier to be grouped in the
next iterations. Rule 1.2 tries to optimise partial solution by taking the smallest inpu width.
This rule dso suppats saching for a good owrall solution as wider inpus can be eaier
grouped with inpus with a greder shift, which are left for the next iterations. The second
inpu is taken rather to optimise & first the partial and then owerall result. Rule 2.1 finds inpu

- 108-

which generates the smallest result width. Rule 2.2 finds inpu with the smallest shift and
therefore triesto optimise overall solutionsimilarly asrule 1.1.1t shoud be noted that if input
shifts are different (5,<s,), (S>-S1)-bits are @pied dredly to the aldition ouput (this copy
does nat require any hardware) and this justifies that rule 2.1 is more significant than rule 2.2.
Rule 2.3 seleds an inpu which produces the smallest output. Furthermore, to improve the
overall solutionthe inpu with the maximum valueis chasen acording to rule 2.4.

The @owe rules, athough based on extensive research, are rather intuitive, therefore
probable better criteria may be found. Furthermore, the priority queue might be different for
different inpu parameters, e.g. for subtradion, bt copy of shifted inpus canna be
implemented and therefore different rules may be spedfied. Furthermore, the average st of
afull adder (FA) may be different for different adder widths, and this causes that a diff erent
priority queue shoud be specified, etc.

6.4. Exhaustive search

6.4.1. Concept

The best possble result can be dways foundby search through all possble solutions.
The problem of finding the best solution for adders treeis NP-complete and therefore only
simple alders blocks can be routed using the echaustive seach agorithm. At first, let
consider an example of 5 inpu adder. The following solutions have to be examined (the

battom layer is only taken into consideration, the example shows how inpus (letters: a to €)

are paired together):
(atb)+(ct+d)te; (bto)+(atd)+e; (cta)+(b+d)te;
(bto)+(d+e)+a; (ctd)+(bte)t+a; (d+b)+(cte)+a;
(c+d)+(eta)+b; (d+e)+(c+ta)+b; (e+c)+(b+a)+b;
(d+e)+(at+b)+c; (eta)+(d+b)+c; (atd)+(et+tb)+c;
(eta)+(b+c)+d; (at+b)+(etc)+d; (b+e)+(atc)+d;

In order to find ou the number of possble mmbinations, at first let define the function
Si(n) which returns the number of all possble cmbinations within a single alder layer for a
given number of inpus n:

(h{n—-2)[{n-4)[..31 foroddn

S0 = %(n—l) forevem (6-1)

The total number of posgble solutions §n) is defined in an iterative way and is a

product of the number of combinations on this layer and the total number of combinations on

-109-

the upper (closer to the output) layers, i.e. for the alders block for which number of inpusis
halved:

Sn)= Si(n)S(m/20y (6-12)

where [} the celi ng function

N| #layers # Combinations
2 1 1
3 2 3
4 2 3
5 3 45
6 3 45
8 3 315
10 4 42 525
12 4 467 775
14 4 42 567 52F
16 4 638 512 87¢
18 5 1 465 387 048 12

Table 6-2. The number of possble combinations for a gven number of inpus n to the adder
block

It can be seen from Table 6-2 that the number of possble solutions is growing rapidly,
making the exhaustive search (ES) method wselessfor the input number greater then about 11-
16.

6.4.2. Constrained Search (C9)

As the number of passble solutions is growing rapidly with the growing number of
adder inpus, a modificaion d the ES method is hereby propaosed. This method considers at
first the ast of the GrA solution for every layer |. Consequently, the st C(l) of the partialy
routed adder (up to the ader layer |) is first cdculated (initialy using the GrA) for every
layer | and then a method, similar to the ES, is implemented. This method, havever, stops
cdculating agroupof solutionsin its ealy stages (on layer 1) if the aost of the partially routed
adder is greater than Cy(l) + t; where: Cy(l) —the st C(I) for the best overal solution so far
found (initially foundby the GrA), t- a certain threshold number. The comparison procedure
is exeauted after every layer of the adders tree is completed.

The CS tedhnique saves the cdculation time, as lutions which are unlikely to give the
best solution are skipped onalow layer and therefore upper layers and their combinations are
not cdculated for the given partially routed adders tree. Conversely, it is posgble that an
adder block has a very high cost on the battom layer(s), howvever the upper layers are much
less costy, and therefore the best solution is naot found. Consequently, the key problem is a

-110-

proper choice of the threshold number t. Increase of the threshald number t increases the total
number of considered solutions but deaeases the probabili ty of not finding the best solution.

N ES CS (layer 1) CS (layers1 and 2

6 45 15 45
8 315 105 315
10 42 525 945 14 175
12 467 775 10 395 155 925
14 42 567 525 135 135 14 189 17¢
16 638 512 87" 2 027 025 212 837 62°
18 1 465 387 048 12 34 459 424 32 564 156 62

Table 6-3. Theoretical numbers of considered solutions for different number of adder inpus N

Table 6-3 shows the theoreticd number of possble solutions for the CS assuming that
the cdculation processis constrained only to layer 1, o layer 1 and 2.1t can be seen that the
total number of considered solutions has deaeased significantly, however it is dill
unaaceptable for the number of inputs N greater than 18.

6.4.3. Implementation Results

In this ction results for the grealy agorithm (GrA), exhaustive seach (ES) and
constrained search (CS) algorithms are given. Table 6-4 shows the st of the generated
circuits by the GrA, ES and CS (for different threshdds t). Table 6-5 shows the cdculation
cost — the number of iterations needed to find the arcuit.

Filter

No ES CS(t=5) | CS(t=2) | CS(t=0) |CS(t=-1)| GrA
Inpus
a 16 93 93 93 93 93 111
b 11 72 72 72 73 73 74
c 13 123 126 126 126 126 128

Table 6-4. The implementation costs (hnumber of full or half adders) for different filters (see
Table 6-1) andtechniques

Filter

layer 1

layer 1,2

ES

CS(t=5) | CS(t=2) | CS(t=0) | CS (t=-1)

a | 2027025212 837 @5| 638 512 85| 9 556 259 4 881 543 2 963 651 2 327 927
b 945 14175 467775 444927 278739 80051 13173
c | 135135 14189179 425675243079 78 915375 369 357 193 057

Table 6-5. The number of iterations for different filters andtedchniques

It can be seen from Table 6-4 and Table 6-5 that acceptable results are achieved using

only the GrA. The improvement of abou 2-7 % can be obtained by the use of the ES. The
drawback of the ES isits computation cost therefore the reasonable solution seans the CS (for

-111-

the number of inpus up to 16). For the threshold t=-1, only partial solution which is better
than the best foundis taken into consideration. This makes the CS (t=-1) similar to a GrA for
which the step is constrained na only to asingle adder (like for the GrA) but for all addersin
the layer. Besides for the CS, it is dways possble to undoa seledion if the upper layers cost
is high and therefore the overall cost of a new solution is higher than the best previously
foundcost. By the increase of threshald t, the number of considered solutions is growing. For
t=0, na only the best but also all solutions on the same partial cost are dso considered. This
however increases the number of iterations but very dightly influences the overall results.
Similar results are obtained for t=2 and t=5.

It shoud be noted that the GrA behaves more poarly for filters for which subtractionis
implemented (for negative mefficients, examples a, ¢) as this algorithm deds with subtraction

and addition in the same way.

6.5. Simulated Annealing (SA)

6.5.1. Principle

The principle behind the SA [Aar89, Kir83] is analogous to what happens when metals
are ooed a a ontrolled rate. The slowly falling temperature dlows atoms in the molten
metal to line themselves up and form aregular crystalli ne structure that has high density and
low energy. In the SA, the value of an oljedive function which we want to minimise, is
analogous to the energy in a thermodynamic system. At high temperatures, SA alows
function evaluations at faraway points and it is likely to accept a new point at higher energy.
At low temperatures, SA evaluates the objedive function orly at locd points and the
likelihood d it accepting anew point with higher energy is much lower.

The SA agorithm, implemented for optimising adders dructures, employs the foll owing

steps:
Objeaive function cdculates the st C of the drcuit for a given adderstree.

Annealing Schedule regulates how rapidly the temperature T goes from high to low values,
asafunction d iteration courts. In the cnsidered case, the starting temperature T, equals the
cost of a2-bit wide alder Cay, the stoppng temperature Ts equals ¥ o the st of a 1-bit wide
adder Cai/4. In every iteration, the temperature T; is deaeased according to the following
equation:

-112-

Tiv1= n (6-13
where n = (_ITl)yS, S the number of iterations.
S
Generating a new adders gructure — oldained by randamly seleding two adders on the
same layer; i.e. randaomly seleding a first adder (or inpu to the adders block) from all adders
and randamly selecting a seoond adder from adders at the same layer as the first adder.
Examples of passble modification are given in Figure 6-3.

Md b dlafe b 4l e Pdp 4l
+ + + + + +
ab_\ [] cb_\ [] abL\ l—lcd

+ ||cd + | |ad +
= = |
+ + +

Figure 6-3. Examples of possble one-step modifications: A) aninitial circuit, B) C) the
modified circuit A.

Modificaions of the drcuit are mnstrained by temperature T;. In the mnventional SA,
also known as the Boltzmann madine, the generating function which spedfies the diange of
the inpu vedor, is a Gausgan probability density function [Jan97]. In ou approad, the
number of passble solutions is finite therefore the Gausdan probability function is useless
An adternative solution is defining a move set [Mau84], denoted by M(x), as a set of legal
points avail able for exploration. However, constructing the move set is rather computationally
demanding task thus not implemented. In this approac, two adders are seleded randamly
(but at the same adders layer) and then a local acceptance function (LAF), which is further
described in the next paragraph, is calculated. The LAF differs from the (global) acceptance
function as it takes under consideration ony the st of the two involved adders before and
after the modification. If the modification is not accepted locdly, the change is rejeded and
the next modificaion is randanly generated (the iteration courter and temperature ae not
affected in this dep).

Acceptance function. After a new network of adders has been evaluated, the SA deddes

whether to accept or reject it based on the value of an aaceptance function h(). The
aaceptance functionis the Boltzmann grobabili ty distribution:

-113-

h(AC,T) = (6-14)

1
1+exp@Cy)

where: AC =C,,, —C. - the difference of the adders block cost for the previous and current

adderstree
The new circuit is accepted with probabili ty equal the value of the acceptancefunction.

6.5.2. Implementation results

The result for the SA, for different circuits are given in Table 6-6. For filter a, the result
equals 103 (FAgHAS), and is the best possble — the same & for the ES. This result is
obtained already for 1000iterations. For filter c, the aost equals 123 the same & for the ES,
and was obtained aready for 30k iterations; for the CS, the result is 126 even for more than
3M iterations. It shoud be, however, naed that the cmmputation cost of a single iteration is
lower for the CS than for the SA. This hdds as for the CS and ES, the change in the drcuit is
well -defined and wsually constrained orly to the upper layers of the alders and therefore only
a part of the darcuit has usually to be re-calculated. For the SA, the dhange is dore randamly
and onevery part of the drcuit, therefore st of the whole drcuit has to be recdculated. The
lower cdculation cost for the CS and ES, does nat, howvever, compensate much greater
number of iterations required to oltained the same result. Consequently, the overall
cdculation cost of the CS is usually greder than for the SA, howvever for small circuits for
which the cdculation cost is very low, the CS and ES are good alternatives to the SA.

Ex. GrA SA1k | SA30k | SA 1M ES
a 111 93+0 93t0 93t0 93
c 128 [126.9+0.3] 125+1.4 | 1230 123
d 413 3043 | 385+1 | 382+l -
d (wia) 413 308+4 | 382+1 | 380+l -
e 1358 | 1346+10 | 1299+3 | 1292+4 :
e(wlaf) | 1358 | 134149 | 1293+4 | 1283+4 -
f 3730 | 370220 | 3338t14 | 3245+6 -
f(wiaf) | 3730 | 3706+13 | 3419+13 | 32968 -

Table 6-6. The drcuit costs for the GrA, ES, andthe SA for different number of iterations;
wlaf —without local acceptance function

The final circuit (obtained in the lowest temperature) is often nd the best one.
Therefore, the best-obtained circuit is every time stored as the best result; this increases

cdculation cost insignificantly but all ows for substantial algorithm improvements.

-114-

Table 6-6 shows aso the results when local acceptance function (LAF) is naot
implemented (option: wlaf). Calculating locd cost before and after the modification,
insignificantly influences the total cdculation cost and the LAF usualy reeds solutions
which are unlikely to generate agood global result. Conversely, the LAF constrains sach
space ad therefore may cause some good solutions to be omitted. This is often the case for
relatively small adders circuits and for large number of iterations. For example, it can be seen
from Table 6-6 that not implementing the LAF gives better results for circuit d and for a small

number of iterations, however spail s results for more cwmplicated circuit f.

6.6. Genetic Programming (GP)

Genetic Programming (GP) [K0z92, Gol89] is an optimisation method kased loosely on
the concept of natural selection and evolutionary process Maor comporents of the GP
include: encoding scheme, fitness evauation, parent seledion, crossover operation and

mutation operators, these ae gproached next.

6.6.1. Encoding scheme

Encoding scheme transforms gene representation into a problem spedfic
representation. In this approach, the adders tree is represented dredly using two vedors of
integers, which is typicd rather for the Genetic Algorithm [Mic92]. Each adder occupies one
entry in ead vedor. The entry spedfies the index of the adder or input (from the lower layer)
which is conreded to the cnsidered adder. For example, parent O in Figure 6-4 is
represented in the following two vectors of integers:
considered adcer 24, 23, 22, 21, 20, 19, 18,17, 16, 15, 14, 13
vedor 0 22, 19, 18, 13, 14, 16, 0, 3, 2, 4, 9, 7
vedor 1 23, 20, 21, 17, 15, 11, 6, 8, 1, 5, 12,10

Initialy, it might seem that the structure of adders can be defined giving only the order
of adders block inpus (the bottom layer order), as the rest of the structure can be built
straightforward by conreding two neighbour adders. This, however, is a speda case when
the number of inpusto the alder block is a power of two. Otherwise, there is an alone signal
which canna be paired and therefore must be fed dredly (withou addition) to the upper
layer of the adder block. In the given example for parent O, it is the cae for the inpu 11 for
the first layer and signal 18 for the second layer. These done signals compli cate the adders

structure, and cause that the structure of upper layers must be dso included into gene wding.

-115-

6.6.2. Fitnessevaluation

Fitnessevaluationis based onevaluation d the ast (area) of agiven adderstree

6.6.3. Selection

After fitnessevaluation, a new generation is produced from the arrent generation. The
seledion operation determines which adder will survive, based on the fitness value — the
lowest cost of the adder, the gredest survival probability. It this approadi, the modGA
algorithm [Mic92] has been implemented as it has proved to surpass the dasscd genetic
algorithm [Mic92]. In the modGA, in every generation we select independently (p-r)
chromosomes to survive unchanged with the probabili ty propartional to the scaled fitnessf;’
which isobtained as alinear scaling of the aeaf; occupied by the adder block:

fi = afff+ b. (6-15)
Parameters a and b are cdculated independently in every generation to satisfy the foll owing

equations:
al:rmin +b:1 (6'16)
p
Z(a[lfi +b)=p-r (6-17)

where: fi, — the fittest (minimum cost) chromosome, p —popuation size, r — number of

chromosomes determined to der<p/2;
The . 6-16 preserves the fittest individual with the probability equal 1. Eq. 6-17 causes that
on average (p-r) chromosomes are seleded to survive in a single wheel spin (a single wheel
spin - every chromosome is picked to survive with probability fi' only once). In this approach,
the whed spins until (p-r) chromosomes are seleded and onaverage, a single whed spin is
required.

The r chromosomes slected to de are replaced by new ones, which are produced in
either crossover or mutation. Consequently, the foll owing equation hdds:

r=c+m (6-18)
where: ¢- number of new chromosomes produced in the aosover operation, m- number of
new chromosomes produced in the nonoverwriting mutation operation (see mutation

operation). Inthisapproach p= 12,r=5,¢c= 4, m= 1.

6.6.4. Crossover

Crosver is applied to randamly selected pairs of parents. The structure of the alders

tree seems very similar to the commonly used tree graph structure used for scheduling and

-116-

partitioning [Mic92] or finding the optimal operation tree [Ayt95]. However for the adders
block, the structure of the tree is drongly constrained. Therefore, the aosover operation
implements a procedure, which generates only a valid structure of the alders tree (no repair
procedureis required).

Two dfferent options of crosover have been implemented. The first one (option A)
attempts to copy as much as possble from the parents (considering actual parents gructure
and therefore disregarding the alder indices) and then employs a greedy algorithm (simplified
version d the GrA described in Sedion 6.3 to route unconneded adders. In the second
option (option B), the offspring copies the structure of the first parent and implements
changes smilar as for the SA, however changes are gplied according to the structure of the

secnd parent. In thisoption ory indices are ansidered. These options are described below.

Crossover option A

In this option, an dff spring inherits one (or al but the one) branch of adders from the
first parent. For an example given in Figure 6-4, offspring Oinherits from parent O, the alder
structure: 20, 14, 15, 9, 12, 4, S hen, offspring 0 inherits as much as possble from the
second @rent. In the given example, offspring Ocan copy only adders 13, 2, 11 16, 6, 7and
17, 8, Ofrom parent 1. Unfortunately, the whole adder structure may not be obtained directly
from the parents; as sme cnrections copied from the first parent, conflict with connections
in the second parent. For the given example for offspring Q from parent O, the alder
structure: 14, 9, 12is copied; this makes impasshble to copy the alder structure 14, 1, 9 from
parent 1 asinpu 9 isarealy conneded.

It shoud be noted that the aossover agorithm considers only indices of inpus on the
bottom layer (in the given example: inpus 0-12) and haw they are mnneded going up to the
toplayer (the indices of the adders onthe upper layers are disregarded). Consequently, pairing
the upper layers adders can be achieved if al adders on the lower layers can aso be paired.
Therefore, asingle mnredion that canna be atieved ona baottom layer, prevents the alders
on the upper layers from being conreded. This causes that the structure of adders on the
upper layers is sldom inherited from the parents. Nevertheless the off spring inherits only
conredions which existed in either of the parents.

This approach causes that the dfediveness of the dgorithm strongly depends on
crosover points; that is how many adders are @wpied from the first parent. Consequently, a
crosover parameter is included into the gene-coding scheme, which all ows this parameter to
be optimised together with the adders gructure during the evolutionary process The aosover

parameter defines from which adders layer a randamly chosen branch of adders is copied

-117-

from the first parent to the offspring. For example in Figure 6-5, offspring Oinherits adders
structure: 20, 14, 15, 9, 12, 4,;%.e. the branch o adders beginning from the alder 20 (adder
20 is onthe layer 2). Besides, the aossover parameter defines if one branch o the alder is
inherited or all but one branches are inherited. For the given example, for the off spring 0, orly
one branch of adders is inherited from parent O; for offspring 1, al but the one branches of
adders are inherited from parent 1, i.e. except adders: 20, 14, 1, 9, 3.

7 91@4521111§75§91j
18 1%{5j T—Ej 141 15 16] 1E|j 13" 18] a7 14 j
20
22

20-[19 21
23 23 22
24| ___not used for any child 24]
parent 0 — - for offspring O parent 1

— for offspring 1
........ for offspring 0 and 1

7] ifiii@ﬂjj %“H L7]

19 20-[20
22 22

24\ —random choice 24|
— — .from parent O
—from parent 1

offspring O offspring 1

Figure 6-4. An example of the aossover operation for option A

The implementation results showed that in dd generations, the aosver parameter is
the same for all chromosomes and is equal: copy one branch beginning from the next to the
last adder, i.e. copy half of the adders dructure. Consequently, the aossover parameter is not
longer included into gene-coding scheme and the aossover paint is fixed to the half-adders-

block coppng.

Crossover option B

In this option, the aosover operation is very similar as for the Simulated Anneding
presented in the previous ®dion. The difference is that for the SA amodificationis madein a
randam way, however for the GP, the modification is carried ou with respect to the structure
of the second parent. An example of the aossover operation is given in Figure 6-5. The
crosover operation consists of three steps:

1. Randamly select a @mmon crosover signal (in the given example: signd 0).

-118-

2. Find swapped signals which are paired with the @mmon signal (signd 1 for parent O and
signd 2 for parent 1). In the case when the cmmon signal is an alone signal (is not
paired), the done signal is chasen.

3. Swap signals foundin the previous paint.

TR

parent O parent 1 offspring O offspring 1

Figure 6-5. An example of the aossover operation for option B

It shoud be noted that the common crossover signal can be selected onany layer of the
adder (except the top layer, which is atrivia case and therefore skipped). Besides, indices of
signals onthe upper layers for different parents may not correspondto ead ather, in the sense
of the real adders gructure. For example in Figure 6-5, signd 5 in parent 0 (S= $+9) is
different from signd 5in parent 1 (S= S +). This means that swapping the upper layers
adders often dsregards the rea conrections of the parents as indices of these alders are
assgned more or lessin arandam way. Therefore, to improve the dgorithm the indices of the
upper layer adders are assgned (sorted) according to the increase of the input index (the lower
index of two inpus). For example, for parent 1 in Figure 6-5, adder 5 has the lowest index on
the layer 1 because inpu O isthe lowest input index on the bottom layer. Sorting adder indices
improves correlation between parents, nevertheless the index of the upper layers adder in ore
parent often represents different addition than in the second parent. This means that swapping
is often achieved in arandam way, espedally when structure of parents differs sgnificantly.
It shoud be noted that for large alders dructure the relationship between index number and
its gructure is deaeasing, therefore for a large alders tree this crosover method is not
recommended (seeTable 6-8).

The change made by a single swapping is rather insignificant therefore, usualy 1-3

similar swapping operations are performed to oktain an off spring.

The ideabehind the modGA is that the dgorithm avoids leaving the exad copies of the
same ciromosomes in the new popdation, which may still happen acddentaly by other
means but is very unlikely [Mic92]. However, experiments proved that both ogion A and B

can produce an off spring identicd to its parents espedally if the parents are very similar. This

-119-

causes that severa copies of the same parents exist in the popuation, which deteriorates the
result. Therefore, to improve the modGA results, in the cae when an offspring is an exad
copy of the parent(s) (or differs insignificantly), the mutation is performed onthe offspring.
Therefore, in this approad, the alditional mutation operation prevents from obtaining the
exad copy of the parent during crosover operation and prohibits super-individuals from
dominating the popuation. It shoud be nated that in the nature, a specimen avoids to mate
with its relatives in arder not to produce similar gene offsprings. Moreover, similar solution
has been proposed by Maudlin [Mau84], where the mutation rate is changed according to the
degree of homogeneity of the diromosomes. The disadvantage of Maudlin's approadh is that
it requires additional computation time to evaluate the degree of the homogeneity. In this
approadh, however, detecting crossover diversity increases computation time insignificantly

asit isasciated dredly with the crossover operation.

6.6.5. Mutation

Crosover operation can orly explore the arrent gene potentia therefore, a mutation
operationisincluded to sportaneously generate new chromosomes. In ou approach, mutation
iscaried ou in asimilar way asfor the SA, i.e. by swapping two adders on the same layer.

Two dfferent mutation ogions has been implemented:

1. parent nonroverwriting mutation (NOM)
2. parent overwriting mutation (OM)

The NOM is asociated with the modGA selection operation as the number of new
chromosomes r generated in eadh generation, includes the number of new chromosomes
creaed duing mutation m. Therefore, randamly picked chromosomes (from the surviving
chromosomes) are mpied and the mutation is performed onthe cpy of the chromosomes.

The OM is caried ou in the standard way, i.e. every unchanged chromosome is
mutated with probabili ty pm,

Two dfferent mutation ogions have been implemented to allow proper popuation
development. In the case when only the OM is implemented, the high mutation ratio prohibits
super-individuals to grow as often probability of generating an dffspring which fitness is
comparable to the parent is very low — lower than mutation rate. Therefore, the best solution
is often generated rather in a randam way then based onthe genetic dgorithm properties and
the fitnessof the latest generationsis very often far from the best solution fitness Conversely,
low mutation ratio causes mutation to have insignificant influence on the result and therefore
deteriorates the result. Employing only NOM causes that super-individuals are dways copied
to the new generation withou any change (the fittest chromosome is sleded with probabili ty

-120-

equal 1) andtherefore the popuationis dominated by the super-individuals which may bein a
locd minimum. Consequently, the best solution is a wmbination d the NOM and OM.

Implementation results, given in Table 6-7, confirm this assumption.

circuit Pm=0,m=1| pn=0.26, m=1 | p,=10%, m=0
d) iter= 6k 393+2 39245 391+2
d) iter= 200k 392+4 38815 381+1
e) iter= 6k 1302+3 1303+2 131714
e) iter=200k | 129743 129242 1297+2
f) iter= 6k 3580+7 3580+6 3616+8
f) iter=200k | 345445 3455+4 3508+16

Table 6-7. Implementation results for different mutation solutions: only NOM, combination o
the NOM and OM, and othy OM; for crossover: option A

6.7. Implementation results

Table 6-8 shows implementation results for the different algorithms. The number of
iterations for the GP and SA is slected so that the calculation cost was roughly the same. It
can be seen from Table 6-8 that the SA solution gives usually the best results and the
crosover option A is a better solution in comparison to option B, especialy for more
complicaed circuits. Furthermore for option B and circuit f, the implementation results are

even so poa that the GrA initial solutionisthe best-foundsolutionfor up to 6kiterations.

Circuit) technique # iterations (GP/SA)

2001k 6k/30k 200K1M
d) option A 399+3 39245 388+5
d) option B 41242 392+4 3875
d) SA 394+3 385+1 382+1
€) option A 134146 1303+2 1292+2
€) option B 1358+0 1357+1 1297+4
e) SA 134610 1299+3 1292+4
f) option A 37137 3580+6 3455+4
f) option B 3730+0 3730+0 3645+26
f) SA 3702420 3338+14 3245+6

Table 6-8. Implementation results for different options of the GP, andfor the SA, for different
number of iterations

-121-

6.8. Conclusions

In this chapter, thorough analysis of adders tree a a part of the FIR filters has been
presented. Complex inpu parameters of the adders block have been considered: inpus range
(not only input width), inpu shifts and even the crrelation between inpus. Consequently,
finding an ogimal network of the adders treeis a cmplex task which has been investigated.
Different approaches: grealy algorithm, exhaustive seach, simulated anneding and genetic
programming have been implemented and the results given. Consequently, the GrA gives the
worst solution bu at very low cdculation cost. Conversely, the best solution is obtained by
chedking al possble solutionsin the ES, however the cdculation time is unaaceptable for the
number of inpus n greder than abou 12. Therefore, the Constrained Search (modification d
the ES) has been propased. For the CS, each layer of the aldition is considered, in some
degree separately. The CS checks alower number of solutions however the number increases
rapidly with growing n, and therefore, this lution can be implemented for the number of
inpus n lessthan abou 14 —insignificant improvement in comparison to the ES. Further, the
Simulated Anneding has been implemented. For small n, the SA usually finds the best
solution and requires much lower number of iterations in comparison to the ES. However, for
n<8, the ES seaches at most 315 solutions and therefore the cmputation cost is low.
Therefore for n<8 the ES solution shoud be implemented. For n=9, the ES goes through at
least 42 525solutions therefore the SA shoud be rather used.

The Genetic Programming is ancther design-approach which has been implemented.
The structure of the alder block is grictly defined and therefore the crossover procedure has
to copy parts of the parents in such a way that the child has a proper structure. This, however,
isdifficult to be adieved and therefore some parts of the off spring has to be routed to satisfy
the adder block constrains rather then to copy a structure of the parents. Two dfferent
crosover procedures have been implemented. Nevertheless at the same computation time,
the GP usually gives worse results than the SA. This conclusion is Smilar as presented by
McMahon [McM95] for scheduling problems and shows that for some problems the SA is

beneficial in comparison to the GP.

-122-

7. Conclusions

The design complexity of nowadays systems gimulates a strong demand for design
automated tools which are able to generate awide range of implementations and suppat
multiple parameters. The AuToCon is an example of such a system. The AuToCon takes
different inpu bit-width, convdution kernel size and coefficient values, and generates a
circuit searching through multiple achitedural solutions in order to find the best circuit.
Different speal options can be defined by the value of the pipeline parameter. This thesis
presents a novel synthesis approach for which FPGA resources are user-defined, which alows
for smooth migration from one device to another. Furthermore, by changing cost-relations
between the FPGA resources, different architedural solutions are obtained, as the AuToCon
seaches for the lowest cost architedure. For variable wefficient systems, reconfiguration
time is also a aucial fador that influences the achitecture and design cost, which has been
thoroughly studied.

The AuToCon explores FPGA device-spedfic fedures, eg. for ASICs LUT-based
multiplication a convdutionis very seldom adopted, additionis carried ou employing carry-
save alders, while for FPGAS, ripple-carry adders are the best solution and the LM may give
the best result. The AuToCon minimise the need for knowledge of low-level detail s, provided
that the FPGA resources and their structural, VHDL models have been orce suppgied for the
FPGA family. The system user has to orly enter convdution kernel size, coefficient values,
reconfiguration ogion and the pipelining parameter. Neverthelessin some projeds (e.g. when
amost all CLBs are occupied and till 1ot of large memory blocks are available), changing
cost-relation between FPGA resources (which requires rather the low-level knowledge) may
improve usage of FPGA resources. It shoud be noted that generated circuit is produced

automaticdly mostly within the time of a second Summing up, the thesis has been proved.

This thesis presents the AuToCon, havever detail ed description d the whole AuToCon
system is outside the scope of thisthesis. Only the most attractive fragments have been hereby
characterised. It shoud be however noted that most of the author research time has been spent
on cevelopment of the tangled and compli cated automated system.

Asapart of the reseach several novel architedural solutions have been developed, such
as modified CSD conwersion algorithm, usage of different memory modues for the LM and

-123-

IDAC, advance optimisation techniques for LMs, the Dual Port DKCM, extensive usage of
Multiplierless Multiplication in FPGAS, Irregular Distributed Arithmetic Convder, and trade-
off between the IDAC and Mullti plierlessConvder.

Chapter 2 reviews different computing madines implementing the @nvdution
operation. General-purpose processors and DSPs are the best solution for relatively low
computationally demanding processes. However, e.g. for red time high-resolution image
convdution and large kernels, the microprocesor approad is inadequate. Furthermore,
nowadays architedures of microprocesors are very sophisticaed and further development of
their complexity results in less and less sgnificant computation speed-up. ASICs are an
aternative solution, however, they suffer from long development time, high cost for
prototyping and low volume production, and at last but not least low design flexibility.
Conversdly, FPGAs are more and more commonly implemented in regions originally reserved
for DSPs or ASICs. Furthermore, FPGAS' density grow surpasss the @urterparts grow. As
aresult, thereis a strong demand for design automation toadls that speed-up design processfor
FPGAs. The presented automated tod is, therefore, a propasition for such a system.

Chapter 3 approaches the Constant Coefficient Multiplier (KCM) and dfferent
architedures performing the KCM, such as Multiplierless Multiplicaion (MM) and LUT-
based Multiplication (LM); a comparison d these two techniques is aso presented. Novel
architedural solutions have been introduced, such as the Modified CSD conversion algorithm;
usage of different memory modues for the LM together with the alvance optimisation
tedhniques. the LSBs Address Width Reduction, the Don't Care Address Width Reduction,
and the Memory Sharing. Furthermore, the full search algorithm compares all possble
solutions and the best solution for the given inpu parametersis taken.

Chapter 4 investigates multiplier architectures for which change of the wefficient is a
feasible design fador. Furthermore, a novel architedure of Dynamic Constant Coefficient
Multiplier (DKCM) with Dual Port memoriesis gudied. For this multiplier the multiplication
result is corrupted duing a dhange of the wefficient, howvever, the wrruptionis well defined
and may be acceptable in adaptive systems. Similarly like in Chapter 3, usage of different
memory modues is included into the full search agorithm. However the search spaceis
enlarged by additional DP memories, or single port memories and multi plexers trade off .

A convdution, lesicdly, can be arried ou as a sum of prodwcts, however, its
modificaion, LUT-based Convdution, for which adders within LMs and the final adder are
combine together, gives better results. Chapter 5 presents also the (parallel) Distributed
Arithmetic Convder, and its novel modificaion, the Irregular Distributed Arithmetic
Convder. The IDAC is an architectural solution which combines both the DAC and LC in

-124-

such a way that the resultant circuit is at the lowest cost. A novel optimisation algorithm,
which finds the optimal IDAC circuit, has been aso presented. The Multiplierless
Convdution is an dternative solution to the IDAC. The MC is smilar to the Multiplierless
Multiplication, havever more sophisticaed methods are involved, such as substructure
sharing between dfferent coefficients or pipeline optimisation. Furthermore, the nowel
algorithm trading-off between the MC and IDAC has been developed. As a result, each
individual coefficient can be implemented employing either the MC or IDAC.

Chapter 6 describes optimisation techniques for adders tree. Different techniques sich
as. Grealy Algorithm, Exhaustive Seach, Simulated Anneding and Genetic Programming
have been implemented. As aresult, Greedy Algorithm is the quickest, however better results
can be obtained for more cmplex algorithms. The ES is, therefore, recommended for number
of inpus n<8 becaise computation requirements for such an adders block are rather low, and
the SA isrecmmmended for n>9.

In conclusion, the implementation results proved that the AuToCon ouperforms

comparable aitomated todls.

Suggestions for further work

The AuToCon takes into accourt a grea number of parameters. However, additional
parameters can be still defined. For example, the AuToCon implements only bit-parall e
arithmetic, and in some gplicaions a bit-serial [Hes96], or midde-way between hit-parall el
and Lt-seria architedure [Pas01] can hand e the design requirements. The later solution may
be used instead o the lowly pipeline (large value of the pipeline parameter p) architedures.

Conwversely, in some caes even fully pipelined hbit-parall el circuit canna cope with high
frequency requirements. In this case two o more paralel filters dioud be implemented.
However additional areareduction is obtained by employing reduced-complexity parallel FIR
filters[Par97].

For multi pliers, the best-possble arcuit (under the given design condtions) is generated
by the exhaustive search agorithm. However, a cnvdution circuit is much more complex
and requires heuristics. In this thesis mostly greedy algorithm has been implemented.
However better priority queues for the greedy algorithms might be found Besides more
sophisticaed optimisation tedhniques sioud be dso considered (similar like for the adders
tree. In order to kegp AuToCon computation requirements at low level, trade-off between the
IDAC and MC is based on the estimated cost for a convder. However, the AuToCon is

-125-

relatively quick (in most cases the convder is generated within the time of a second), and
therefore the trade-off algorithm might be based onthe adual circuit cost.

FPGAs evolve and rew FPGA resources are introduwced. For example, recently
introduced Virtex II family incorporates larger BSRs, and greater variety of small
(distributed) memory modues. Becaise FPGA resources are the inpu parameters to the
AuToCon, these new resources can be quickly included while seaching for the optimal
architedure. Nevertheless Virtex 1l incorporates also new dedicated 18x18 fully functional
multi pliers, which makes DKCMs less attradive than for Virtex. In the case of the mnstant
coefficient option, the KCM occupies lesschip area, and therefore the standard KCM can be
still employed especially when the width of the multiplier is dhort. The AuToCon might aso
map the 18x18 multiplier as a virtua 2'®x36 memory, consequently more mmplex
coefficients (containing large number of non-zero CSD hits) might be implemented in the
built-in multi pli ers and the rest of the efficient in the CLBs or BSRs. However this requires

additional changesin the AuToCon and analysing implementation results.

The AuToCon takes little dtention d design routing. An assumption is made that a
place ad route program can dothe job. However routing optimisation shoud be mnsidered

in the next step espedally for the substructure sharing and optimisation d the alders block.

Redisation d the FIR filters uses inputs and coefficients values diredly, which requires
full-length multipliers and adders. However, differential coefficients and inpus method
[Cha00] might be implemented. This method wses differential coefficients to multiply with
inpus and compensates the effect of differential coefficients by adding the product of the
previous computation. Since differential coefficients have shorter word length, the resulting
design can use shorter word length. Similar effect is obtained for differential input, when the

range of the diff erence between two conseautive inpus is snall er than the origina inpu.

For standard pipelining designs, the dock frequency is constrained by the maximum
delay time between consecutive flip-flops. However wave pipelining [Boe98] might be
implemented for which minimum clock period is limited by the difference between the
maximum and minimum path delay plus the dock skew, the rise/fall time and the setup time
of the registers. The difference between maximum and minimum delay can be further reduced

by aplace ad route program.

-126-

Ripple-cary adders are asumed to be the best solution. Nevertheless for long adders
the cary propagation celay can significantly slow down the design throughpu. Consequently,
a splitti ng of long adders into several parts (applying the hybrid pipelining as for FPGAs and
ASICs) is suggested. The next design step might be aitomatic optimisation o the adders tree
for which long adder splitti ng is implemented.

The AuToCon might be included to a hardware/software @-design system [Sta97] e.g.
in the RACE [Smi96]. Consequently, the system might automatically deted convdution
loopsin e.g. C-language, and implement the most computationally demanding task in a FPGA
rather than in a microprocessor. In the murse of this work, different architectures have been
compared, and FPGAs are the most promising architedural solution for high-speed
convdution. Therefore such a system may be afundamental solution for tomorrow’ s systems.
Furthermore the AuToCon might be included into an adaptive system for which dynamic

change of the efficients or even the kernel sizeis all owed.

The auithor has designed and developed a general-purpose FPGA board with three
XC401CE up to XC402%FE chips, on ba@ard SRAM memory and the PCI interface A more
detail ed description d this board is outside the scope of this thesis. Consequently, a range of
red time image @mnvdutions has been implemented. Nevertheless the AuToCon allows for
implementation d different agorithms: eg. part of artificia neural networks, etc.
Furthermore, the next design step might be development of a system that will automaticaly
generate neural networks. The most esential advantage of such a system (in comparison to
the ASIC solutions) might be adynamic change goplied to na only the weights but also to the
network structure while learning processis in progress The system may exploit the fad that

most of weights might be equal zero and therefore need nd be implemented.

-127-

Appendix A.
Brief description of the AuToCon

The Automated Tod for generation 2dimentional Convders implemented in FPGAs

(AuToCon) basically consists of two segments:

» C++ program which reads inpu parameters from file ‘ param.txt’ and VHDL-li ke template
files and generates the final VHDL (text) files.

* Predefined VHDL files which describe FPGA implementation d the fundamental
elements used in the design, such as RAMSs, adders, etc. Besides discription d regular
blocksisincluded, e.g. RAM programming unit.

Design flow is ill ustrated in Figure A-1. The AuToCon generates also a VHDL test bench,

therefore the generated circuit can be aitomaticaly simulated, and a design error detected and

reported.

inpu parameters

!

VHDL-like templates ==> C++ program

H VHDL
Predefined VHDL fil es==> VHDL simulation

!

FPGA implementation

Time
simulation

Figure A-1. Typical designflow

I nput parameters

The following inpu parameters can be defined in ‘ param.txt’ file:
min_dn—minimum inpu value
max_din — maximum inpu value
ram — defines whether constant (ram=0) or dynamic (ram=1) circuit isimplemented
coeff — coefficient value(s)

min_coeff — minimum coefficient value (applicable only for ram=1)

-128-

max_coeff — maximum coefficient value (applicable only for ram=1)

SzeCoeffX — haizontal kernel size

SzeCoeffY — verticd kernel size

SymnetryX — filter horizontal symmetry: 1- symmetry, 0- no symmetry, -1 —asymmetry

SymnetryY - filter verticd symmetry: 1- symmetry, O - no symmetry, -1 —asymmetry

SymmetryP —filter point symmetry: 1- point symmetry, O- no symmetry

pipeline — defines maximum number of logic dements between two subsequent pipelining
flip-flops

InsertRegistersin —insert flip-fli ps at the inpu of the convder/multi plier

InsertRegister Out —insert flip-flops at the output of the convder/multi plier

InsertCe — insert clock enable signal to make the drcuit inactive for clock cycles, this sgna
might be required e.g. during blank cycles when the image isinadive

SmulationLength — the number of simulation cycles. The smaller number, the shorter
simulationtime but an design error islesslikely to be deteded

clock— period d the dock (needed for time simulation orly)

LineWidth — external line buffers length, needed for simulation orly; during implementation
line buffers are external blocks inserted by the designer (line buffers of any length can
be attomaticadly generated by e.g. Core Generator [Xil99a]). This alows to perform
e.g. sum-of-products operation when SzeCoeffX=1 and SzeCoeffY defines the number

of products.

FPGA resour ces declaration

Flip-flops

CostFF — defines cost of asingle D-type flip-flop

Adders

CostAdd — defines cost of the adder separately for different adders widths

Memory

Mem initialisation d memory entity

No memory identification number (the same & used duing VHDL entity dedaration)
= segparator

MemorySize memory size declaration (k - 1024and M= 1024kis accepted)

x separator

DataWidth data bus width dedaration (must be power of 2 for multi pli ers)

DP/SP type of memory Dual Port/ Single Port

DataWidthDP datawidth of the second pat (for DP, shoud be the same & DataWidth)

-129-

S/A (a)synchronows memory reading (no flip flops need to be inserted) (writing is aways
synchronous - or the RAM programming unit has to be modified)

cost cost of the single block

Example:
Meml= 16x1SPA1 - 16x1 dstributed memory for XC4000Virtex, cost of memory equals 1
LE.

Communication between C++ and predefined VHDL files

C++ program generates VHDL files (C-VHDL) which describe a convder mostly at
structural domain. However, the C-VHDL files do nd refer to any low-level structure of a
FPGA, these files refers to the entities defined in the predefined VHDL files. Consequently
the user can define the final structure of the alders or memory blocks, etc. in the predefined
VHDL files. Furthermore, the pre-defined VHDL files can refer to pre-synthesised modues
or modues which have been generated using different design entry methoddogy, e.g.
modues generated by Core Generator [Xil99a], schematic dements.

Example of convoler design given in Figqure 5-8.

Input parameters (param.txt file)
CostMux2= 0 CostFF= 10

CostAdd=
10 20 30 40 50 60 70 80
90 100 110 120 130 140 150 160

170 180 190 200 210 220 230 240
250 260 270 280 290 300 310 320
330 340 350 360 370 380 390 400
410 420 430 440 450 460 470 480

Mem0= 2x1SPAO

Meml= 16x1SPA10

Mem2= 32x1SPA20

Mem3= 16x1DP1A20

Linewidth= 16 InsertCe=0

clock= 50rs SimulationLength= 50
InsertRegistersin= 1 InsertRegistersOut= 1
pipeline=100 ram= 0

SymmetryX=0 SymmetryY =0 SymmetryP=0
SizeCoeffX=8 SizeCoeffY=1
max_din=15min_dn=0

coeff=

59 183 162 -7 -48 12 9 2

A fragment of the predefined VHDL file, the description of the adder block.

ThisVHDL code can be alited to define adifferent adder structure.
-- Addition dout<= dinl + dinQ;

library IEEE
use IEEEstd_logic_arith.all;

-130-

use IEEEstd_logic_1164.all;

entity adder is
generic(width_din0: integer:= 4; -- input width of the first input
width_dnZ1: integer:= 4; -- input width of the second input
width_dout: integer:= 5; -- input of the output
sign: integer:= 0; -- encoded sign of the first and second input and operation (adder, subtractor)
shift_dinO: integer:= 0); -- shifting o thefirst input to the left
port (din0: in ursigned(width_din0-1 downto 0); -- the first input
dinl: in unsigned(width_din1-1 downto 0); -- the second input
dout: out unsigned(width_dout-1 downto 0)); -- the output
end adder;

architecure alder_arch of adder is
constant width_dinOsh: integer:= width_dn0 + shift_dinO; -- width of the first input after shifting
signa dinOsh: unsigned(width_dinO+shift_din0-1 downto 0); -- dedaration of the shifted din0 signal
signal dinOu, dinlu: unsigned(width_dout-1 downto 0); -- input signals for which MSBs arefill width Osor 1s
begin
-- shifting dn0 signal if shift_din0
dinOsh(width_dinOsh-1 downto shift_din0)<= dinG;
shiftl:
if shift_dinO > 0 generate
dinOsh(shift_din0-1 downto O)<= conv_unsigned(0, shift_din0); -- fill with zeros
end generate;

i0g: if width_dinOsh > width_dout generate -- the width of dinOis greater than the width of dout (unusual case)
dinOu(width_dout-1 downto 0)<= dinOsh(width_dout-1 downto 0);
end generate;
-- filling MSBs of din0 with either Os or sign
i0a: if width_dinOsh <= width_dout generate
dinOu(width_dinOsh-1 downto 0)<= dinOsh;
i0: if width_dinOsh<width_dout generate -- fill MSBs with either zeros or sign
i0f: for i in width_dinOsh to width_dout-1 generate -- for evey not assgned MSB
iOu: if sign=0 or sign=2 or sign=4 or sign=6 generate -- din0is unsigned
dinOu(i)<="0";
end generate;
i0s: if sign=1 or sign=3 or sign=5 or sign=7 generate -- din0 is sgned
dinOu(i)<= dinOsh(width_dinOsh-1); -- sign hit
end generate;
end generate; end generate; end generate;

i1g: if width_dinl > width_dout generate -- unsual case - the width of the adder is reduced
dinlu(width_dout-1 dawvnto 0)<= din1(width_dout-1 dowvnto 0);
end generate;
-- filling MSBs of dinl with either Os or sign
ila if width_dinl <= width_dout generate
dinlu(width_dinl-1 downto Q)<=dinl;
i1 if width_dinl<width_dout generate -- fill MSBs with either zeros or sign
i1f: for i in width_dinl to width_dout-1 generate -- for evey not assgned MSB
ilu if sign=0 or sign=1 or sign=4 or sign=>5 generate -- dinlisunsigned
dinlu(i)<="0}
end generate;
ils: if Sign=2 or sign=3 or sign=6 or sign=7 generate -- dinlis sgned
dinlu(i)<=dinl(width_dinl-1); -- sign Lt
end generate;
end generate; end generate; end generate;

-- insert adder
a if sign<=3 generate

dout<= dinOu + dinly;
end generate;

-- insert subtractor
s: if sign>=4 generate
dout<=dinOu - dinluy;
end generate;
end adder_arch;

-131-

An example of VHDL -like templates

The C program reads the following file in order to generate an adders tree description
(e.g. entity as2, ac3 or a). The final adders tree description is combination d the VHDL-like
template and text inserted by the C program. The procedure is as follows. The C program
reads the VHDL template file and copies diredly fragments of between ‘# symbad.
Whenever ‘# symbd is found,the C program inserts variable (depending on the AuToCon

inpu parameters) text.

library IEEE
use IEEEstd_logic_arith.all;
use IEEEstd_logic_1164.dll;

entity #1is

port(clk, ce in std_logic;
daut: out unsigned(# downto 0));
end#

architedure# _arch of #is
comporent adder
generic(width_dinO: integer;
width_dnZl: integer;
width_dout: integer;
sign: integer;
shift_dinO: integer);
port (din0: in ursigned(width_din0O-1 downto 0);
dinl: in unsigned(width_din1-1 downto 0);
dout: out unsigned(width_dout-1 downto 0));
end comporent;
comporent ffg—flip flops
generic(width: integer);
port(clk, ce in std_logic;
din: in ursigned(width-1 downto 0);
dout: out unsigned(width-1 downto 0));
end comporent;

type ar isarray (# dowvnto 0) of unsigned(# downto 0);
signal ff_ou, add_out, done: arr;

begin
#
end#_arch;

Thefinal VHDL description generated by the C program

Adder D9 in Figure 5-8.
library |IEEE,
use |IEEEstd_logic_arith.all;
use IEEEstd_logic_1164.dll;

entity as is
port(clk, ce in std_logic;
dinO: in unsigned(3 downto 0);
dinl: in unsigned(3 downto 0);
dout: out unsigned(9 downto 0));
end as;

architedure a<2_arch of as is
[...] components dedaration

type ar isarray (3 dowvnto 0) of unsigned(9 downto 0);
signal ff_ou, add_out, done: arr;

begin

-132-

ff_ou(0)(3 downto 0)<= din0; -- shift= 0, min= 0, max= 15, correl= -1, add

ff_ou(1)(3 downto 0)<= dinl; -- shift= 5, min= -15, max= 0, correl= -1, subtract

--levé of logic= 0

ff_ou(0)(4)<="0"; -- dinl isonly negated

add_out(2)(4 downto 4)<= conv_unsigned(0, 1);

add2: adder

generic map (width_dn0=>1, width_din1=>4, width_dout=>5, sign=>4, shift_din0=>0)

port map(din0=>ff_ouw(0)(4 downnto 4), din1=>ff _ou(1)(3 downto 0), dout=>add_out(2)(9 downto 5));
add_out(2)(4 downto 0)<=ff_out(0)(4 downto 0);

ff_ou(2)(9 downto 0)<= add_out(2)(9 downto 0);

dout<=ff_ou(2);
endas2_arch;

Adder D8 in Figure 5-8.
library IEEE
use IEEEstd_logic_arith.all;
use |IEEEstd_logic_1164.all;

entity ac3 is
port(clk, ce in std_logic;
dinO: in unsigned(3 downto 0);
dinl: in unsigned(3 downto 0);
dout: out unsigned(6 downto 0));
end ac3;

architedure a@_arch of ac3 is
[...] components dedaration
type ar isarray (3 dowvnto 0) of unsigned(6 downto 0);
signa ff_ou, add_out, adone: arr;

begin
ff_ou(0)(3 downto 0)<= dinO; -- shift= 2, min= -15, max= 0, correl= -1, subtract
ff_ou(1)(3 downto 0)<= din1; -- shift= 0, min= 0, max= 15, correl= -1, add
--leve of logic= 0
add2: adder
generic map (width_dn0=>2, width_din1=>4, width_dout=>5, sign=>4, shift_din0=>0)
port map(din0=>ff_ou(1)(3 downto 2), din1=>ff _ou(0)(3 downto 0), dout=>add_out(2)(6 downto 2));
add_out(2)(1 downto Q)<= ff_ou(1)(1 downto 0);
ff_ou(2)(6 downto 0)<= add_out(2)(6 downto 0);

dout<=ff_ou(2);
endac3_arch;

The final adder

library IEEE
use IEEEstd_logic_arith.all;
use IEEEstd_logic_1164.dll;

entity a is
port(clk, ce in std_logic;
dinO: in unsigned(9 downto 0);
dinl: in unsigned(9 downto 0);
din2: in unsigned(3 downto 0);
din3: in unsigned(3 downto 0);
din4: in unsigned(3 downto 0);
din5: in unsigned(3 downto 0);
din6: in unsigned(3 downto 0);
din7: in unsigned(3 downto 0);
din8: in unsigned(3 downto 0);
din9: in unsigned(10 downto 0);
dinl0: in ursigned(1 downto 0);
dinll: in ursigned(7 downto 0);
din12 in ursigned(1 downto 0);
dinl13: in ursigned(2 downto 0);
dout: out unsigned(13 downto 0));

endal,

architedure d_arch of d is

-133-

[...] components dedaration
type ar isarray (27 dovnto 0) of unsigned(13 downto 0O);
signa ff_ou, add_out, aone: arr;

begin
ff_ou(0)(9 downto 0)<= din0; -- shift= 0, min= -15, max= 480, correl= -2, subtract
ff_ou(21)(9 downto 0)<= din1; -- shift= 2, min= -15, max= 480, correl= -2, subtract
ff_ou(2)(3 downto 0)<= din2; -- shift= 6, min= 0, max= 15, correl= -1 (no corr elation), add
ff_ou(3)(3 downto 0)<= din3; -- shift= 1, min= 0, max= 15, correl= -1, add
ff_ou(4)(3 downto 0)<= din4; -- shift= 0, min= 0, max= 15, correl= -3, add
ff_ou(5)(3 downto 0)<= din5; -- shift= 3, min= -15, max= 0, correl= -3, subtract
ff_ou(6)(3 downto 0)<= din6; -- shift= 0, min= 0, max= 15, correl= -4, add
ff_ou(7)(3 downto 0)<= din7; -- shift= 3, min= 0, max= 15, correl= -4, add
ff_ou(8)(3 downto 0)<= ding; -- shift= 1, min= 0, max= 15, correl= -1, add

ff_ou(9)(10 downto 0)<=din9; -- shift= 0, min= 0, max= 1293, correl= 13, add, min_cor= -720, max_cor= 2925

ff_ou(10)(1 downto)<= dinl0; -- shift= 3, min= 0, max= 3, correl= 13, add, min_cor= -720, max_cor= 1632

ff_ou(11)(7 downto 0)<= dinll; -- shift= 3, min= 0, max= 225, correl= 13, add, min_cor= -720, max_cor= 1608

ff_ou(12)(1 downto 0)<= din12; -- shift= 7, min= 0, max= 3, correl= 13, add, min_cor= -768, max_cor= 0
ff_ou(13)(2 downto 0)<= dinl3; -- shift= 8, min= -3, max= 0, correl= -1, add

--levé of logic= 0

add14: adder

generic map (width_dn0=>4, width_din1=>4, width_dout=>5, sign=>0, shift_din0=>0)

port map(din0=>ff_ouw(4)(3 downto 0), din1=>ff _ou(6)(3 downto 0), dout=>add_out(14)(4 downto 0));
ff_out(14)(4 downto 0)<= add_out(14)(4 downto 0);

add15: adder

generic map (width_dn0=>4, width_din1=>10, width_dout=>10, sign=>6, shift_din0=>1)

port map(din0=>ff_ou(3)(3 dawvnto 0), din1=>ff_ou(0)(9 downto 0), dout=>add_out(15)(9 downto 0));
ff_ouw(15)(9 downto 0)<= add_out(15)(9 downto 0);

add16: adder

generic map (width_dn0=>10, width_din1=>4, width_dout=>10, sign=>0, shift_din0=>0)

port map(din0=>ff_ou(9)(10 downto 1), din1=>ff_ou(8)(3 dawvnto 0), dout=>add_out(16)(10 dowvnto 1));
add_out(16)(0 downto 0)<=ff_out(9)(0 downto 0);

ff_ou(16)(10 dawvnto 0)<= add_out(16)(10 downto 0);

add17: adder

generic map (width_dn0=>2, width_din1=>10, width_dout=>10, sign=>6, shift_din0=>1)

port map(din0=>ff_ou(10)(1 downto 0), din1=>ff _ou(1)(9 dowvnto 0), dout=>add_out(17)(9 downto 0));
ff_ouw(17)(9 downto 0)<= add_out(17)(9 downto 0);

add18: adder

generic map (width_dn0=>4, width_din1=>4, width_dout=>5, sign=>4, shift_din0=>0)

port map(din0=>ff_ou(7)(3 downto 0), din1=>ff _ou(5)(3 downto 0), dout=>add_out(18)(4 downto 0));
ff_ou(18)(4 downto O)<= add_out(18)(4 downto 0);

add19: adder

generic map (width_dn0=>4, width_din1=>2, width_dout=>5, sign=>0, shift_din0=>0)

port map(din0=>ff_ou(11)(7 downto 4), din1=>ff _ou(12)(1 downto 0), dout=>add out(19)(8 dawnto 4));
add_out(19)(3 downto 0)<=ff_out(11)(3 downto 0);

ff_ouw(19)(8 downto O)<= add_out(19)(8 downto 0);

add20: adder

generic map (width_dn0=>2, width_din1=>3, width_dout=>3, sign=>2, shift_din0=>0)

port map(din0=>ff_ou(2)(3 downto 2), din1=>ff _ou(13)(2 dowvnto 0), dout=>add_out(20)(4 downto 2));
add_out(20)(1 downto O)<= ff_ou(2)(1 downto 0);

ff_ouw(20)(4 downto 0)<= add_out(20)(4 downto 0);

--leve of logic= 1

add21: adder

generic map (width_dn0=>5, width_din1=>11, width_dout=>11, sign=>0, shift_din0=>0)

port map(din0=>ff_out(14)(4 downto 0), din1=>ff _ou(16)(10 downto 0), dout=>add_out(21)(10 downto 0));
ff_ou(21)(10 davnto 0)<= add_out(21)(10 downto 0);

add22: adder

generic map (width_dn0=>7, width_din1=>5, width_dout=>8, sign=>3, shift_din0=>0)

port map(din0=>ff_out(15)(9 downto 3), din1=>ff ou(18)(4 downto 0), dout=>add out(22)(10 downto 3));
add_out(22)(2 downto 0)<=ff_out(15)(2 downto 0);

ff_ouw(22)(10 dawnto 0)<= add_out(22)(10 downto 0);

- 134-

add23: adder

generic map (width_dn0=>6, width_din1=>5, width_dout=>7, sign=>3, shift_din0=>0)

port map(din0=>ff_ouw(17)(9 downto 4), din1=>ff _ou(20)(4 downto 0), dout=>add _out(23)(10 downto 4));
add_out(23)(3 downto 0)<=ff_ou(17)(3 downto 0);

ff_ou(23)(10 dawvnto 0)<= add_out(23)(10 downto 0);

--leve of logic= 2

add24: adder

generic map (width_dn0=>11, width_din1=>11, width_dout=>12, sign=>2, shift_din0=>0)

port map(din0=>ff_ouw(21)(10 davnto 0), din1=>ff_ouw(22)(10 downto 0), dout=>add_out(24)(11 downto 0));
ff_ou(24)(11 dawvnto 0)<= add_out(24)(11 downto 0);

add25: adder

generic map (width_dn0=>10, width_din1=>9, width_dout=>11, sign=>1, shift_din0=>0)

port map(din0=>ff_ouw(23)(10 davnto 1), din1=>ff_ouw(19)(8 downto 0), dout=>add_out(25)(11 downto 1));
add_out(25)(0 downto 0)<= ff_out(23)(0 downto 0);

ff_ou(25)(11 dawvnto 0)<= add_out(25)(11 downto 0);

--leve of logic= 3

add26: adder

generic map (width_dn0=>10, width_din1=>12, width_dout=>12, sign=>3, shift_din0=>0)

port map(din0=>ff_ouw(24)(11 davnto 2), din1=>ff_ouw(25)(11 downto 0), dout=>add_out(26)(13 downto 2));
add_out(26)(1 downto Q)<= ff_ou(24)(1 downto 0);

ff_ou(26)(13 dawvnto 0)<= add_out(26)(13 downto 0);

dout<= ff_ou(26);

enda_arch;

The final circuit description

library IEEE
use IEEEstd_logic_arith.all;
use IEEEstd_logic_1164.dll;

entity conv is
port(clk: in std_logic;
din0: in std_logic_vedor(3 downto 0); -- input data (for different lines)
dout: out std_logic_vedor (13 davnto 0)); --output

end conv;

architedure @wnv_arch of conv is
constant width_din: integer:= 4; -- width of din
constant width_dout: integer:= 14; -- width of dout

[...] components dedaration
function my_conv_unsigned(din: std_logic_vedor) return unsigned is— convert std_logic to unsigned
variable dout: unsigned(din'range);
begin

for i in dn'range loop
dout(i):= din(i);

end loop;

return dout;
end;

type dinu_arr isarray(0 dowvnto 0) of unsigned(width_din-1 downto 0); -- input converted to ursigned
signd dinu: dinu_arr;

type data_arr is array(14 downto 0) of unsigned(width_dout-1 downto 0);-- data for adders and DAs
signal data: data_arr;

signal douta, douitff: unsigned(width_dout-1 downto 0);

signal zero, one: std_logic;

signal ce std_logic;

begin
zeo<='0'; one<='1,
dout<= conv_std_logic_vedor(doutff, width_dout);
ce<='1}

--line0
dinu(0)(3 dawvnto 0)<=my_conv_ursigned(din0);

-135-

ffd0: ffg generic map (width_din)

port map (clk, ce, dinu(0), data(0)(width_din-1 downto 0));

ff1: ffg generic map (width=>4)

port map(clk=>dk, ce=>ce, din=>data(0)(3 downto 0), dout=> data(1)(3 downto 0));
ff2: ffg generic map (width=>4)

port map(clk=>dk, ce=>ce, din=>data(1)(3 downto 0), dout=> data(2)(3 downto 0));
ff3: ffg generic map (width=>4)

port map(clk=>dk, ce=>ce, din=>data(2)(3 downto 0), dout=> data(3)(3 downto 0));
ff4: ffg generic map (width=>4)

port map(clk=>dk, ce=>ce, din=>data(3)(3 downto 0), dout=> data(4)(3 downto 0));
ff5: ffg generic map (width=>4)

port map(clk=>dk, ce=>ce, din=>data(4)(3 downto 0), dout=> data(5)(3 downto 0));
ff6: ffg generic map (width=>4)

port map(clk=>dk, ce=>ce, din=>data(5)(3 downto 0), dout=> data(6)(3 downto 0));
ff7: ffg generic map (width=>4)

port map(clk=>dk, ce=>ce, din=>data(6)(3 downto 0), dout=> data(7)(3 downto 0));

-- Adders and DAs
aB: as
port map(clk, ce, data(0)(3 downto 0), data(2)(3 dowvnto 0), data(8)(9 downto 0));

a9: ac3
port map(clk, ce, data(4)(3 downto 0), data(5)(3 davnto 0), data(9)(6 downto 0));

d10: dadg generic map(-- output shift= 0

coeffO=> 183, coeff 1=> 366, coeff2=> 12, coeff 3=> 732, width_dout=> 11, insert_ff=> 0)

port map (clk=>dk, ce=>ce,

din0=> data(1)(0), din1=> data(1)(1), din2=> data(9)(0), din3=> data(1)(2), dout=> data(10)(10 downto 0));
d11: dalg generic map(-- output shift= 3

coeffO=> 3, width_dout=> 2, insert_ff=> Q)

port map (clk=>clk, ce=>ce,

din0=> data(9)(1), dout=> data(11)(1 downto Q));

d12: dadg generic map(-- output shift= 3

coeff0=> 183 coeff 1=> 6, coeff2=> 12, coeff3=> 24, width_dout=> 8, insert_ff=> 0)

port map (clk=>dk, ce=>ce,

din0=> data(1)(3), din1=> data(9)(2), din2=> data(9)(3), din3=> data(9)(4), dout=> data(12)(7 downto 0));
d13: dalg generic map(-- output shift= 7

coeff0=> 3, width_dout=> 2, insert_ff=> Q)

port map (clk=>clk, ce=>ce,

din0=> data(9)(5), dout=> data(13)(1 downto Q));

d14: dalg generic map(-- output shift= 8

coeffO0=> -3, width_dout=> 3, insert_ff=> 0)

port map (clk=>dk, ce=>ce,

din0=> data(9)(6), dout=> data(14)(2 downto 0));

ad

port map(clk, ce data(8)(9 downto 0), data(8)(9 dowvnto 0), data(0)(3 downto 0), data(2)(3 dowvnto 0),
data(3)(3 downto 0), data(3)(3 dowvnto 0), data(6)(3 downto 0), data(6)(3 downto 0),

data(7)(3 downto 0), data(10)(10 downto 0), data(11)(1 downto 0), data(12)(7 downto 0),

data(13)(1 downto 0), data(14)(2 downto 0), douta(13 downto 0));

ffout: ffg generic map (14)

port map (clk, ce, douta(13 downto 0), doutff(13 davnto 0));

end conv_arch;

-136-

References

[Aar89] Aarts, E.H., Korst, J. Smulated Annealing andBoltzman Machines, Wil ey, Chichester, UK, 1989

[AIt99] Altera Co. Apex20K Programmable Logic Device Family, Data Shed, ver 2.05, Nov. 1999.

[Ana99] Analog Devices TigerSHARC DSP Microcomputer, Preliminary Tedhnical Data ADSP-TS1, Analog
Devices, http://www.analog.com, Dec. 1999

[And95 Anderson D., Shanley T. Pentium Processor System Architedure. Addision-Wesley 1995

[Ayt95] Aytekin T., Korkmaz E.E. Guvernir H.A. An Appli cation of Genetic Programning to the 4-Op Problem
using Map-Trees, pp.28-40 in Xin Yao Progress in Evolutionary Computation, Seleded Papers on
Al 93 nal Al’ 94 Workshops on Evolutionary Computation, Springer, Berlin, 19%.

[Boe98] Boemo E.I., LopezBuedo S., Meneses JM., Sane Experiments Abou Wave Pipelining on FPGA'’s,
IEEETrans. on VLS| Systems, vol. 6, no. 2, June 1998.

[Bos99] Bos B., Bois G., Savaria Y., Remnfigurable Pipelined 2-D Convolers for Fast Digital Sgnd
Processng, IEEETrans. on VLS| Systems, vol. 7, no. 3, pp. 299-308 Sep. 1999.

[Bra97] Bramer B., Chauhan D., lbrahim M.K., Aggoun A. Virtual Radix Array Processors (V-RaAP), 7-th
International Workshop, FPL’97, London, UK, September 1-3, 1997, pp. 354-363in [Luk97].

[Bre97] Brey B. B. The Intel Microprocesors. Prentice-Hall 1997

[Bur77] Burrus C.S.: Digital filter structure described by arithmetic, IEEE transadion on Circuits and systems,
pp. 674-680, 1977

[Cas96] Castleman, K. R.: Digital Image Processng. Prentice Hall 1996

[Cha93] ChatterjeeA., Roy R.K., d' Abreu M.A., Grealy hardware optimisation for linear digital circuits using
number splitti ng ard refactorization IEEE Trans. VLS Syst., val. 1, pp. 423-431, Dec1993.

[Cha94] Chapman K. Fast Integer Multiplier fit in FPGA’'s, EDN 1993 Design Idea Winner, END May 12"
1994

[Chag96] Chapman K. Constant Coefficient Multipliers for the XC400CE. Xilinx Applicaion Note, XAPP 054
December 1996

[Cha0Q] Chang T.S., Chu Y.H., Jen C.W., Low-Power Filter Realisation with Differential Coefficients and
Inpus, IEEE Trans. on Circuits and Systems I, vol. 47, no. 2, Feb 2000

[Cho93 Chou C.J., Mohanakrishnan S., Evans J.B., FPGA Implementation d digital filters Proc. Int. Conf.
Signal Proc. Appl. & Tech. 1993.

[Cor94] Cormen T.H., Leiserson C.E., Rivest R.L. Intoduction to Algorithms Massachusetts Institute of
Tednology, 1994

[DeH98] DeHon A. Comparing Computing Machines, SAE Conference on Configurable Computing,
Tednology and Applicaions, Boston, Massachusetts, Nov 1998

[Dic9g] Dick R.P., Jna N.K., MOGAC: A Multiobjedive Genetic Algorithm for Hardware-Sdtware Cosynthesis
of Distributed Embedded Systems, IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, vol. 17, no. 10, pp. 920-935, Oct. 1998.

-137-

[Do9g Do T.T. Reuter C., Pirsch P. Alternative approaches implementing high-performance FIR filters on
lookup table-based FPGAs. A comparison. SPIE Conference on Configurable Computing and
Applicaions, Boston, Massachusetts, pp. 248254, 2-3 Nov. 1998

[Eva94] Evans J.B., Effiedent FIR Hilter Architectures Sutable for FPGA Implementation, IEEE Trans. Circuit
& Systems, July 1994

[Ele98] ElesP., Kuchcinski K., Peng Z. System Synthesis with VHDL Kluwer Academic Publ. 1998

[Eve98] Evers M., Patel S. J., Chappell R. S., and Patt Y.N, Analysis of Correlation andPredictability: What
Makes Two-Levd Branch Predictors Work, Procealings of the 25th International Symposium on
Computer Architecure, Barcdona, June 1998

[Fly66] Flynn M. J. Very High-Speed Computing Systems. Proc. IEEE, Vol 54, New York 1966 Nr 12

[Gar65] Garner H. Number Systems and Arithmetic, Advancesin Computing, vol. 6, pp. 131-194, 1965

[Gol89] Goldberg D.E. Genetic Algorithms in Search Optimisation & Machine Learning, Addison-Wesley,
Massachusetts, 1989

[Gon87] Gonzdez R. , Wintz P., Digital Image Processng, Addision-Wesley 1987,

[Gre97] Greenfield D., Crome C., Won M.S., Amos D., Anharcing Fixed Point DSP Processor Performance by
addng CPLD’s as Coprocessng Elements, 7-th International Workshop, FPL’97, London, UK,
September 1-3, 1997, pp. 354-363in [Luk97].

[Gup97] GuptaR.K., Zorian Y ., Introducing Core-Based System Design, IEEE Design & Test of Computers, pp.
15-25, Oct.-Dec 1997.

[Har90] Harley R., Corbet P., Digit-serial processng techniques IEEE Trans. On Circuits and Systems, Vol. 37,
no. 6, pp. 707-719, June 1990

[Har94] Harris Inc., Digital Sgnal Processng - Databook, Harris Semicondador Inc., 1994

[Har96] Hartley R.I. Sulexpresson Sharing in Filters Using Canoric Signed Digit Multipliers, IEEE
Transadions on Circuits and Systems || — Analog and Digital Signal Procesdng, vol. 43, no. 10, Oct.
1996

[Harte96] Hartenstein R. W. Glesner M. Field-Programmable Logic, Smart Applications, New Paradigms and
Compilers, 6™ International Workshop o Field-Programmable Logic and Applicaions, FPL'96,
Darmstadt, Germany, September 1996.

[Haw96] Hawley R.A., €, a. Design Techniques for Silicon Compiler Implementation of High-Speed FIR
Digital Filters, IEEE Journal of Solid-State Circuits, vol. 31, no 5, pp. 656-667, May 1996

[Hes96] Hesener A., Implementing Recnfigurable Datapath in FPGAs for Adaptive Filter Design,Proc. 6"
International Workshop a Field-Programmable Logic and Applications, FPL’'96, Darmstadt, Germany,
Sep. 1996, pp. 220-229in [Harte96)].

[Hut97] Hutchings B.L. Exploiting Reconfigurahbility Through Domain-Sgedfic Systems, 7" International
Workshop, FPL’'97, pp. 193-202in [Luk97].

[Hwa93] Hwang K. Advanced Computer Architedure. Parall elism, Scalahility, Programmability McGraw-Hill
Singapore, 1993

[Int97a] Intel Co.: Intel Architedure Sdtware Devdoper’'s. Manud Volume 3: System Programning Guide.
(Order Number 243192). Intel Corporation 1997

[Int974 Intel Co.: Intel Architedure Sdtware Devdoper’s. Manud Volume 1: Basic Architedure. (Order
Number 243190). Intel Corporation 1997

-138-

[Int0Q] Intel Co. A Detailed Look Inside the Intel NetBurst Micro-Architedure of the Intel Pentium 4 Processor,
Intel Corporation 2000

[Jai9l] Jain R., YangP.T. Yoshino T., FIRGEN, a computer-aided design system for high performance FIR filter
integrated circuits, IEEE Trans. Signal Processng, vol. 39, no. 7, pp. 16551667, 1991.

[Jam97] Jamro E. The design o a VHDL synthesis tod of BCH codes, Master of Philosophy Thesis, University
of Huddersfield U.K. September 1997,

[JamQ9] Jamro E. Synteza ukiadow z parametrem w jezyku VHDL na przykladzie kodeka kodu BCH. || Krgjowa
Konferencja Metody i systemy komputerowe w badaniach naukowych i projektowaniu inzynierskim,
Krakéw 25-17 X 1999 pp. 39-43.

[Jam0Q] Jamro E. Automatyczna synteza ukiadow z parametrem w jezyku VHDL na przykladzie kodeka kodu
BCH, Krajowe Sympozjum Telekomunikacji’ 2000, 6-8 wrzesien 2000, ATR Bydgoszcz. Vol D. p. 59
64.

[Jam0O1a] Jamro E., Wiatr K., FPGA Implementation d Addition as a pat of the convolution, Proc. of the IEEE
Int. Conf. Digital System Design, Warszawa, Poland, IEEE Computer Society Press 4-6 Sep 2001

[JamO1b Jamro E., Wiatr K., Genetic Programming in FPGA Implementation d Addition as a Part of the
Convolution, Proc. Of the IEEE Int. Conf. Digital System Design, Warszawa, Poland, IEEE Computer
Society Press 4-6 Sep. 2001

[Jam01c] Jamro E., Wiatr K., Convolution Operation Implemented in FPGA Structures for Real Time Image
Processng, Proc. of the IEEE Int. Symposium on Image Processng and Analysis, Pula, Croatia, 19-21
June 2001

[Jam01d Jamro E., Wiatr K., Implementation o real time image cnvolution in FPGA structures, Image
Processng & Communicaions, An International Journal, Bydgoszcz 2001

[Jan97] Jang J.S.R., Sun C.T., Mizutani E., Neuro-Fuzz and St Computing, Prentice-Hall, London, UK, 1997.

[KeeB8] Keding M., Bricaud P. Reuse Methoddogy Manual for System-On-A-Chip Designs, Kluwer Academic
Publi shers, Boston, 1996

[Kim98] Kim T., Jao W., Tjiang S., Circuit Optimisation Using Carry-Save-Adder Cells, IEEE Trans. on
Computer Aided Design of Integrated Circuits and Systems, vol. 17, no. 10, pp. 974-984, Oct. 1998.

[Kim0Q] Kim T., Um J., A Practical Approach to the Synthesis of Arithmetic Circuits Using Carry-Save-Adders,
IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 19, no. 5, pp. 615-623
May 200Q

[Kir83] Kirkpatrick, S. Gelatt, C.D., Vecdi, M.P. Optimisation by simulated Annealing, Science, 220 (4598):
671-680, May 1983

[KIa00] Klaiber A.: The Tedindogy behind Crusoe Procesors. Transmeta Co. Jun 2000
http://www.transmeta.com/crusoe/downl oad/pdf/crusoetechwp. pdf

[Kos97] Kostarnov 1., Morley S., Osmany J., Solomon C., A Reconfigurable Approach to Low Cost Media
Processng 7t" International Workshop, FPL’97, pp. 79-90in [Luk97].

[Koz92] Koza, J.R. Genetic Programiming: On the Programming o Computers by Means of Natural Seledion.
Cambridge, MA: The MIT Press 199.

[KurOQ] Kurdahi F.J.K., Bagherzadeh N., Athanas P., Munoz J.L., Guest Editors’ I ntroduction: Configurable
Computing, IEEE Design & Test of Computers, Jan-Mar 200Q pp. 17-19.

[Las92] Laskowski J., Samueli H., A 150 MHz 43-tap half-band FIR digital filter in 12 um CMOS generated by
silicon compiler, in Proc. Custom Integrated Circuits Conference, May 1992 pp. 11.4.1-11.4-4.

-139-

[Lim83] Lim Y.C., Parker S.R., FIR filter design over discrete power-of-two coefficient space, IEEE Trans.
Acoust., Speed Signal Procesing, ASSP-31: 583591, Nov. 1983.

[Lis97] Lisa F., Cuadrado F., Rexadhs D., Carravina J., A Recorfigurable Coprocessor for a PCl-based Real
Time Computer Vision S/stem, 7" International Workshop, FPL'97, London UK, Sep. 1997 pp. 392-
399in [Luk97].

[Lu92] LuW.-S., Two-Dimensiond Digital Filters, Marcd Dekker, New York, 1992

[Luk96] Luk W., Guo S., Shiraz N., Zhuang N. A Framework for Devdoping Parameterised Libraries in
[Hartle96] pp. 24-33.

[Luk97] Luk W., Cheung P.Y K., Glesner M., Field-Programnable Logic and Applications, Procealings 7"
International Workshop, FPL'97, London, UK, Sep. 1-3, 1997. Springer, Berlin,

[Luo9g Luo Z., Martonos M. Using Delayed Addition Tedhniqus to Accderate Integer and Floating-Point
Calculation in Configurable Hardware, SPIE Conference on Configurable Computing: Technology and
Applicaions, Boston, Massachusetts, Nov. 1998 Voal. 3526, pp. 202-211

[Mad9g Madisetti V. K. VLS Digital Sgnal Procesors. Butterworth Heinemann 1995

[Matrox] MATROX: Matrox MIL-32 Library. Matrox Eledronic Systems Ltd, http://www.matrox.com
/imgweb/

[Mau84] Maudlin, M.L. Maintaining Diversity in Genetic Search, AAA | Proc. National Conference on Artificia
Inteligence, 1984 pp. 247-250.

[McM95] McMahon G. Hadinoto D. Comparison d Heuristic Search Algorithms for Single Machine Scheduling
Problems, pp. 293-304 in Xin Yao Progressin Evolutionay Computation, Seleded Papers on Al' 93
nad Al’ 94 Workshops on Evolutionary Computation, Springer, Berlin, 1995

[Meh97] Mehrotra K., Mohan C. K., Ranka S. Elements of artificial neural networks, MIT Press Cambridge,

London, 1997

[Mic92] Michalewicz Z. Genetic Algorithm + Data Sructure = Evolutions Programs, Spinger-Verlag, Berlin,
1992

[Min92] Mintzer, L. FIR filters with the Xilinx FPGA, FPGA '92 ACM/SIGDA Workshop an FPGAs pp. 129
134

[Moh95] Mohanakrishnan S., Evans J.B. Automatic Implementation of FIR filters on Field Programmable gate
Arrays, IEEE, Signal Processng Letters, March 1995

[Nag98] Nag SK., Rutenbar R.A., Performance-Driven Smultaneous Placement and Routing for FPGA's, IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 17, no. 6, pp. 499-518 June
1998

[Omo94 Omondi A.R Computer Arithmetic Systems. Algorithms Architedure and Implementations, Prentice
Hall, UK, 1994

[Par97] Parker D.A. Parhi K.K. Low-Area/Power Parallel FIR Digital Filter Implementations, Journal of VLSI
Signal Processngs 17, 7592, Kluwer 1997

[Pas99] Pasko R., Schaumont P., Derudder V., Vernalde S., Duradova D., A New Algorithm for Elimination o
Common Sulexpressons, IEEE Trans. On Computer-Aided Design of Integrated Circuits and Systems,
vol. 18, no. 1, Jan 1999.

[Pas01] Pasham V., Miller A., Chapman K., Transposed Form FIR Filters, Xilinx Applicaion Note, XAPP219,
Jan 200L.

- 140-

[Pei99] Peiro M.M., Vals J., Sansoloni T., Pascuual A.P., Boemo E.I., A comparison between Lattice, Cascade
and Dired-form FIR filter structures by using a FPGA bhit-serial Distributed Arithmetic
implementation, Proc. IEEEICECS Val. | pp. 241-144, Paphos, Cyprus, Sep. 1999

[Pet95] Petersen R., Hutchings B.L. An Assessment of the Suitability of FPGA-Based Systems for Use in Digital
Sgnd Processng, In 5th International Workshop an Field Programmable Logic and Applications,
Oxford England, pp. 293-302, August 1995

[Pir98] Pirsch P., Architedures for Digital Sgnd Processng, Chichester UK, Wiley 1998

[Ple90] Plessy: Digital Sgnd Processng - IC Handbook. GEC Plessey Semiconductor 199Q

[Por97] Porat B., A Coursein Digital Sgnal Processng, John Wiley & Sons, 1997

[Pot96] Potkonjak M., Srivastava M.S., Chandrakasan A.P., Multiple Constant Multiplications: Efficient and
Versatile Framework and Algorithms for Exploring Comnon Sulexpresson Elimination, IEEE Trans.
On Computer-Aided Design of Integrated Circuits and Systems, vol.15, no. 2, Feb 1996

[Rox00] Roxby P.J., Prada E.C., Charlwood S., Core-based design methodology for recmnfigurable computing
apgications, IEE Proc. Comput. Digit. Tech. Vol. 147, no. 3, pp. 142-146, May 200Q

[Sam89] Samueli H.,” Animroved search algorithm for the design of multiplierlessFIR filters with power-of-two
coefficients’, IEEE Transactions on Circuits and §stems, Vol. 36, pp. 1044-1047, July 1989

[San99] SanchezE., Sipper M., Haenni J., Beuchat J., PerezUribe A. Satic and Dynamic Configurable Systems,
|EEE Transadions on Computers, col. 48, no. 6, pp. 556-563, June 1999

[Sei84] Seitz C.L. Concurrent VLS architedures, IEEE Trans. on Computers, Vol. C-33, No. 12, pp. 1247-
1265 1984.

[Ser01] Sergyienko A., Vasylienko V., Maslennikow O., FIR Fiter Sdt Core Generator, Repregrogramowalne
Uktady Cyfrowe Szczecin 7-8 May 2001.

[Slo0Q Slomka F., Dorfel M., Munzenberger R., Hofmann R., Hardware/Sdtware Codesign and Rapid
Protopyping of Embedded Systems, IEEE Design & Test of Computers, pp. 28-38, Apr.-June 2000

[Smi96] Smith D., Bhatia D., RACE: Rewmnfigurable and Adaptive Computing Enviroment, Proc. 6"
International Workshop an Field Programmable Logic and Applicaions, FPL’96, Darmstadt, Germany,
Sep. 1996; pp. 87-95in [Harte96].

[Smt81] Smith, J. E. A study of branch prediction strategies, in Proceadings of the 8th Annua International
Symposium on Computer Architecure, pp. 135148, 1981

[Sta97] Staunstrup J., Wolf W. Hardware/Sdtware Co-design: Principles and Practise Kluwer, Boston, 1997

[Tad92] Tadeusiewicz R. Systemy wizyjne robotow przemystowych, Warszawa WNT 1992.

[Tad93] Tadeusiewicz R., Sed Neuronowe, Warszawa, Akademicka Oficyna Wydaw., 1993

[Tex95] Texas Instruments, TMS32@80 (MVP), User’'s Guide. Texas Instruments Inc., 1995
http://www.ti.com/

[Tex97] Texas Instruments, Implementation d an Image Processng Library for TMS32@8x (MVP). Texas
Instruments Inc. 1997

[Tho90] SGS Thomson: Image Processng - Databook. SGS Thomson Microeledronics 1990

[Tul95] Tullsen D., Eggers S, Levy H. Smultaneous Multithreading: Maximizing On-Chip Parallelism,
Proceedings of the 22rd Annual International Sympasium on Computer Architedure, June 1995 pages
392403

[Va93] Vaidyanathan P.P. Multirate Systems and Filters Banks, Prentice-Hall, New Jersey, 1993

- 141-

[Valog] Valls J., Peiro M.M., Sansaloni T., Boemo E., A study about FPGA-based digital filters, Proc. IEEE
SIPS (IEEE Workshop an VLSI Signal Processng Design and Implementation) pp. 191-201, Boston,
Oct. 1998

[Wal64] WallaceC.S. A suggestion for a fast multiplier, IEEE Trans. On Eledron. Comput., Vol. EC-13, pp. 14-
17, 1964

[Was78] Waser S., High-speed monolithic multipliers for real-time digital signd processng, IEEE Computer
Magazne, Vol. 11, No. 10, pp.19-29, 1978.

[Wia98] Wiatr K., Architektura potokowa specjalizowanych procesoréw sprzetowych do wstepnego
przetwarzania olrazéw w systemach wizyjnych czasu rzezywistego, Wydawnictwo AGH, Krakow
1998

[Wia99a] Wiatr K., Jamro E., Implementacja agorytmu konwolucji 2D dla pdrzeb przetwarzania olrazéw w
czasie rzeczywistym. Kwartalnik Elektrotechnikai Elektronika, Tom 18, Zeszyt 4, 1999 pp. 157-169.

[Wia99%)] Wiatr K., Jamro E., Obliczanie algorytmu konwolucji dla pdrzeb przetwarzania olrazéw w czasie
rzeczywistym, 1l Krgjowa Konferencja Metody i systemy komputerowe w badaniach naukowych i
projektowaniu inzynierskim, Krakéw 25-17 X 1999, pp. 459-464.

[WiaD0a] Wiatr K., Jamro E., Implementacja algorytmu konwolucji 2D w procesorach ogélnego przeznaczenia i
W uktadach specjalizowanych VLSI. Kwartalnik Elektronika i Telekomunikaga PAN, Tom 46, Zeszyt
4, 2000, s553-587.

[WiaD0b] Wiatr K., Jamro E., Constant Coefficient Multiplication in FPGA Structures, Proc. Of the IEEE Int.
Conf. Euromicro, Magstricht, The Netherlands, Sep. 5-7, 2000, Vol. I, pp. 252-259, IEEE Computer
Society Press

[WiaD0c] Wiatr K., Jamro E., Implementation o image data convolutions operations in FPGA remnfigurable
structures for real-time vision systems. International IEEE Conference on Information Tednology:
Coding and Computing, Nevada 200Q pp. 152-157.

[WiaD0d] Wiatr K., Jamro E., Implementacja arytmetyki rozprosone w ukfadach programowalnych FPGA na
przykladzie operacji konwolucji 2D, Kwartalnik Elektrotechnika i Elektronika, Tom 19, Zeszyt 2,
Krakéw 200Q s. 98-104.

[WiaD1a] Wiatr K., Jamro E., Implementation o Multipliers in FPGA Structures, Proc. of the IEEE I nternational
Sympaosium on Quality Eledronic Design, San Jose, Cdlifornia, 26-28 March 2001, pp. 415420, |IEEE
Computer Society Press

[Wia01lb) Wiatr K. Jamro E. Uklady mnozqce przez staly wspdlczynnik implementowane w Uktadach
programowalnych FPGA, Kwartalnik Elektronika i Telekomunikaga PAN, Warszawa 2001, Tom 47,
Zeszyt 2, pp. 231-251

[Wil0Q] Wilton S.J.E., Heterogeneous Techndogy Mapping for Area Reduction in FPGA’s with Embedded
Memory Areays, |EEE Trans. On Computer-Aided Design of Integrated Circuits and Systems, vol. 19,
no. 1, Jan 2000.

[Wir97] Wirthlin M.J., Hutchings B.L. Improving Functional Density ThroughRun-Time Constant Propagétion,
ACM/SIGDA International Symposium on Field Programmable Gate Arrays, pp. 86-92, 1997

[Wir98] Wirthlin M. J., Hutchings B.L., Improving Functional Density Using Run-Time Circuit Reconfiguration,
IEEETrans. on VLS| Systems, vol. 6, no. 2, June 1998.

- 142-

[W0j98] Wojko M., EIGindy H., Salf Configuring Binary Multipliers for LUT addessaable FPGAs, 5th
Australian Conference on Parallel and Red-Time Systems. University of Adelaide, Australia, 28-29th
September 1998 pp. 201-212

[W0j99] Wojko M., EIGindy H. Configuration Squencing with Self Configurable Multipliers 13th International
Parallel Processng Symposium and 1Gh Sympaosium on Parallel and Distributed Processng, San Juan,
Puerto Rico, USA, April 1999 pp. 643-651

[Won00] Wong H.S.P., Frank D.J., Solomon P.M., Wann C.H.J. Welser J.J., Nanascale CMOS, Procealings of
the IEEE, vol. 87, no. 4, pp. 537-570, Apr. 1999,

[Xil193] Xilinx Inc. The programmable Logic Data Book San Jose, California, 1993

[Xil196] Xilinx Inc. Using the Dedicated Carry Logic in XC4000E, Xilinx Application Note XAPP 013 July 4,
1996

[Xil994] Xili nx Inc. Core Generator, Foundation 2.1, 1999

[Xil99h Xilinx Inc. The Programmable Logic Data Book, San Jose, California, 1999

[Xil0Q] Xilinx Inc. Virtex-E 1.8V, Field Programmable Gate Array, Nov 200Q www.xilinx.com.

[Xin9g] Xing S., Yu W.W.H., FPGA Adders: Performance Evaluation and Optimal Design, IEEE Design &
Test of Computers, pp. 24-29, Jan.-Mar. 1998.

[Xu0Q] Xu B., Albonesi D.H., Runtime Reanfiguration Techniques for Efficient General-Purpose Computation,
IEEEDesign & Test of Computers, Jan-Mar 200Q pp. 42-52.

[Zam94] Zamojski W., Caban D. (Eds), Proceedings of the 5-th Schod Computer Vision and Graphics - 1994
Wydawnictwo Prac Naukowych Format, Wroctaw 1994.

[Zam95] Zamojski W., Maarkiewicz J., Procealings of the 7-th Schod VLS and ASIC Design - 1995,
Wydawnictwo Prac Naukowych Format, Wroctaw 1995.

- 143-

