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Introduction


Error Coding


	In recent years there has been an increasing demand for digital transmission and storage systems. This demand has been accelerated by the rapid development and availability of VLSI technology and digital processing.  It is frequently the case that a digital system must be fully reliable, as a single error may shutdown the whole system, or cause unacceptable corruption of data, e.g. in a bank account [36]. In situations such as this error control must be employed so that an error may be detected and afterwards corrected. The simplest way of detecting a single error is a parity checksum [2], which can be implemented using only exclusive-or gates. But in some applications this method is insufficient and a more sophisticated error control strategy must be implemented. 





	If a transmission system can transfer data in both directions, an error control strategy may be determined by detecting an error and then, if an error has occurred, retransmitting the corrupted data [29]. These systems are called automatic repeat request (ARQ). If transmission takes place in only one direction, e.g. information recorded on a compact disk, the only way to accomplish error control is with forward error correction (FEC) [2,29,43]. In FEC systems some redundant data is concatenated with the information data in order to allow for the detection and correction of the corrupted data without having to retransmit it. One of the most important classes of FEC codes is linear block codes [2,29,43]. In block codes, data is transmitted and corrected within one block (codeword). That is, the data preceding or following a transmitted codeword does not influence the current codeword. Linear block codes are described by the integer n, the total number of symbols in the associated codeword. Block codes are also described by the number k of information symbols within a codeword, and the number of redundant (check) symbols n-k.





	In error control, it is crucial to understand the sources of errors. Each transmitted bit has probability p > 0 of being received incorrectly. On memoryless channels every transmitted symbol may be considered independently, so only random errors occur. Unfortunately, most channels have memory and usually several successive symbols are corrupted. These kinds of errors are called burst errors [29]. Burst errors can be most efficiently corrected through use of burst error correcting codes, e.g. Reed Solomon (RS) codes [44]. Because the structure of burst error correcting codes is usually complicated, multiple random error correcting codes are often employed. In order to improve burst error correction, the transmitted codewords are also rearranged by interleaving. The resulting code is called an interleaved code. In this way the burst errors scatter into several codewords and look like random errors. Other operations on block codes are also available to improve the error correcting ability or to adapt a code to a specified requirement. For example codes may be shortened, extended, concatenated or interleaved [2,5].





	The simplest block codes are Hamming codes. They are capable of correcting only one random error and therefore are not practically useful, unless a simple error control circuit is required. More sophisticated error correcting codes are the Bose, Chaudhuri and Hocquenghem (BCH) codes that are a generalisation of the Hamming codes for multiple-error correction. In this thesis the subclass of binary, random error correcting BCH codes is considered, hereafter called BCH codes. BCH codes operate over finite fields or Galois fields. The mathematical background concerning finite fields is well specified and in recent years the hardware implementation of finite fields has been extensively studied [10,15-17,21,24,28,31,33,38,39,41,45,54]. Furthermore, any BCH code can be defined by only two fundamental parameters and these parameters can be selected by the designer. These parameters are crucial to the design and the question arises if it is possible to develop a tool that will automatically generate any BCH codec description, just by providing the code size n and the number of errors to be corrected t. This design automation would considerably reduce BCH codec design cost and time and increase the ease with which BCH codecs with different design parameters are generated. This is an important motivation since the architectures of BCH codecs with different parameters can vary remarkably. 





Hardware solutions


	BCH codes employ sophisticated algorithms and their implementation is rather burdensome. The safe solution both in terms of costs and time is a software solution. But as BCH codes operate over finite fields, a standard microprocessors’ arithmetic is not suitable, and a software solution is therefore rather slow [35]. Another kind of solution is to employ a specialist digital signal processing (DSP) unit, but this option requires rather expensive and sophisticated hardware and can be adopted only when a small number of devices is to be produced. Overall, software solutions are therefore slower, consume more power and are less reliable than hardware implementations. 





	In recent years the Programmable Logic Device (PLD) has been developed and the PLD subclass of Field Programmable Gate Arrays (FPGAs) [55] has been introduced. This has revolutionised hardware design and its implementation. The advantages of an FPGA solution are as follows:


The FPGA is fully reprogrammable.


A design can be automatically converted from the gate level into the layout structure by the place and route software. Therefore design changes can be made almost as easily as software ones. 


Simulation at the layout level, where the design is tied to the internal FPGA structure, is also possible (back annotation). This enables not only the logical functionality but the timing characteristics of the design to be simulated as well. 


Xilinx Inc. offers a wide range of components [55] For example the XC3000 family offers 1,300 to 9,000 gate complexity and 256-1320 flip-flops, so even a relatively complex design can be implemented. (A range of other manufacturers also market FPGA devices including Actel and Altera.)





	In conclusion, a hardware solution can be easily implemented, and the differences between hardware and a software solutions have become blurred. Unfortunately although FPGA solutions are easy to introduce and verify, they are rather expensive and therefore not economical for mass-production. In this case, a full or semi-custom Application Specific Integrated Circuit (ASIC) might be more appropriate. An ASIC solution is more complex and its implementation takes much longer than an FPGA. On the other hand, although an ASIC is characterised as having high starting costs it will allow for a lower cost per chip in mass-production. However an ASIC solution cannot be modified easily or cheaply, due to the high cost of layout masks and the long time required for their development.


VHDL and synthesis


	The development of VLSI and PLDs has stimulated a demand for a hardware description language (HDL), with a well-defined syntax and semantics. This requirement led to the development of the Very (High Speed Integrated Circuit) Hardware Description Language [1,25,26]. The VHDL language describes a digital circuit using the design entity. The entity contains an input/output interface and an architecture description. The language supports different data types, namely constants, variables and signals and there are also different data formats available, for instance bits, integers and real numbers. VHDL also supports numerous operators such as addition, multiplication, exponentiation and modulo reduction of these data types [26].





	VHDL offers the opportunity for different levels of design. This is a crucial feature of the language as it enables design partitioning and simulation at different levels, thus the design can be hierarchical. In addition, VHDL allows a design to be described in different domains [25,34]. There are three different domains for describing digital systems. The behavioural domain describes the system without stating how the specified functionality is to be implemented. The structural domain describes a network of components. The physical domain describes how a system is actually to be built. VHDL models of digital systems can be written at each of these three levels. These models can then be simulated using Electronic Computer Aided Design (ECAD) tools. VHDL has subsequently become a standard [26] and has been widely adopted throughout the electronics industry.





	ECAD tools have long since been available which convert gate level descriptions of circuits into descriptions which can be accepted by ASIC manufacturers. One of the key recent developments has been the design of automatic synthesis tools which convert higher level textual descriptions of digital circuits into lower level or gate level descriptions [37]. These synthesis tools therefore allow high level descriptions of circuits to be transported into hardware much quicker and cheaper than was previously the case. By virtue of being a standard, there are numerous proprietary VHDL synthesis tools available.





	Synthesis may be considered as either high level, logic level or layout level synthesis depending on the level of abstraction involved. The highest level of design abstraction is the system level, where the design specification and performance are defined and a system is described, for example, as a set of processors, memories, controllers and buses. Below this is the algorithmic level where the focus is on data structures and the computations performance by individual processors. Next comes the register transfer level (RTL) where the system is viewed as a set of interconnected storage elements and functional blocks. Below this is the logic level where the system is described as a network of gates and flip-flops. The lowest level of abstraction is a circuit level which views the system in terms of individual transistors or other elements of which it is composed. 





	High level synthesis [36] takes place on the algorithmic level and on the RTL. Usually there are different structures that can be used to realise a given behaviour, and one of the tasks of high level synthesis is to find the structure that best meets the given behaviour. There are a number of reasons why high-level synthesis should be considered. For example high level synthesis reduces design times and allows for the possibility of searching the design space for different trade-offs between cost, speed and power. Unfortunately in practice, high-level synthesis tools are rather difficult to develop. Furthermore, a man-crafted design is often more hardware efficient. As a result, the design is usually synthesised at the lower level of abstraction.





	Logic level synthesis is much simpler because the digital blocks have already been determined, therefore one of the most important aspects of this process is optimisation. Logic synthesis is often associated with a target technology because the final logic form for different technologies is different. The intention at this level may also be to minimise the delay through the circuit [9] and/or to minimise the hardware requirements [11]. This task may be even more complicated as only a few signals may be optimised with respect to time delay whilst with others it may be required to reduce the hardware levels. Layout level synthesis has been carried out for many years now [18] and is well understood. For example the place and route software associated with XILINX FPGA devices can be considered to carry out layout level synthesis.


	


	One of the most significant problems for a synthesis tool is that the number of possible solutions increases rapidly with an increase in logic complexity. Usually synthesis problems are NP-complete, that is the synthesis execution time grows exponentially with the size of the problem. Therefore the time required to find the best solution is usually considerable. Consequently algorithms producing inexact but close to optimum solutions are employed - so called heuristic [13].





	Design synthesis is a very powerful tool and in theory, saving a considerable amount of design time as the design need not be developed at the gate level but instead at a higher level. In addition, the synthesis tool optimises the final design according to the specified technology and predefined criteria such as minimum area and speed. Unfortunately, synthesis tools  are very complex and difficult to develop. 





	Various commercial synthesis tools are available, usually operating at the RTL level, but seldom higher. The problem for a BCH codec designer therefore is that he has to have a high level of understanding of BCH codes before he can write these RTL descriptions in the first place. It is therefore the aim of this project to develop a high level synthesis tool for the design of BCH codecs. This tool will accept the parameters n and t of a BCH code and then generate the VHDL description of the resulting BCH encoder and decoder. These VHDL descriptions will be written at the RTL/logic level to facilitate their synthesis to gate level using a standard synthesis tool. 





Overview of thesis


	The structure of this thesis is as follows. Chapter 2 presents finite fields and their arithmetic. It considers how to construct finite fields bit-serial and bit parallel multipliers for the dual, normal and polynomial bases. In addition, finite field inversion and exponentiation are considered and a new approach for raising field elements to the third power is presented. This chapter further presents a new hardware-efficient architecture generating the sum of products and  a new dual-polynomial basis multiplier. 





	Chapter 3 introduces BCH codes and algorithms for encoding and decoding BCH codes are presented. Chapter 4 describes the BCH codec synthesis system. In this chapter the efficiency of the circuits generated by the system are also discussed. Finally in Chapter 5, conclusions are drawn and suggestions made for future work.
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