
Constant Coefficient Multiplication in FPGA Structures

Kazimierz Wiatr, Ernest Jamro
AGH Technical University, Institute of Electronics, Mickiewicza 30, 30-059 Kraków, POLAND

email: wiatr@uci.agh.edu.pl, jamro@uci.agh.edu.pl

Abstract
This paper investigates different architectures

implementing bit-parallel constant coefficient
multiplication in FPGA structures. At first the
multiplierless multiplication (MM) architectures
employing Canonic Sign Digit (CSD) and sub-structure
sharing methods are addressed, and a novel algorithm for
the conversion from two’s complement to CSD
representation is presented. In the second part of this
paper the Look up table based Multiplication (LM) is
investigated. Correspondingly, the usage of different
memory modules and finding the optimal combination of
the memory and adders are considered. The LM
architecture considers also reduction of the address width
for each memory cell and the possibilit y of memory sub-
structure sharing. Finally the implementation results for
Xili nx XC4000 and Virtex famili es are presented. As a
result, the MM generally surpasses the LM architecture,
however the actual choice between these two architectures
is coefficient and input parameters dependent.

1. Introduction

The multiplication is a very common operation in
digital signal processing. Unfortunately, in some
applications DSPs or general purpose processors cannot
cope with the amount of data, which has to be processed
and therefore Application Specific Integrated Circuit
(ASIC) or Field Programmable Gate Area (FPGA)
solutions have to be adopted. The way a multiplication is
carried out in ASIC or FPGA designs initially does not
seem to be very different. Both ASICs and FPGAs require
the same algorithms to be implemented. For example the
structure of parallel-array multipliers [1] or Wallace tree
multipliers [2] for FPGAs and ASICs seem to be very
similar. Nevertheless, the most important advantage of
FPGAs over ASICs is that a circuit implemented in a
FPGA structure can be quickly reprogrammed. This
allows for a change of the multiplication coefficient to be
realised either by the change of the multiplicand (an input
to the variable coefficient, fully functional multiplier) or
by the change of the constant multiplier circuit. The
constant coefficient in comparison to variable coefficient
multiplier has much lower hardware requirements (26-
33% of the fully functional multiplier [3, 4]), and therefore

is recommended providing that a coefficient value is
relatively constant during the calculation process [5].

FPGAs implement logic cells as a Look Up Table
(LUT) memory therefore the inherent way of caring out
multiplication seems the LUT based Multiplication (LM)
for which large LUT memory is split and combined with
adders [3, 4, 12]. Conversely, VLSI solutions usually
implement constant coefficient multiplication as a
Multiplierless Multiplication (MM) where multiplication
is carried out with the employment of additions and
subtractions [8]. Therefore, multiplier architecture for
FPGAs and ASICs appears to be different. However, after
dedicated ripple carry logic has been incorporated into
FPGAs [9] an adder occupies half of the previous area and
its speed has increased rapidly. This improvement has not
been considered to re-establish the actual relation between
the MM and LM architectures. In consequence the MM
architecture has been overlooked. Summing up, the aim of
this paper is to investigate the LM and MM architectures
and find their cost/speed relation in FPGA structures.

In the first part of the paper, the Multiplierless
Multiplication (MM) employing the Canonic Sign Digit
(CSD) and Sub-structure Sharing (SS) methods, is
investigated. As the consequence of the restrictions on the
FPGA dedicated adders (or subtractors) structures, a
modified algorithm for conversion from two’s
complement to CSD representation is derived, which
allows substantial hardware savings. In the next part of the
paper the LUT based Multiplication (LM) is studied. A
FPGA incorporates different memory modules (e.g. for
Virtex 16x1, 32x1, 256x16, etc.) together with the
dedicated adder circuit. Therefore, finding the best
architecture for a multiplier is a complex task that has to
be addressed. In addition, some memory cells has a shorter
address width and two or more memory cells may contain
the same data, therefore a single (shared) memory can be
implemented instead. It should be noted that every part of
the research is followed by implementation results, which
substantiall y helps to analyse aspects of the considered
architectures.

2. Multiplierless multiplication (MM)

A constant coefficient multiplier is usually
implemented in a multiplierless fashion by using only

shifts and additions from the binary representation (BR) of
the multiplicand. For example, A multiplied by B= 14=
11102 can be implemented as (A<< 1)+(A<<2)+(A<< 3),
where ‘<<’ denotes a shift to the left. It should be noted
that the hardware requirements depend on the choice of a
coeff icient - the number of 1’s in the binary representation
of the coefficient should be as low as possible. Therefore
several algorithms have been developed in order to reduce
hardware by a proper choice of the multiplication
coeff icient (e.g. for FIR filters design [6]). However, in
this paper the assumption is that the value of the
coeff icient is an input parameter to a design and therefore
the coefficient value cannot be changed.

2.1. Canonic Signed Digit Representation

This area reduction technique attempts to reduce the
number of 1s required in the coefficient’s two’s
complement representation by the use of canonic signed
digit (CSD) representation [7]. The CSD representation is
a signed power-of-two representation where each of the
bits is in the set { 1,1,0 } (0 – no operation, 1 – addition,

1 – subtraction).
In general, the conversion of a two’s complement

number B=bn-1, bn-2, ..., b0 to the CSD form D= dn-1, dn-2,
..., d0 can be described formally [8] as in fig. 1.

Start

i=0, c0=0
bn=bn-1

ci+1= bi+1bi ∨ bici ∨ bi+1ci

di= bi+ci-2ci+1

i= i+1

YN
i<n

Stop

Fig. 1. The CSD conversion algorithm

The use of the CSD representation for each coefficient
implies that the multiplication can be conducted in a shift
and add (or subtract) fashion using the lowest number of
add (subtract) operations. In the previous example: B=

14= 11102= CSD01100 , therefore A multiplied by B can

be implemented as (A<< 4)-(A<< 1). The CSD
representation requires only one subtraction in comparison
to the binary representation which requires two additions.
One average, a CSD representation contains
approximately 33% fewer non-zero bits than its binary

counterpart [7]. This in turn implies hardware savings of
about 33% per coeff icient.

It should be mentioned that in the above CSD
conversion algorithm a subtraction and addition are
considered as the same cost operations. The addition S=
A+B can be defined as:

si= ai xor bi xor ci (1)
if ai = bi then ci= ai else ci= ci-1 (2)

Similarly the subtraction S= A – B can be expressed as:
si= ai xor not bi xor ci (3)
if ai = not bi then ci= ai else ci= ci-1 (4)

For FPGAs (e.g. Xilinx XC4000), equations 1 and 3
are implemented in 4-input Look Up Tables (LUTs) which
can implement any function of 4 arguments. Equations 2
and 4 are implemented in dedicated carry logic circuit [9],
which allows the carry logic to propagate much quicker
(propagation time for equations 2 and 4 is 5-50 times
quicker that for eqs 1 and 3) and does not require
additional area. It can also be seen from eqs 1-4, that the
subtraction requires only the additional bit negation of the
subtrahend, therefore the assumption of the equal cost of
the addition and subtraction seems to be obtained.
However in the case of the addition for which the first
argument is shifted to the left, the least significant bits
(LSB) of the second argument can be directly copied to
the adder output, therefore additional hardware savings are
achieved. Unfortunately for the subtraction, the subtrahend
LSBs cannot be directly copied on the output because the
subtrahend bits have to be inverted and a 1 forced into the
carry input at the least significant bit position.
Consequently, the addition and subtraction cannot be
considered as the same cost operations. For example, for

the multiplication by B= 3 = 112= CSD110 for binary

representation the LSB can be directly copied to the output
but for CSD representation the copy of the LSB cannot be
implemented. For ASIC designs these additional
operations, which are carried out on the LSBs of the
subtrahend, can be implemented as half adders which
require much lower hardware in comparison with full
adders. Unfortunately for FPGAs, the half adders usually
occupies the same area as full adders.

2.2. Modified algorithm of the conversion to CSD
representation

The standard algorithm of the conversion from the
two’s complement (TC) to the CSD representation does
not consider the above conclusion, i.e. treats an addition
and subtraction as the same cost operations. Therefore we
have modified the conversion algorithm so that the
conversion to the 1 symbol (negative one – the
subtraction) takes place only if the total number of
operations (non-zero symbols) decreases.

In order to describe the novel conversion algorithm a
new function Q(i,j) for j≥i will be introduced. Let bj is the
j-th bit of two’s complement representation of the
multiplication coefficient B (M= A⋅B) and let define Q(i,j)
in the iterative way as follows:







=−

=+
=+

=

+

+

01),(

11),(
)1,(

0),(

1

1

j

j

bifjiQ

bifjiQ
jiQ

iiQ
(5)

The function Q(i,j+1) is incremented if binary symbol
bj+1 is 1 and decremented otherwise.

Start

i=0
carry= false

(bi=1 and carry)
or

(bi=0 and not carry)

di=0

Y

i≤w
N Y

N

j= i+1

j≤w
NY

0≤Q(i,j)<2
Y N

Q(i,j)<2
and not

(Y<0 and j=w)
(sign bit)

di= 1
carry= false

di= -1
carry= true

i= i+1

carry and B>0
Y

di= 1

Stop

N

Y N

Fig. 2. The modified algorithm for the conversion form the
two’s complement to CSD representation; bi- i-th bit
of the binary coefficient, Q()- function defined in eq.
5, w- the index of the last bit of the multiplicand B

The modified algorithm is shown on fig. 2. It should be
noticed that the conversion to CSD symbol 1 takes place
only if the number of operations is reduced. This implies
that the number of 1s in succession for TC representation
should be at least three. If a 0-bit breaks the raw of 1s then

the number of the successive 1s (skipping the 0-bit) should
be increased by 2, or equivalently the counter of ones
should be decreased by 1 (as it is the case for Q(i,j)
function). The process of counting 1s (function Q(i,j))
should be stopped whenever count Q(i,j) is less than zero
(consequently 0 or 1 symbol should be inserted) or is
equal 2 (1 symbol inserted).

An example of results for the standard and modified
CSD conversion is given in tab. 1.

Coefficient Binary (TC) CSD MCSD
3 11 101 11
7 111 1001 1001
11 1011 10101 1011
23 10111 101001 11001

Tab. 1. An example of results for the standard CSD and
Modified CSD (MCSD) conversions

2.3. Sub-Structure sharing

Additional area reduction can also be achieved by a
Sub-structure Sharing (SS) [10, 11]. For example,
multiplication by 27=110112 can be achieved by the use of
an auxili ary variable tmp as it is shown in the following
equations:

 tmp= a + (a<< 1) (6)
27⋅a= tmp + (tmp<< 3)

By the use of the SS the number of required additions has
been reduced from 3 to 2.

It should be noted that the SS reduction may be
implemented also on the CSD, therefore the combination
of the SS and CSD techniques should be also considered
during the optimisation process. Conversely, the CSD may
interfere with the SS therefore the SS should be considered
separately on the two’s complement and CSD
representation.

2.4. Experimental results

The comparison of the area-reduction techniques
presented in this section is a difficult task as the best
algorithm depends on a coefficient value. However
general conclusions, average and maximum circuit costs
and the best algorithm occurrence can be derived.

The result for 8-bit unsigned input (the most common
input data format for image processing) and coefficient
width K=3-12 is shown in tab. 2.

It can be seen from tab. 2 that the optimisation
techniques (CSD, SS, CSD-SS) are more attractive for the
large coefficient width. The average number of operations
for the TC is roughly K/2-1, which for K= 12 gives 5 in
comparison with 3.08 with the optimisation. However the
cost of the multiplier increases almost linearly with the
increase of a coefficient size K as it is shown on fig. 3.
Consequently, the cost does not only depend on the

number of operations. Therefore the choice of the best
technique cannot be taken only from the final number of

operations (additions/subtractions) but the overall circuits
cost has to be considered.

Avg. Max. Best algorithm occurrenceK
CLBs L CLBs L Coeff. TC CSD SS CSD-SS

3 2.71 0.57 5.5 1 7 6 1 0 0
4 4.13 0.87 9 2 11 12 3 0 0
5 5.52 1.16 10 2 23 22 9 0 0
6 6.92 1.44 14.5 3 43 39 17 4 0
7 8.44 1.75 15 3 75 68 43 16 0
8 9.8 2.03 17 3 183 114 94 44 3
9 11.1 2.31 20.5 4 309 188 193 107 15
10 12.3 2.57 23.5 4 747 300 407 254 62
11 13.6 2.83 24.5 4 1463 478 797 579 193
12 14.9 3.08 27.5 4 3381 746 1510 1285 554

Tab. 2. Average and maximum number of CLBs (XC4000) and corresponding number of operations (additions and
subtractions) for the best technique. Input argument width L=8 bits, K- the maximum width of the coefficients
(coefficient values [1, 2K-1]). Avg.- Average requirements for the best algorithm (the algorithm that has the lowest
cost chosen separately for each coefficient value), Max – the most hardware consuming coefficient. The best
algorithm occurrence presents how many times each algorithm is the best. Considered algorithms: TC- two’s
complement representation; CSD- Canonic Sign Digit; SS- Sub-structure Sharing; CSD-SS – applying the SS
algorithm on the CSD. If the results of two algorithms are the same then the simplest (most former) is taken

�
�
��
��
��
��
��

� � � � �� ��
.

&/
%V $YJ�

0D[

Fig. 3. The average and maximum area occupied by the 8-
bit input multiplier for different widths of the

coefficients K

3. LUT based Multiplication (LM)

3.1. Concept

In principle, the evaluation of any finite function can
be carried out using a look-up table (LUT) memory that is
addressed with the argument for the evaluation and whose
output is the result of the evaluation. This, in theory, gives
the fastest possible implementation, since no actual
arithmetic is required. Unfortunately, the use of a single
LUT for the multiplication is unlikely to be practical for
any but the smallest argument, because the table size
grows rapidly with the width of the argument. For
example, for the L-bits wide argument and K-bits wide
coeff icient, the size of memory is (L+K)⋅2L, which for
K=8, L= 8 gives 4k bits. It is, however, possible to create

a practical implementation of the LM by combining a
number of small LUTs and adders. The idea is to split the
argument, use LUTs, and then use a tree of adders [3, 12,
13]. An example of the multiplier circuit for K=8 and L=8
is shown on fig. 4.

input

LUT
B

LUT
A

 4 4

 8

 12 12

Adder

 8
 4

 12

 16

output

Fig. 4. The LM for input argument width K=8 and
coefficient width L=8

The LUT contents for the multiplication Y= A⋅B can be
evaluated directly form the multiplication as it is given in
the example in tab. 3.

It should be noted that an output bit of the LUT
depends only on the address bits which weights are lower
or equal to the output bit weight. In the example in tab. 3,
the memory cell y0 depends only on the address line a0,
memory cell y1 depends on a0 and a1, y2 depends on a0 and

a1, etc. In general an output bit yi depends on the
MAX(i+1, n) address lines, where n denotes the width of
the LUT address bus. In consequence, n-1 LSBs require
smaller memory modules, which implies substantial
hardware savings. This hardware saving will be denoted as
LSBs Address Width Reduction (LAWR).

An additional decrease of the address width may be
observed when the contents of the memory do not depend
on a curtain address line. However this address width
reduction cannot be generalised and differs for different
coeff icient values and address widths. Furthermore a

complex search algorithm has to be employed to find a
don’ t-care address line therefore this hardware
optimisation will be denoted as Don’ t-care Address Width
Reduction (DAWR). On the example given in tab. 3, the
DAWR takes place for memory cells y5 and y4. It should
be noted that the DAWR usually occurs for the MSB of
the product.

Further savings can be achieved by Memory Sharing
(MS). In the given example, memory cells y0 and y4 are the
same therefore only one of them can be implemented.

Address Value y5 y4 y3 y2 y1 y0

0 0 0 0 0 0 0 0
1 19 0 1 0 0 1 1
2 38 1 0 0 1 1 0
3 57 1 1 1 0 0 1

Address width 1 1 2 2 2 1
Tab. 3. The contents of the memory (y5-y0) for different address values and the coefficient

equal 19. Address width – the width of address bus for each memory cell

3.2. Implementation in FPGAs

The split of the multiplication argument should be
carried out with respect to the size-cost relation of memory
blocks and adders’ cost. The XC4000 family incorporates
16×1 and 32×1-memory modules. The cost of the 32×1-
memory module is 1 CLB, which is twice the cost of

16×1-memory module (½ CLB). The cost of the adder is
½ CLB/bit. In addition, there exists a virtual memory
module 2×1 which does not occupy any CLB’s area and
can be implemented as either a connection from the input
argument to the adder input or as feeding the adder with a
fix value.

Mem
16×1

Adder

Mem
16×1

in

out

6

24

a)

Mem
16×1

Adder

in

out

6

4

b)

Mem
32×1

Adder

in

out

6

5

c)

Fig. 5. Different reasonable methods for implementing the multiplier with the input bus width equals 6

Consequently, finding the optimum combination of the
memory modules and adders is a difficult task, and the
solution depends on the size of an input data and a given
coeff icient value. However, it can be derived by
experiments that for the input width much greater than 4
the preferable memory blocks are 16×1. Unfortunately, if
the input width cannot be divided by 4, different memory
blocks may be used.

An example of different multiplier architectures for the
input data width equals 6 is shown on fig. 5. The hardware
requirements for these methods for coefficient equal 43

are: a) 11 ½ CLBs, b) 12 CLBs, c) 12 CLBs XC4000,
therefore the difference is very slight. In general, however,
there is a rule of thumb that the best or almost the best
circuit is generated by the use of only 16×1 RAMs (and
the direct connection to an adder if the remained input bus
width is 1).

The design task is even more complicated if Virtex
family is considered. Virtex FPGAs incorporate several
large BlockSelectRAM+ (BSR) memories which are 4 kb
in size and may have different data bus width: 4k×1, 2k×2,
1k×4, 512×8, 256×16 [9]. The area in sili con, occupied by

a BSR is equivalent to roughly 16 Virtex CLBs (64 16×1-
RAMs). However the actual cost of these memories may
differ respectably to the free FPGA resources, e.g. a
design does not implement any BSRs but uses all CLBs.
Consequently the trade-off f or distributed RAMs and
BSRs is design-dependent. However general conclusions
can be derived from fig. 6. On average the equivalent cost
of the BSR 256×16 is about 8÷11 Virtex CLBs (VCLBs)
which is 32÷44 16×1 RAMs.

�

�

�

�

�

��

��

� � � �� �� �� �� �� �� �� ��
,QSXW�GDWD�DQG�FRHIILFLHQW�ZLGWK

$���
%
&

Fig. 6. The area of the LM for the same input data and
coefficient width. A- area (in Virtex CLB= 2 XC4000
CLBs) scaled of 1:10, for the LM using only
distributed 16×1 and 32×1 RAMs, B- number of used
BSR 256×16, C- equivalent cost (in Virtex CLB) of a
BSR 256×16 in comparison to distributed RAMs

It should be noted that the BSR blocks are rather large
and therefore it is difficult to find an architecture for
which the BSR is fully used. The efficiency of the BSR
usage strongly influences its equivalent cost.

Consequently, for small input data and coefficient width
(<8) the equivalent cost of the BSR is rather small (see fig.
6). For the input width greater than 8 and up to 13 the
equivalent cost of the BSRs increases. However for the
width greater than 13, two or more BSRs and an additional
adder are required, therefore the efficiency of the BSRs
usage decreases as the effect of the large BSR quantization
and distribution is again observed. For the input width
equal 16 the number of BSRs increases rapidly as the
BSRs are grouped into pairs to form a single 256×32
memory which implies low equivalent BSRs cost. As the
width again increases the equivalent cost is growing. It
seems, however that the equivalent cost equal 11 is a
maximum value that is never surpassed.

Fig. 6A shows also the cost for multipliers using only
distributed RAMs. It can be seen a rapid grow of cost for
the width equal 9, 13, 17, 21, ... when the width surpasses
the number divided by 4.

In this paper to find an optimal solution of a multiplier
an exhausted search algorithm (with some obvious
simplifications) has been implemented for which BSRs
together with distributed RAMs and adders were
combined and the best circuit taken. In order to visualise
considered architectures an example of the LM for input
data and coeff icient width equal 14 is shown on fig. 7. In
this example a combination of BSRs and distributed
RAMs is implemented and the advantage hybrid solution
is shown. The given example may be even more
complicated if a concrete coefficient value is given,
however in this section, general cases are investigated for
which memory sharing (MS) and DAWR have not been
considered.

256×16 32×1 3×16×1

147

7 5 4 1

3116

21

256×16 32×1 3×16×1

7 5 4

3116

21

Adder

28

14

7

21

7

2×1

1

2×1

11

Fig. 7. The Lut Based Multiplier for input data and coefficient width equal 14

It should be noted that the optimisation program does
not assume any initial relations between memory modules
and adders’ costs, therefore memory modules can be freely
selected and the program can be implemented for any
FPGA family or even for ASICs. The input values are an
adder and memory parameters and costs. The output of the

optimisation program is a VHDL file, which can be
synthesised and implemented into any FPGA family.

In this paper only Xil inx XC4000 and Virtex famili es
have been thoroughly studied, but almost the same
properties have also different FPGAs. For example, Altera
Apex 20K family [14] has almost the same cost-relation as
Virtex has; the Apex family implements 16×1 LUTs or

dedicated carry logic in each Logic Element (LE) and also
incorporates a large memory (128×16, 256×8, 512×4,
1024×2 or 2048×1) in each Embedded System Block
(ESB). The size of Apex ESB RAMs is half the size of the
Virtex BSR, however in most cases the Virtex BSR is not
fully used therefore the main difference between Apex and

Virtex seems to be the lack of 32×1 distributed RAMs for
Apex family.

It should be also noted that the number of the
BSRs depends on the cost relations. For example, for 16-
bit width multiplier the number of BSRs can be gradually
increases as the BSR cost decreases.

Cost BSR
VCLBs

No. BSRs Cost LUT RAMs
VCLBs

Cost Adders
VCLBs

Eq. Cost BSR
VCLBs

≥7.75 0 19 16 -
≥6.5 2 9.5 10 7.75

≤6.25 4 0 6 7.25
Tab. 4. Influence of the BSRs cost for the best architecture for distributed (LUT) RAMs cost equal

16×1RAM= 0.25 VCLB and adder cost = 0.25 VCLB/bit. Relation for input data and
coefficient width equal 16

While implementing LMs it can be seen that the Virtex
BSR has not optimal parameters and often are not fully
exploited. Memory modules 4k×1, 2k×2, 1k×4 and 512×8
have never been implemented, the memory module that
has been only used is the 256×16 RAM. Even 256×16
memory modules are very seldom full y exploited. For
example on fig. 7, one address line is not used, which
causes that only half of the memory is used. Therefore a
question arise what optimal memory size is. A general
answer is that memory data width should satisfy:

WD= WC + WA - WL (7)
where: WD – memory data width, WC – width of the

coefficient, WA- memory address width, WL-
address width of LUT RAM, WL= 5 for Virtex.

From eq. 7 it can be seen that for WC= 13 and WA= 8
the result is WD= 16 which correspond with the 256×16
memory module, therefore the maximum of equivalent
BSR cost is observed in fig. 6 for the input width equal 13.

Additional hardware savings can be obtained if not full
binary range of input data is used. For example, for the
input data range 0-127 (binary range) and 0-99 (decimal
range) and the coefficient equal 81 the implementation
results are 14.5 and 13.5 XC4000 CLBs respectively.

Further design optimisation can be achieved for
negative numbers. In general a design can be divided into
4 regions:
• Coefficient and input data are positive- there is not

negative number optimisation.
• Coefficient is positive, input data is in two’s

complement format (negative or positive). In this case
only the MSBs LUT operates on two’s complement
data. However the MSB LUT output can be either
positive or negative therefore design optimisation
cannot be implemented.

• Negative coefficient and positive data. All LUTs
operate on two’s complement numbers, but it can be
seen that the outputs are always negative therefore

additions can be replaced by subtractions and in this
way all LUTs will operate only on positive data. In
consequence, the LUT sign bit need not be coded - the
width of each LUT will be one line shorter. However
the double subtraction (s=-a-b) cannot be implemented
into FPGAs and will be postponed to the next level of
addition (s= -(a+b)), which implies that the result of
the additions (s= -a-b-c-d-...= -(a+b+c+d+...)) should
be negated, this however requires an additional circuit.
Therefore the best solution is to implement substation
for all but the LSB LUT. This implies that double
subtraction chain is broken and the copy of LSBs (see
Section 0) is achieved.

• Negative coefficient, two’s complement data. In this
case all but the MSBs LUT, operate on negative-only
numbers and should be implemented as in the previous
region. The MSBs LUT operates on either positive or
negative numbers, therefore may be implemented as an
addition. However this addition distracts subtraction-
addition chain and causes that the LSBs copy does not
occur. In conclusion the MSB LUT should be also
implemented as a subtraction therefore the circuit is
implemented in the same way as in the previous
region.

4. Comparison of the multipliers

In this paper two different multiplication techniques
have been presented: the multiplierless multiplication
(MM) and the LUT based multiplication (LM). Therefore
a question arises which of them is more hardware
efficient. The statistical cost-relation between the MM and
LM for XC4000 is shown on fig. 8. Accordingly, the LM
is usually more attractive for the input and coefficient
width less than 5, for the greater widths a better result is
usually obtained by the use of the MM. It should be noted
that the choice of the best architecture depends on the
actual coefficient value and fig. 8 shows only statistical
relationship. Therefore both architectures should be

considered and the best of them chosen. However, form
fig. 8 it can be seen that the gain from considering best of
the LM and MM is insignificant for K greater than 5.

Form fig. 8 a general conclusion can be drawn. The
MM implements more hardware reduction (using more
efficiently the CSD and SS) with the increasing number of
width K. Therefore for greater K, the MM is getting more
and more attractive in comparision to the MM. The next
aspect is how much hardware reduction is achieved by the
use of the DAWR and MS for the LM. Experimental
results show that the gain is on average 5÷20% depending
on the input width K.

���
���
�

���
���
���
���
���

� � � � � � � �� �� �� �� �� �� .

/0�00
00�EHVW

Fig. 8. Relation between average area of XC4000
occupied by: LM/MM – using only LM and only
MM; MM/best – using only MM and the best of LM
or MM. Results for the different input width K
(input range 0÷2K-1) and coefficient values 1÷2K-1

5. Conclusions

This paper investigates two different methods of
implementing multiplication: the LUT based
multiplication (LM) and multiplierless multiplication
(MM). The implementation results show that for a small
input width, the LM is usuall y the best choice, but with the
increase of the width the MM is getting more and more
attractive due to greater effectiveness of the CSD and SS
methods.

Furthermore, an improved algorithm for conversion
from the two’s complement to the CSD representation has
been introduced. This algorithm considers that the cost of
the subtraction is often higher than the cost of the addition
as the copy of the LSBs cannot be implemented for the
subtraction. Consequently, a subtraction (CSD
representation 1) is implemented only if the total number
of operation decreases. In addition, for the LM the
combination of different memory modules has been
studied. This aspect is very important as FPGAs
incorporate different memories and therefore finding the
optimal memory configuration is a complex task that has
been solved. At the end, the cost/speed relationship
between presented architectures has been presented for
Xili nx XC4000.

In this paper the methods and implementation results
for constant coefficient multiplier have been presented.
But the main research effort, which has been passed over,
was development of an multiplication automated tool
(MAT) which can generated a synthesable VHDL code of
any constant coefficient multiplier. The MAT does not
assume any circuit constrains therefore can be used for any
FPGA and even ASIC designs. The input parameters: an
input data range, a coefficient value as well as an adder
and flip-flop cost and memory module sizes and costs can
be freely specified and the MAT will generate the optimal
multiplier circuit. This allows that not only the generated
circuit is hardware-efficient (better than commercial
automated tool) but also the design time is significantly
reduced.

References

 [1] Waser S. High-speed monolithic multipliers for real-time
digital signal processing, IEEE Computer Magazine, Vol.
11, No. 10, pp.19-29, 1978.

 [2] Wallace C.S. A suggestion for a fast multiplier, IEEE Trans.
On Electron. Comput., Vol. EC-13, pp. 14-17, 1964.

 [3] Chapman K. Constant Coefficient Multipliers for the
XC4000E. Xil inx App. Note, XAPP 054 December 1996.

 [4] Petersen R., Hutchings B.L. An Assessment of the Suitability
of FPGA-Based Systems for Use in Digital Signal
Processing, In 5th International Workshop on Field
Programmable Logic and Applications, Oxford England,
pp. 293-302, August 1995.

 [5] Wirthlin M.J., Hutchings B.L. Improving Functional Density
Through Run-Time Constant Propagation, ACM/SIGDA
International Symposium on Field Programmable Gate
Arrays, pp. 86-92 (1997).

 [6] Samueli H.,”An imroved search algorithm for the design of
multiplierless FIR filters with power-of-two coefficients” ,
IEEE Transactions on Circuits and Systems, Vol. 36, pp.
1044-1047, July 1989.

 [7] Garner H. Number Systems and Arithmetic, Advances in
Computing, vol. 6, pp. 131-194, 1965

 [8] Pirsch P., Architectures for Digital Signal Processing, Wiley
1998.

 [9] Xil inx Co. Using the Dedicated Carry Logic in XC4000E,
Xil inx Application Note XAPP 013 July 4, 1996.

[10] Hartley R.I. Subexpression Sharing in Filters Using
Canonic Signed Digit Multipliers, IEEE Transactions on
Circuits and Systems II – Analog and Digital Signal
Processing, vol. 43, no. 10, Oct. 1996.

[11] Parker D.A. Parhi K.K. Low-Area/Power Parallel FIR
Digital Filter Implementations, Journal of VLSI Signal
Processings 17, 75-92, Kluwer 1997.

[12] Chapman K. Fast Integer Multiplier fit in FPGA’s, EDN
1993 Design Idea Winner, END May 12th 1994.

[13] Omondi A.R Computer Arithmetic Systems. Algorithms
Architecture and Implementations, Prentice Hall 1994.

[14] Altera Co. Apex 20K Programmable Logic Device Family,
Data Sheet, ver. 2.05, Nov. 1999.

[15] Xilinx Co. Core Generator Foundation 2.1i Software
Packet, 1999.

