Constant Coefficient Multiplication in FPGA Structures

Kazimierz Wiatr, Ernest Jamro
AGH Technicd University, Institute of Electronics, Mickiewicza 30, 36059 Krakéw, POLAND
email: wiatr@uci.agh.edu.gd, jamro@uci.agh.edu.d

Abstract
This paper investigates different architedures
implementing lt-parall el constant coefficient
multiplication in FPGA structures. At first the
multiplierless multiplication (MM) architedures

employing Canonic Sign Digit (CSD) and sub-structure
sharing methods are addressed, and anovd algorithm for
the onversion from two's complement to CSD
representation is presented. In the second pat of this
paper the Look up table based Multiplication (LM) is
investigated. Correspondngly, the usage of different
memory modues and finding the optimal combination of
the memory and addrs are mnsidered. The LM
architedure mnsiders also reduction d the addresswidth
for each memory cdl and the posshility of memory sub-
gtructure sharing. Finaly the implementation results for
Xilinx XC4000 and Virtex families are presented. As a
result, the MM generally surpasses the LM architedure,
howeve the actual choice between these two architedures
is coefficient andinput parameters dependent.

1. Introduction

The multiplicaion is a very common operation in
digital signal procesing. Unfortunately, in some
applicaions DSPs or general purpose procesors cannot
cope with the amount of data, which has to be processed
and therefore Application Spedfic Integrated Circuit
(ASIC) or Field Programmable Gate Area (FPGA)
solutions have to be alopted. The way a multiplicaion is
caried out in ASIC or FPGA designs initially does not
seem to be very different. Both ASICs and FPGAS require
the same dgorithms to be implemented. For example the
structure of parallel-array multipliers [1] or Wallacetree
multipliers [2] for FPGAs and ASICs sem to be very
similar. Nevertheless, the most important advantage of
FPGAs over ASICs is that a drcuit implemented in a
FPGA dtructure can be quickly reprogrammed. This
allows for a dhange of the multiplicaion coefficient to be
redised either by the change of the multiplicand (an input
to the variable efficient, fully functional multiplier) or
by the dange of the constant multiplier circuit. The
constant coefficient in comparison to variable mefficient
multiplier has much lower hardware requirements (26-
33% of the fully functional multiplier [3, 4]), and therefore

is recommended providing that a mefficient value is
relatively constant during the cdculation process|[5].

FPGAs implement logic cdls as a Look Up Table
(LUT) memory therefore the inherent way of caring out
multi plication seems the LUT based Multiplicaion (LM)
for which large LUT memory is Plit and combined with
adders [3, 4, 12]. Conversely, VLSl solutions usually
implement constant coefficient multiplication as a
Multi plierless Multiplicaion (MM) where multiplication
is caried out with the employment of additions and
subtradions [8]. Therefore, multiplier architecure for
FPGAs and ASICs appeas to be different. However, after
dedicated ripple cary logic has been incorporated into
FPGASs[9] an adder occupies half of the previous areaand
its gedal has increased rapidly. This improvement has not
been considered to re-establish the adual relation between
the MM and LM architectures. In consequence the MM
architedure has been overlooked. Summing up, the am of
this paper is to investigate the LM and MM architecures
and find their cost/speed relation in FPGA structures.

In the first part of the paper, the Multiplierless
Multiplication (MM) employing the Canonic Sign Digit
(CSD) and Sub-structure Sharing (S§ methods, is
investigated. As the mnsequence of the restrictions on the
FPGA dedicaed adders (or subtradors) structures, a
modified agorithm for converson from two's
complement to CSD representation is derived, which
allows substantial hardware savings. In the next part of the
paper the LUT based Multiplicaion (LM) is dudied. A
FPGA incorporates different memory modules (e.g. for
Virtex 16x1, 32x1, 256x16, etc.) together with the
dedicaed adder circuit. Therefore, finding the best
architecure for a multiplier is a mwmplex task that has to
be aldressed. In addition, some memory cdls has a shorter
addresswidth and two or more memory cdls may contain
the same data, therefore asingle (shared) memory can be
implemented instead. It should be noted that every part of
the reseach is followed by implementation results, which
substantially helps to analyse aspeds of the cnsidered
architedures.

2. Multiplierlessmultiplication (MM)

A constant coefficient multiplier is usually
implemented in a multiplierless fashion by using only

shifts and additions from the binary representation (BR) of
the multiplicand. For example, A multiplied by B= 14=
111G cen be implemented as (A<< 1)+(A<<2)+(A<<3),
where ‘<<’ denotes a shift to the left. It should be noted
that the hardware requirements depend on the choice of a
coefficient - the number of 1'sin the binary representation
of the wefficient should be & low as possble. Therefore
several agorithms have been developed in order to reduce
hardware by a proper choice of the multiplicaion
coefficient (e.g. for FIR filters design [6]). However, in
this paper the assumption is that the value of the
coefficient is an input parameter to a design and therefore
the wefficient value annot be changed.

2.1. Canonic Signed Digit Representation

This area reduction technique atempts to reduce the
number of 1s required in the wefficient's two's
complement representation by the use of canonic signed
digit (CSD) representation [7]. The CSD representation is
a signed power-of-two representation where eab of the
bitsisin the set { L1} (0 —no gperation, 1 — addition,
1 —subtradion).

In general, the mnversion of a two’'s complement
number B=b,, 1, bno, ..., by to the CSD form D= d,4, dno,
...,dg can be described formally [8] asinfig. 1.

Start

i=0, =0
bn=bn1

——

Ci+1= biraby Obici [TbieaG
di= bi+c-2ci+1
i=i+1

(sop)

Fig. 1. The CSD conversion dgorithm

The use of the CSD representation for ead coefficient
implies that the multiplication can be cnducted in a shift
and add (or subtraad) fashion wsing the lowest number of
add (subtrad) operations. In the previous example: B=

14= 1110,= 10010, therefore A multiplied by B can

be implemented as (A<<4)-(A<<1). The CSD
representation requires only one subtradion in comparison
to the binary representation which requires two additions.
One aerage, a CSD representation contains
approximately 33% fewer non-zero hits than its binary

counterpart [7]. This in turn implies hardware savings of
about 33% per coefficient.

It should be mentioned that in the @ove CSD
conversion algorithm a subtradion and addition are
considered as the same st operations. The aldition S=
A+B can be defined as:

S= a; Xor b, xor ¢ D
if g = b thenc=ag esec=c: (2
Similarly the subtradion S= A— B can be expres=d as:
S= & XOor not b xor ¢; 3
if 8 = notbjthenc=a elsec=c.1 (4)

For FPGAs (e.g. Xilinx XC4000, equations 1 and 3
are implemented in 4-input Look Up Tables (LUTs) which
can implement any function of 4 arguments. Equations 2
and 4 are implemented in dedicaed carry logic drcuit [9],
which alows the cary logic to propagate much quicker
(propagation time for equations 2 and 4 is 5-50 times
quicker that for eqs 1 and 3) and daes not require
additional area It can aso be seen from egs 1-4, that the
subtradion requires only the aditional bit negation of the
subtrahend, therefore the assumption of the egual cost of
the aldition and subtradion seems to be obtained.
However in the cae of the aldition for which the first
argument is shifted to the left, the least significant bits
(LSB) of the second argument can be diredly copied to
the alder output, therefore alditional hardware savings are
achieved. Unfortunately for the subtradion, the subtrahend
LSBs cannot be diredly copied on the output becaise the
subtrahend hits have to be inverted and a 1 forced into the
cary input a the leat significant bit paosition.
Consequently, the adition and subtradion cannot be
considered as the same st operations. For example, for
the multiplication by B= 3 = 11,=101.o,for binary
representation the LSB can be diredly copied to the output
but for CSD representation the wpy of the LSB cannot be
implemented. For ASIC designs these alditiona
operations, which are caried out on the LSBs of the
subtrahend, can be implemented as half adders which
require much lower hardware in comparison with full
adders. Unfortunately for FPGAs, the half adders usually
occupies the same aea & full adders.

2.2. Madified algorithm of the conversion to CSD
representation

The standard algorithm of the cnversion from the
two’s complement (TC) to the CSD representation does
not consider the @ove @nclusion, i.e. tredas an addition
and subtradion as the same st operations. Therefore we
have modfied the mnversion algorithm so that the
conversion to the 1 symbd (negative one — the
subtradion) takes place only if the total number of
operations (non-zero symbals) deaeases.

In order to describe the novel conversion algorithm a
new function Q(i,j) for j=i will be introduced. Let by is the
j-th bit of two's complement representation of the
multi plication coefficient B (M= AB) and let define Q(i,j)
in the iterative way as follows:

Q(,i)=0
A, j)+1 ifby, =1 ©
HQG.j)-1 ifb,, =0

The function Q(i,j+1) is incremented if binary symbal

bj+1 is 1 and deaemented otherwise.

Q,j+1 =

Start

i=0
carry= false

(bi=1andcarry)
or
(bi=0 and nd carry)

Q(ij)<2
and not
(Y<Oand j=w)
(sign dt)

d=1
carry= false

di: -1
carry= true

Fig. 2. The modified agorithm for the mnversion formthe
two's complement to CSD representation; by;- i-th hit
of the binary coefficient, Q()- function defined in eqg.
5, w- the index of the last bit of the multiplicand B

The modified algorithm is shown on fig. 2. It should be
noticed that the conversion to CSD symbal 1 takes place
only if the number of operations is reduced. This implies
that the number of 1sin succession for TC representation
should be & least three If a O-bit bre&s the raw of 1s then

the number of the successive 1s (skipping the 0-bit) should
be increassed by 2, or equivaently the counter of ones
should be deaeased by 1 (as it is the cae for Q(i,))
function). The process of courting 1s (function Q(i,j))
should be stopped whenever count Q(i,j) is less than zero
(consequently 0 or 1 symbad should be inserted) or is
equal 2 (1 symboal inserted).

An example of results for the standard and modified
CSD conversionisgivenintab. 1.

Coefficient | Binary (TC) CSsD MCSD
3 11 101 11
7 111 1001 1001
11 1011 10101 1011
23 1011 101001 1101

Tab. 1. An example of results for the standad CSD and
Modified CSD (MCSD) conversions

2.3. Sub-Structure sharing

Additional area reduction can aso be adieved by a
Sub-structure Sharing (S [10, 11]. For example,
multiplicaiion by 27=1101% can be atieved by the use of
an auxiliary variable tmp as it is shown in the following
equations:

tmp= a + (a<<1) (6)
27/@= tmp + (tmp<< 3)
By the use of the SSthe number of required additions has
been reduced from 3 to 2

It should be noted that the SS reduction may be
implemented also on the CSD, therefore the mmbination
of the SS and CSD techniques should be dso considered
during the optimisation process Conversely, the CSD may
interfere with the SStherefore the SSshould be mnsidered
separately on the two's complement and CSD
representation.

2.4. Experimental results

The mparison of the aeareduction techniques
presented in this sction is a difficult task as the best
agorithm depends on a wefficient value. However
genera conclusions, average and maximum circuit costs
and the best algorithm occurrence @n be derived.

The result for 8-bit unsigned input (the most common
input data format for image processng) and coefficient
width K=3-12is shown in tab. 2.

It can be seen from tab. 2 that the optimisation
techniques (CSD, SS CSD-SS are more dtradive for the
large wefficient width. The arerage number of operations
for the TC is roughly K/2-1, which for K= 12 gives 5 in
comparison with 3.08 with the optimisation. However the
cost of the multiplier incresses almost linealy with the
increase of a wefficient size K as it is shown on fig. 3.
Consequently, the st does not only depend on the

number of operations. Therefore the coice of the best
technigque canot be taken only from the fina number of

operations (additions/subtradions) but the overall circuits
cost hasto be mnsidered.

K Avg. Max. Best algorithm occurrence

CLBs L CLBs L Coeff. TC CsD SS CSD-Ss
3 271 057 55 1 7 6 1 0 0
4 413 087 9 2 11 12 3 0 0
5 5.52 116 10 2 23 22 9 0 0
6 6.92 144 145 3 43 39 17 4 0
7 844 175 15 3 75 68 43 16 0
8 9.8 203 17 3 183 114 94 44 3
9 111 231 205 4 309 188 193 107 15
10 123 257 235 4 747 300 407 254 62
11 136 2.83 245 4 1463 478 797 579 193
12 149 3.08 275 4 3381 746 1510 1285 554

Tab. 2. Average and maximum number of CLBs (XC4000Q and correspondng number of operations (addtions and
subtractions) for the best technique. Input argument width L=8 hits, K- the maximum width of the coefficients
(coefficient values [1, 2¢-1]). Avg.- Average requirements for the best algorithm (the algorithm that has the lowest
cost chosen separately for each coefficient value), Max — the most hardware cnsuming coefficient. The best
algorithm occurrence presents how many times each agorithm is the best. Considered agorithms: TC- two’s
complement representation; CSD- Canonic Sign Digit; SS Sub-structure Shaing; CSD-SS — aplying the SS
algorithm onthe CSD. If the results of two agorithms are the same then the simplest (most former) is taken

30

25 //.

20

-//.//ﬁ —o— Avg.
b /’- / i
10

CLBs

Fig. 3. The average and maximum area occupied by the 8-
bit input multiplier for different widths of the
coefficients K

3. LUT based Multiplication (LM)
3.1. Concept

In principle, the evaluation of any finite function can
be caried out using alook-up table (LUT) memory that is
addressed with the agument for the evaluation and whose
output is the result of the evaluation. This, in theory, gives
the fastest possble implementation, since no adua
arithmetic is required. Unfortunately, the use of a single
LUT for the multiplication is unlikely to be pradicd for
any but the smallest argument, becaise the table size
grows rapidly with the width of the agument. For
example, for the L-bits wide agument and K-bits wide
coefficient, the size of memory is (L+K)2", which for
K=8, L= 8 gives 4k hits. It is, however, possble to creae

a pradicd implementation of the LM by combining a
number of small LUTs and adders. The ideais to split the
argument, use LUTSs, and then use atreeof adders [3, 12,
13]. An example of the multiplier circuit for K=8 and L=8
isshownonfig. 4.

input

16

output
Fig. 4. The LM for input argument width K=8 and
coefficient width L=8

The LUT contents for the multi plication Y= AB can be
evaluated drealy form the multiplication as it is given in
the exampleintab. 3.

It should be noted that an output bit of the LUT
depends only on the aldress bits which weights are lower
or equa to the output bit weight. In the example in tab. 3,
the memory cdl y, depends only on the aldressline ay,
memory cdl y; depends on ay and ay, Y, depends on ay and

a;, etc. In general an output bit y; depends on the
MAX(i+1, n) addresslines, where n denotes the width of
the LUT address bus. In consequence n-1 LSBs require
smaller memory modules, which implies substantial
hardware savings. This hardware saving will be denoted as
LSBs AddressWidth Reduction (LAWR).

An additional deaease of the aldress width may be
observed when the mntents of the memory do not depend
on a aurtain address line. However this address width
reduction cannot be generalised and dffers for different
coefficient values and address widths. Furthermore a

complex seach agorithm has to be employed to find a
don't-care aldress line therefore this hardware
optimisation will be denoted as Don't-care Address Width
Reduction (DAWR). On the example given in tab. 3, the
DAWR takes placefor memory cdls ys and y,. It should
be noted that the DAWR usually occurs for the MSB of
the product.

Further savings can be adieved by Memory Sharing
(MS). In the given example, memory cdlsy, and y, are the
same therefore only one of them can be implemented.

Address Vaue Ys Ya Y3 Y2 Y1 Yo
0 0 0 0 0 0 0 0

1 19 0 1 0 0 1 1

2 38 1 0 0 1 1 0

3 57 1 1 1 0 0 1
Addresswidth 1 1 2 2 2 1

Tab. 3. The contents of the memory (ys-yo) for different address values and the coefficient
equd 19. Addresswidth —the width of addressbus for each memory cdl

3.2. Implementation in FPGASs

The split of the multiplication argument should be
caried out with resped to the size-cost relation of memory
blocks and adders’ cost. The XC4000family incorporates
16x1 and 32x1-memory modules. The st of the 32x1-
memory modue is 1 CLB, which is twice the st of

16x1-memory module (*2 CLB). The st of the alder is
% CLB/bit. In addition, there eists a virtua memory
module 2x1 which does not occupy any CLB’s area ad
can be implemented as either a mnnedion from the input
argument to the adder input or as feading the alder with a
fix value.

a) n b) n 9 n
/|/6 6 er
4 2 4 5
Mem Mem Mem Mem
16x1 16x1 16x1 32x1
Adder Adder Adder
out out out

Fig. 5. Different reasonalde methods for implementing the multi plier with the input bus width equals 6

Consequently, finding the optimum combination of the
memory modues and adders is a difficult task, and the
solution depends on the size of an input data and a given
coefficient value. However, it can be derived by
experiments that for the input width much greder than 4
the preferable memory blocks are 16x1. Unfortunately, if
the input width cannot be divided by 4, different memory
blocks may be used.

An example of different multiplier architecdures for the
input data width equals 6 is diown on fig. 5. The hardware
requirements for these methods for coefficient equal 43

are: @) 11 ¥ CLBs, b) 12 CLBs, c¢) 12 CLBs XC400Q
therefore the differenceis very dlight. In general, however,
there is a rule of thumb that the best or aimost the best
circuit is generated by the use of only 16x1 RAMs (and
the dired connedion to an adder if the remained input bus
widthis1).

The design task is even more complicated if Virtex
family is considered. Virtex FPGAs incorporate severa
large BlockSeledRAM+ (BSR) memories which are 4 kb
in sizeand may have different data bus width: 4kx1, 2kx2,
1kx4, 512x8, 256x16 [9]. The aeain sili con, occupied by

aBSR is equivalent to roughly 16 Virtex CLBs (64 16x1-
RAMSs). However the adual cost of these memories may
differ respedably to the free FPGA resources, e.g. a
design does not implement any BSRs but uses all CLBs.
Consequently the trade-off for distributed RAMs and
BSRs is design-dependent. However general conclusions
can be derived from fig. 6. On average the equivalent cost
of the BSR 256x16 is about 8+11 Virtex CLBs (VCLBS)
which is 32+44 16x1 RAMSs.

12

/ E=
s

. e

4 3 8 10 12 14 16 18 x 2 2%
Inputt cata and coefficient vidth

Fig. 6. The area of the LM for the same inpu data and
coefficient width. A- area (in Virtex CLB= 2 XC4000
CLBs) scaled of 1:10, for the LM using only
distributed 16x1 ard 32x1 RAMSs, B- number of used
BSR 256x16, C- equivalent cost (in Virtex CLB) of a
BSR 256x16 in comparisonto distributed RAMs

It should be noted that the BSR blocks are rather large
and therefore it is difficult to find an architecure for
which the BSR is fully used. The dficiency of the BSR

Consequently, for small input data and coefficient width
(<8) the eguivalent cost of the BSR is rather small (seefig.
6). For the input width greder than 8 and up to 13 the
equivalent cost of the BSRs increases. However for the
width greder than 13, two or more BSRs and an additi onal
adder are required, therefore the dficiency of the BSRs
usage deaeases as the dfed of the large BSR quantizaion
and dstribution is again observed. For the input width
equal 16 the number of BSRs increases rapidly as the
BSRs are grouped into pairs to form a single 256x32
memory which implies low equivalent BSRs cost. As the
width again increases the equivalent cost is growing. It
seems, however that the euivalent cost equal 11 is a
maximum value that is never surpassed.

Fig. 6A shows aso the st for multipliers using only
distributed RAMSs. It can be seen a rapid grow of cost for
the width equal 9, 13, 17, 21, ... when the width surpasses
the number divided by 4.

In this paper to find an optimal solution of a multiplier
an exhausted seach algorithm (with some obvious
simplificaions) has been implemented for which BSRs
together with distributed RAMs and adders were
combined and the best circuit taken. In order to visualise
considered architedures an example of the LM for input
data and coefficient width equal 14 is shown on fig. 7. In
this example a ©mbination of BSRs and dstributed
RAMs is implemented and the alvantage hybrid solution
is shown. The given example may be een more
complicated if a wncrete wefficient value is given,
however in this ®dion, general cases are investigated for
which memory sharing (MS) and DAWR have not been
considered.

usage strongly influences its equivalent cost.
7 Ja
=7
| 7 | 5 | 4 1 [7 [5 4 1
256x16 32x1 3x16x1 | 2x1 256x16 32x1 3x16x1 | 2x1

Ji6 1 Js 0 J BT 1 Js 4

21 21

| t14

Adder

21

28

Fig. 7. The Lut Based Multiplier for input data and coefficient width equal 14

It should be noted that the optimisation program does
not assume ay initial relations between memory modules
and adders costs, therefore memory modules can be fredy
seleded and the program can be implemented for any
FPGA family or even for ASICs. The input values are an
adder and memory parameters and costs. The output of the

optimisation program is a VHDL file, which can be
synthesised and implemented into any FPGA family.

In this paper only Xilinx XC4000and Virtex famili es
have been thoroughly studied, but amost the same
properties have dso different FPGAs. For example, Altera
Apex 20K family [14] has amost the same mst-relation as
Virtex has; the Apex family implements 16x1 LUTs or

dedicated carry logic in each Logic Element (LE) and also
incorporates a large memory (128x16, 256x8, 512x4,
1024%2 or 2048x1) in eah Embedded System Block
(ESB). The size of Apex ESB RAMsi s half the size of the
Virtex BSR, however in most cases the Virtex BSR is not
fully used therefore the main difference between Apex and

Virtex seemsto be the lack of 32x1 dstributed RAMs for
Apex family.

It should be dso noted that the number of the
BSRs depends on the st relations. For example, for 16-
bit width multiplier the number of BSRs can be gradually
increases as the BSR cost deaeases.

Cost BSR No. BSRs Cost LUT RAMSs Cost Adders Eqg. Cost BSR
VCLBs VCLBs VCLBs VCLBs
>7.75 0 19 16 -
>6.5 2 9.5 10 775
<6.25 4 0 6 725

Tab. 4. Influence of the BSRs cost for the best architedure for distributed (LUT) RAMSs cost equa
16x1RAM= 0.25 VCLB and adder cost = 0.25 VCLB/bit. Relation for input data and

coefficient width equd 16

While implementing LMs it can be seen that the Virtex
BSR has not optimal parameters and often are not fully
exploited. Memory modues 4kx1, 2kx2, 1kx4 and 512x8
have never been implemented, the memory module that
has been only used is the 256x16 RAM. Even 256x16
memory modues are very seldom fully exploited. For
example on fig. 7, one adress line is not used, which
causes that only half of the memory is used. Therefore a
question arise what optimal memory size is. A genera
answer isthat memory data width should satisfy:

Wo= We + W - W, (7)
where: Wp — memory data width, W — width o the
coefficient, Wy- memory address width, W-
addresswidth of LUT RAM, W, = 5 for Virtex

From eg. 7 it can be seen that for W= 13 and W= 8
the result is Wp= 16 which correspond with the 256x16
memory modue, therefore the maximum of equivalent
BSR cost is observed in fig. 6 for the input width equal 13.

Additional hardware savings can be obtained if not full
binary range of input data is used. For example, for the
input data range 0-127 (binary range) and 0-99 (dedmal
range) and the coefficient equal 81 the implementation
resultsare 14.5 and 13.5 XC4000 CLBs respedively.

Further design optimisation can be adieved for
negative numbers. In general a design can be divided into
4 regions:

» Coefficient and input data ae postive- there is not
negative number optimisation.

« Coefficient is postive, input data is in two's
complement format (negative or positive). In this case
only the MSBs LUT operates on two's complement
data. However the MSB LUT output can be dther
positive or negative therefore design optimisation
cannot be implemented.

* Negative mefficient and pasitive data. All LUTs
operate on two’'s complement numbers, but it can be
sea that the outputs are dways negative therefore

additions can be replacal by subtradions and in this
way al LUTs will operate only on positive data. In
conseguence, the LUT sign bit need not be aded - the
width of each LUT will be one line shorter. However
the double subtradion (s=-a-b) cannot be implemented
into FPGAs and will be postponed to the next level of
addition (s= -(at+b)), which implies that the result of
the alditions (s= -a-b-c-d-..= -(a+b+c+d+...)) should
be negated, this however requires an additional circuit.
Therefore the best solution is to implement substation
for al but the LSB LUT. This implies that double
subtradion chain is broken and the copy of LSBs (see
Sedion 0) is achieved.

* Negative wefficient, two’'s complement data. In this
cese dl but the MSBs LUT, operate on negative-only
numbers and should be implemented as in the previous
region. The MSBs LUT operates on either pasitive or
negative numbers, therefore may be implemented as an
addition. However this addition distrads subtradion-
addition chain and causes that the LSBs copy does not
ocaur. In conclusion the MSB LUT should be dso
implemented as a subtradion therefore the drcuit is
implemented in the same way as in the previous
region.

4. Comparison of the multipliers

In this paper two dfferent multiplicaion techniques
have been presented: the multiplierless multiplication
(MM) and the LUT based multiplication (LM). Therefore
a question arises which of them is more hardware
efficient. The statisticd cost-relation between the MM and
LM for XC4000is shown on fig. 8. Accordingly, the LM
is usually more dtradive for the input and coefficient
width less than 5, for the greaer widths a better result is
usually obtained by the use of the MM. It should be noted
that the coice of the best architecture depends on the
adua coefficient value and fig. 8 shows only statisticd
relationship. Therefore both architedures should be

considered and the best of them chosen. However, form
fig. 8 it can be seen that the gain from considering best of
the LM and MM isinsignificant for K greaer than 5.

Form fig. 8 a general conclusion can be drawn. The
MM implements more hardware reduction (using more
efficiently the CSD and S with the increasing number of
width K. Therefore for greaer K, the MM is getting more
and more dtradive in comparision to the MM. The next
asped is how much hardware reduction is achieved by the
use of the DAWR and MS for the LM. Experimental
results show that the gain is on average 5+20% depending
on the input width K.

oLMMM
14+ |mMMbest

09 4

08 -
3 4 5 6 7 8 9 10 11 122 13 14 15 K

Fig. 8. Relation between average area of XC4000
occupied by: LM/MM — using oy LM and ony
MM; MM/best — using oly MM and the best of LM
or MM. Results for the different inpu width K
(input range 0+2-1) and coefficient values 1+2“-1

5. Conclusions

This paper investigates two dfferent methods of
implementing multiplication: the LUT based
multiplicaion (LM) and multiplierless multiplication
(MM). The implementation results sow that for a small
input width, the LM is usualy the best choice, but with the
increase of the width the MM is getting more and more
attradive due to greder effediveness of the CSD and SS
methods.

Furthermore, an improved algorithm for conversion
from the two’s complement to the CSD representation has
been introduced. This algorithm considers that the st of
the subtradion is often higher than the mst of the aldition
as the wpy of the LSBs cannot be implemented for the
subtradion. Consequently, a subtradion (CSD
representation 1) isimplemented only if the total number
of operation deaeases. In addition, for the LM the
combination of different memory modules has been
studied. This asped is very important as FPGAs
incorporate different memories and therefore finding the
optimal memory configuration is a complex task that has
been solved. At the end, the st/spead relationship
between presented architedures has been presented for
Xilinx XC4000

In this paper the methods and implementation results
for constant coefficient multiplier have been presented.
But the main reseach effort, which has been passed over,
was development of an multiplication automated tool
(MAT) which can generated a synthesable VHDL code of
any constant coefficient multiplier. The MAT does not
assume any circuit constrains therefore can be used for any
FPGA and even ASIC designs. The input parameters: an
input data range, a @efficient value @ well as an adder
and flip-flop cost and memory modue sizes and costs can
be fredy spedfied and the MAT will generate the optimal
multiplier circuit. This allows that not only the generated
circuit is hardware-efficient (better than commercial
automated tool) but also the design time is significantly
reduced.

References

[1] Waser S. High-speed mondlithic multipliers for real-time
digital signal processng, |[EEE Computer Magazne, Vol.
11, No. 10, pp.19-29, 1978.

[2] WallaceC.S. A suggestion for a fast multiplier, IEEE Trans.
On Eledron. Comput., Vol. EC-13, pp. 14-17, 1964.

[3] Chapman K. Constant Coefficient Multipliers for the
XCA400CE. Xilinx App. Note, XAPP 054 December 1996.

[4] Petersen R., Hutchings B.L. An Assesarment of the Suitability
of FPGA-Based Systems for Use in Digital Sgnal
Procesing, In 5th International Workshop on Field
Programmable Logic and Applications, Oxford England,
pp. 293-302, August 1995.

[5] Wirthlin M.J., Hutchings B.L. Improving Functional Density
Through Run-Time Constant Propagation, ACM/SIGDA
International Symposium on Field Programmable Gate
Arrays, pp. 86-92 (1997).

[6] Samueli H.,”An imroved seach algorithm for the design of
multi plierless FIR filters with power-of-two coefficients’,
IEEE Transactions on Circuits and Systems, Vol. 36, pp.
1044-1047, July 1989.

[7] Garner H. Number Systems and Arithmetic, Advances in
Compuiting, vol. 6, pp. 131-194, 1965

[8] Pirsch P., Architecures for Digital Signal Processng, Wiley
1998.

[9] Xilinx Co. Using the Dedicated Carry Logic in XC4000E,
Xilinx Application Note XAPP013 July 4, 1996.

[10] Hartley R.I. Subexoresson Sharing in Filters Using
Canonic Signed Digit Multipliers, IEEE Transadions on
Circuits and Systems Il — Anadog and Digita Signd
Processng, vol. 43, no. 10, Oct. 1996

[11] Parker D.A. Parhi K.K. Low-Area/Power Paralle FIR
Digital Filter Implementations, Journa of VLS| Signal
Processngs 17, 75-92, Kluwer 1997.

[12] Chapman K. Fast Integer Multiplier fit in FPGA's, EDN
1993 Design IdeaWinner, END May 12" 1994.

[13] Omond A.R Computer Arithmetic Systems. Algorithms
Architecure and Implementations, Prentice Hall 1994.

[14] Altera Co. Apex 20K Programnmable Logic Device Family,
Data Sted, ver. 2.05, Nov. 1999.

[15] Xilinx Co. Core Generator Foundation 2.1i Software
Padket, 1999.

