| mplementation of Convolution Operation
on General Purpose Processors

Ernest Jamro, Kazimierz Wiatr

AGH Technical University, Institute of Electronics
Mickiewicza 30, 30-059 Krakow, Poland
tel. +48 12 6173033, fax +48 12 6332398, email: wiatr@uci.agh.edu.pl

Abstract

Convolution (FIR filtering) is a computationally demanding operation, especialy when
performed as a two-dimension (2D) operation in a real time image processing system.
Consequently, a great amount of research has been done to perform this operation more and more
efficiently. This paper reviews different architectures of general-purpose processors giving the
example of Pentium family. In recent years a rapid development of microprocessors have been
observed, however, it can be seen that architecture of microprocessors is aready complex and a
further rapid increase of the calculation speed rather limited. Dedicated processors implement
convolution operation very efficiently, nevertheless, the design is not flexible which makes
design development, test and upgrade difficult.

Topics. image processing, real-time vision systems

1 Introduction

Convolution may be a computationally demanding operation. For example, for image
parameters: resolution 512x512 (Nx= 512, Ny= 512), number of frames Ng= 25/s and kernel size
NxM= 3x3, area-time image cnvdution [Cas96, Gon87,Wia97] requires Ly= NxMyMeMNMMN=
58 982 400 multiplies and La= NxMyMe(NM-1)= 52 428 800 additions per second. Such the
amount of operations is a dhallenge for nowadays architedures. Furthermore, the parameters of
the cmnvdution can change; e.g. the size of the wnvdution kernel 3x3 is one of the smallest and
often larger kernels are adopted, e.g. 7x7. Correspondngly, the image resolution and the refresh
rate can incresse [Wiad7], which significantly increases computational requirements of the
convder.

Convdution, in spite of its mathematicd simplicity, is a grea chalenge for engineas
because of its computational requirements. Two-dimensional convdution (or a 2D FIR filter) is
spedfied as foll ows:

1 N-1M-1

by+N/2, X+M /2 :BZ Z\Nl] |}'y+i,x+] (1)
1=0 1=

where: N, M — the size of the onvolution kernel (usually odd numbers), a, - an inpu, by, — an
output, w; j- a coefficient of the anvolution, D- a comnon denominator.

In this paper, al variables in eg. 1.1 are integers, which significantly simplifies the
architecture of the convoler. This assumption seldom confines the filter characteristic which can
be adjust by a proper change of the coefficients value and the value of the common denominator
D. Furthermore the denominator D is a power of two, consequently the division can be
substituted by a bit shift. In some solutions, even coefficients w;; are a power of two [Gon87,
Cas96, Russ95] and multiplication can be substituted by addition. The examples of these filters
aregivenin Table 1-1.

a) D=16 b) D=1 c) D=1
1] 2] 1 1] 2] 1 1] 1] 1
2| 4] 2 0/ 0] o 1| -8 1
1] 2| 1 1] 2| 1 1] 1] 1

Table 1-1. Examples of standard image processing convolution kernels which do not require
multiplication: @) low-pass b) Sobel gradient c) Laplacean edge detection

It should be noted that the convolution is a common operation and the example of the real-
time image convolution is given hereby to illustrate the problem. For example, a convolution
operation is often performed for prediction in artificial neural networks [Meh97]. Besides
arithmetic operations for convolution and neural networks are similar. In conclusion, there is a
great pressure to produce faster and faster convolers to cope with new, more computationally
demanding requirements. Consequently, this paper is an overview of architectures that are
capable of performing the real time image convolution.

2 General purpose processor

The most commonly used general-purpose processor is family of 8086 [And95, Bre9d7].
This processor has a complex architecture which is not optimal for convolution, however it is
commonly used and therefore can be quickly and easily adopted as a convolution processor.

To illustrate the convolution process on the general-purpose processor, an example of C-
language procedure is given in Listing 2-1.

congtint M= 3, N=3; // the size of the convolution kernel: M- horizontal; N- vertical

congt int Nx= 512, Ny= 512; // image resolution: Nx- horizontal, Ny- vertical

const int D= 16; // the common denominator (see eg. 1.1)

BYTE aNy+1+N][NXx]; // the source image which has been enlarged to eiminate padding effect. The actual image
isfromline 1+N/2 to Ny+N/2. The rest of image a is specified to minimise the padding effect.

BY TE b[Ny][NXx]; // the destination image

int wN][M]={1,2,1, 2,4,2, 1,2,1}; // coefficients of the convolution given in Table 1-1a

void
convol2()
{ BYTE*pa= &a[0][Nx-M/2]; // the pointer to the source pixels (points top-left pixel of the convolution window)
BYTE *pb= &b[0][0]; // the pointer to the destination pixel
for(int y= 0; y<Ny; y++) // for every line of the image
{ for(int x=0; Xx<NX; x++, pb++, pat++) // for every pixel in theline
{ register BYTE *pw=w[0]; // the pointer to the coefficients.

register BY TE *pal=pa; // painter to the current source pixd
register int sum= D/2; // accumulation result —initially D/2 to minimise division rounding err or
for(int i= 0; i<N; i++) // vertical convolution
{ for(intj=0; j<M; j++) // horizontal convolution
sum+= *pw++ * *pal++; // the kenel of the cwnvolution
pal+= Nx-M; // palwill point thefirst pixd inthe nex line

sum/= D; // division by the comnon denominator (D isa power of two so it is substituted by a bit-shit)
*pb= (BYTE) sum; // conversion fromint (4 bytes) to 1 byte variable, savethe result.
}
}
}

Listing 2-1. C-language procedure for the convdution.

Listing 2-1can be further optimised by the foll owing procedures:

1. theloops unrolling

2. rewriting the mnvdution pocedure in the assembler language

3. rewriting the assembler language procedure with respect to the superscalar architecture of the
Pentium procesor

4. employing MM X processor and its Single Instruction-stream Multi ple Data-stream (SIMD)
[Fly66] architedure

2.1 Loop unrolling

In most cases, the size of the cnvdution kernel is fixed and therefore the convdution
loops (loops: i andj in Listing 2-1— haizontal and werticd part of the cnvdution) can be easily
unrolled by writing down NxM times the multiplicaion and addition operations. The loop
instruction contains two asembler instructions:

e dec decrement the loop courter
e jnz condtiona jump.
The benefit from the loop umolling is nat only fewer instructions to be exeauted but also fewer
procesor stalls. The stalls are caused by the @ndtional jump instructions which interfere with
pipeline achitecture of the processor [Mad95, Hwa93]. The pipelining effeds that every
instructionis exeauted partially in subsequent clock cycles. For example, Pentium 75 exeautes an
instructionin 5stages [And99:
fetching
deaoding (stage 1)
dewoding (stage 2)
exeaution
updating registers

As a result of pipelining, the branch is finally exeauted in the last stage, therefore,
instructions following the branch shall not be exeauted urless the branch is not taken.
Consequently in 80486 pocesors, these instructions were nat fetched urtil the branch instruction
was finaly exeauted. This caused the processor stalls. To improved procesor performance in
Pentium, branch prediction together with Branch Prediction Buffer (BPB) [And95,Int97a] have
been introduced. This allows the processor to deaode instructions beyond branches to keep the
instruction ppeline full [INt970. The drawback of the branch prediction is that branches are

arwnNE

predicted incorrectly with a cetain probability, p>0. Each misprediction causes a restart of the
pipeline, which has smilar effeds as nat fetching the instructions until the branch is exeauted.

Therefore to decrease misprediction ratio, Pentium 75 wses two updown courter with
saturation to keep track of the diredion a branch is more likely to take [Smt81, And95. Taking
into acount the mwnvdution process(Listing 2-1) and the @owve branch prediction procedure, an
asumption can be made that the processor will predict the loop to be exeauted infinitely,
therefore every loop-braking causes the processor stalls. It shoud be noted that penalty for
misprediction is even geder for the latest processors as the number of pipelining stages is
increasing, e.g. Pentium Pro has 12 stages [Int97h]. Thisis confirmed by implementation results
presented in Table 2-1 where t /t,= 1.42 for P75, and 2.22 for Athlon 80MHz; where: t, -
cdculationtime withou loop umolling, t, - with loop unolling. The @dove prediction schemeisa
basic one and rmowadays more sophisticaed kranch prediction pocedures have been
demonstrated, e.g. [Eve98] where branch prediction scheme can detect loops and an additional
loop courter isincluded.

It shoud be noted that loop umolling not only decreases the number of instructions to be
exeauted, eliminates branches and kranch misprediction effeds but aso improves instruction
level parall elism, which will be gproached in the next sedion.

2.2 Superscalar architecture

In a superscdar processor [Hwa93] multiple instructions pipelines are used. This implies
that multiple instructions are issued per cycle aad multiple results are generated per cycle.
Superscdar procesrs are designed to exploit more instruction level parallelism in a user
program.

The superscalar architecture was introduwced in Pentium 75 (P75 [And9F which
incorporates two parall e integer processng units:

e Integer unit U
e Integer unit V

The number of parald units has increased in the latest procesors. For example, Pentium
Pro incorporates threeway superscdar architedure [Int97h], Pentium 4 incorporates Rapid
Exeaution Engine [Int0Q] for which the ALUs run two times the frequency of the processor core.

Taking into accourt the P75, two integer instructions can be exeauted in a single dock
cycle. However, some instructions canna be exeauted in paralel, e.g. ‘V’' unit canna exeaute
shift instructions or two multiplicaion canna be exeauted in perallel [And95,Int97a]. Besides,
some instructions canna be exeauted in parall el because of register contention, e.g. the result of a
‘U’ instructionwhich is currently exeauted, isinput toa*V’ instruction.

In conclusion, seldom al units of the superscalar architecture ae fully exploited. Only
independent instructions can be exeauted in perallel withou causing await state and therefore the
superscdar procesor depends grongly on an optimising compil er to exploit parall elism.

As aresult of the @ove conclusions, Listing 2-2b shows an assembler code which better
exploits the superscdar architedure of the P75. Nevertheless optimised code (Listing 2-2b) is
exeauted only 10% quicker (seeTable 2-1 for the P75) than nan-optimised code (Listing 2-2a).
This is as the multiplicaion is a cmplex instruction which requires svera clock cycles to be
exeauted and canna be arried out in perallel. Besides nonoptimised code can somehow exploit
the superscdar architedure of the processor. For convdution filters withou multiplicaion the
optimised code is exeauted 25 quicker.

a)
/I pixel 3 (top-right pixel in the convolution window)
xor edx,edx // clear edx
mov dl, byte ptr [exx+2] // load data a (pixel 3)
imul edx,dword ptr [edi+8h]//multiply: pixel3* w[0][2]
add ea, edx // accumulate the result of the multiplication
Il pixel 4 (left middle pixel)
xor edx,edx // clear edx
mov dI, byte ptr [ecx+200h] // load pixel 4
imul edx, dword ptr [edi+0Ch] // edx= pixel4 * w{1][0]
add e, edx // accumulate the result of the multiplication
b)
xor edx, edx //start of calculation for pixel 3: clear
imul ebx, dword ptr [edi+4] //pixel2: ebx=pel2*w[0][1]
mov dl, byte ptr [exx+2] // pixel 3: di=pel3
add eax, ebx // end of calculation for pixel2: eax+= ebx
imul edx, dword ptr [edi+8] // pixel 3: edx=pel3*w[0][2]
xor ebx, ebx // start calculation for pixel 4: clear
add ea, edx // end of calculation for pixel 3: eax+= edx
mov bl, byte ptr [ecx+200h] // pixel 4: bl= pel4

Listing 2-2. A fragment of the 3x3 convdution (Table 1-1a) assembler code for @) scaar, b)
superscdar architedure.

To further exploit the superscdar architedure, speculative exeaution haes been introduced in
the latest processors, which allows for out-of-order exeaution, and therefore a code is internally
optimised for the superscdar architecure of a particular processor. Consequently, a programmer
need na optimise a ®de every time the number of parallel units increases. Nevertheless for
speaulative exeaution and three parallel units, the cdculationtimeis shorter (up to 8%, seeTable
2-1) for the two-way optimised than nonoptimised code. This is probably because the
speaulative exeaution algorithm is not perfect and the optimised code is easier to be exeauted ou-
of-order. Besides the number of instructions in the loop has been reduced from 37 to 35 for
optimised code.

It has been olserved that the average value of instructions exeauted in parall e isaround 2
for code withou loop umolling [Hwa93]. Even with loop umalli ng, instruction-issue degreein a
superscdar procesor has been limited to 2to 5in pradice[Hwa93, Tul95]. Let consider the case
of the Pentium processors, it can be seen from Table 2-1 and Table 2-2 that average number of
instructions exeauted by the P300 and Athlon 800in a single dock cycle is up to the 2.3, for
P166 it is abou 1.17 (option withou multiplicaion). It shoud be however noted that the
improvement has been also achieved by reducing the number of clock cycles required to perform
the multiplicaion. In conclusion, superscdar architedure quickly gets sturated, i.e. increasing
the number of paralel units requires much greater hardware epense but causes little
improvement.

An dternative solution is smultaneous multithreading, a technique permitting several
independent threads to isaue instructions to a superscalar’s multiple functional units in a single
cycle [Tul95]. This techniques allows better utili sation d superscdar units as different threads
can isde their instructions in such a way that register contentions, memory missor conflict and

even branch misprediction penalty is significantly reduced. For example, while one thread waits
for data transmitted from external memory, others can issue their instructions to keep all
processing units busy.

2.3 Vey Longlnstruction Word (VLIW)

The superscalar architecture requires complex instruction decoding, dispatching and
speculative execution units. An alternative solution is the VLIW [Hwa93] architecture for which
different fields of the long instruction word correspond to different functional units and therefore
decoding and dispatching instructions is much easier. Unfortunately, a VLIW code has to be
recompiled for a specified machine. Furthermore, for a superscalar processor the code density is
greater as the fixed VLIW format includes bits for nonexecutable operations, while the
superscalar processor issues only executable instructions.

The VLIW architecture is seldom employed in general purpose processors as tasks of the
processors are unknown and therefore it is difficult to optimise functions of the processors units.
On the contrary, the convolution operation is well defined and requires basicaly four (six - if
processor does not support addressing with offset) different operations:

» load the coefficient (and increment the coefficient pointer),

* load theinput pixel (and increment the input pixel pointer),

* multiply,

» accumulate.

Consequently, these four (six) operations can be executed in a single VLIW instruction in DSPs
which are optimised for digital signal processing.

An interesting solution has been implemented in Crusoe processor by Transmeta [Kla00].
This processor has a VLIW architecture which is able to perform 3 integer and one floating point
operationsin parallel (see Figure 2-1).

128 bits
FADD ADD LD BRCC
Floating Integer Load/Save Branch
Point Unit ALU Unit Unit Unit

Figure 2-1. Crusoe processor can execute up to four operationsin parallel.

In comparison to the Pentium processor, Crusoe processor does not require the complex
decoding and dispatching module. Therefore, it requires ssmpler hardware and consumes much
less power. Furthermore, Crusoe processor incorporates dynamic transation system, denoted as
Code Morphing which complies the x86 instruction set into the host VLIW instruction set. The
processor can therefore run standard x86 programmes because code trandation is invisible to the
external system. It should be noted that Pentium processors decode and dispatch instructions

every time they are exeauted. Conversely, Transmeta's ftware transates instructions once,
saving the resulting tranglation in a translation cache [K1a00]. The next time the (now trandlated)
x86 code is exeauted, the system skips the trandation step and dredly exeautes the existing
optimised trandation. As most code is exeauted severa times in a loop, trandation overheads
have littl e influence on the system performance Furthermore, the trandation is caried ou only
once and therefore it can implement a complex algorithm which better optimises code than e.g.
the Pentium processor does. Besides, as an application is exeauted, Code Morphing ‘learns’ more
abou the program and improves it so it will exeaute faster and faster. For example, aware of the
branch history, the programs can favour the most frequently taken peth, a exeaute cde from
both paths and seled the corred result later if both peths are taken with equal probability. It is
important to nde that Crusoe hardware can achieve excdlent performance because it has been
designed spedfically with dynamic trandationin mind.

New Pentium 4 procesoor adoped a similar but much simpler instruction decoding
solution. The hardware instruction decoder can decode maximum one instruction per clock cycle.
The decoded instructions are stored in the exeaution trace cache (TC) [Int0O0] and then are
exeauted dredly from the TC. This removes decoding costs on frequently-exeauted code. In
Pentium 4 processor implementation, the TC can hdd upto 12K pops and can deliver up to three

Hops per cycle.

24 SIMD

A single Instruction strean over Multiple Data stream (SIMD) [Fly72] architecture dlows a
single instruction to be exeauted on several independent data simultaneously. This sgnificantly
simplifies the instruction deaoding process as only asingle control unit is required.
Consequently, in the Pentium processor, a MultiMedia eXtension (MM X) [Int971 coprocessor
has been introduced which operates on 64 lits data and therefore can processeight independent
8-hit-wide data simultaneously. In the cae of the image convdution, inpu pixels are 8 hits
unsigned data, however intermediate results are 16-bit wide, and therefore up to four data can be
processed simultaneously. Examples of MM X instructions are given in Figure 2-2.

a) b)
MMo| s | T | U | VvV | MMO| S | T | U | V
X X X X X X X X
MM1 | w | X | Y | zZ | MM1 | w | X | Y | Z
MMO [sw | TX | uy | viz | MMO [SW+TX | UIY+VIZ

Figure 2-2. Example of MM X instructions: a) multi plication PMULLW MM O, MM 1, b) multiply
and accumulate (MAC) PMADDWD MMO, MM 1

Additional computation pover is obtained by superscdar architedure of the MMX
coprocessor, as two MM X instructions can be exeauted in parallel provided that different MM X
resources are enployed.

Convolution operation can be carried out in two different ways. In the first one, given in
Listing 2-3m only one result is obtained at the time. This solution exploits MM X multiply and
accumulate (MAC) instruction (PMULLW), therefore it might seen that this is the best solution.
Unfortunately, input data format causes that every MAC operation performs four multiplies (for
every input row) but only three are used. Besides two partial results are obtained in two halves of
the MMX register, and therefore integer units have to be used to carry out the final addition. The
aternative solution is presented in Listing 2-3n, for which four results are obtained
simultaneously. This option carries out multiply and add instructions independently, and input
and output data better suit the convolution process and therefore al instructions except the loop
instructions are carried out employing only MMX instruction which are fully exploited. The
latest solution reduces calculation time in comparison to the former solution (see Table 2-1). It
should be noted that option n alows for saturating the result (e.g. setting the output to the
maximum value (255) if the result is overflowed (=256)) during conversion from the word to byte
format.

m) n)

beg: // label for loop start beg: // label for loop start

movd mmoO, dword ptr [ecx] // load row 0 movd mmoO, dword ptr [ecx] // load pixel (0,0)

movd mm1, dword ptr [ecx+200h] // load row 1 punpcklbw mmO, mm7 // convert byte to word; mm7= 0

movd mm2, dword ptr [ecx+400h] // load row 2

movd mm1, dword ptr [ecx+1] // load pixel (0,1)
punpcklbw mmO, mmb5 // convert byte to word pmullw mmO, mmé6 // multiplication for pixel (0,0), mm6=1,1,1,1
punpcklbw mm2, mm5 // mmb —contains only zeros punpcklbw mm2, mm7 // convert byte to word, pixd (0,1)
punpcklbw mm2, mm5

movd mm2, dword ptr [ecx+2] // load pixel (0,2)

pmaddwd mmO, mmé // MAC; mnb= 0, 1,2,1 pmullw mm2, mm5 // multiplication for pixel (0,1); mnb= 2,2,2,2
pmaddwd mm1, mm?7 // mnv’= 0,2,4,2 punpcklbw mm2, mm7 // convert byte to word for pixel (0,2)
pmaddwd mm2, mm6 paddw mmO, mm1 // add products for pixels (0,0) and (0,1)

/I continue for therest of pixels
paddd mmO, mm1 // accumulating the MAC results

paddd mmO, mm2 // result in mnD pmullw mm2, mmé6 // multiplication for pixel (2,2), mm6=1,1,1,1
[integer units operations paddw mmO, mmz2 // the final result

movq [edi], mmO // save register MMX to memory

movd eax, mmO // load LSB half of the register MMX paddw mmO, mm3 //add to reduce rounding error, mn8= 8,8,8,8
add eax, [edi+4] // add LSB and MSB half of the register MMX psrlw mmo, 4 // divide by 16

add eax, 8 // add 8to reduce rounding error packuswb mmO, mm7 // convert the result fromword to byte

inc esi // increment pointer to the destination add ecx, 4 // increment source pixels pointer

sar eax, 4 // division by 16 —prescaling movd dword ptr [esi], mmO // savethe result

inc ecx // increment pointer to the source pixel add esi,4 // increment the result pointer

mov byte ptr [esi], a. // load the result to memory dec ebp // deaement the loop count

dec ebp // deaement the loop count jnz beg // quit the loop?

jnz beg // finish the loop?

Listing 2-3. Fragments of 3x3 convolution programs for different options and convolution kernel
givenin Table 1-1a

The calculation time when the MM X coprocessor is employed, is significantly reduced
especialy for the P166 (by 75%, see Table 2-1). For the latest processors, however, more
sophisticated superscalar integer units are incorporated, therefore the speed-up is less significant.

New Pentium 4 can operate on 128 bits-wide data using SSE2 instructions which are
similar to the MMX instructions [Int00]. Consequently, the speed-up by the use of SIMD
instructions will be even greater, and it seems that in the future, new releases of processors will
be able to process greater and greater data width in SIMD instructions.

2.5 Implementation results

Table 2-1 and Table 2-2 gves implementation results for different processors and dff erent
options. The following convdution ogions have been implemented:
a) standard algorithm written in C language (Listing 21),
b) after unrolli ng the wnvdution kernel (loopsi, j in Listing 2-1) written in C language,
c) like option b but program is written drectly in assembler language,
d) like option c — after optimisation for the superscdar architedure,
e) like option ¢ but without multi pli cation (only shifts are implemented, the convdution kernel is
givenin Table 1-1a),
f) like option e — after optimisation for the superscalar architecture,
g) likeoptionf but input and ouput data pointers are nat incremented to avoid cash misses,
m) employing MM X coprocessor (Listing 2-3m),
n) employing MM X coprocessor, four pixels are cdculated simultaneously (Listing 2-3n).

All options, except option g, have been referred in the previous sedions. Therefore only
option g will be now approached. It can be seen from Listing 2-2 and Listing 23 that
approximately every second instruction communicaes with memory and consequently memory-
transfer might be a bottlenedk of the system. Fortunately, al tested processors incorporate
internal cache memory [Hwa93, And93, which significantly reduces external memory transfers.
Nevertheless cache misses might still cause deterioration d the processor performance
Consequently, in ogtion g input and ouput data pointers are not incremented and therefore the
convdution operates only on 9inpu and 1 ouput pixels. This causes that the result of the
convdution is corrupted; conversely the externa memory transfer is not needed. Option g, in
comparison to the crrespondng option f, gives up to 10% improvement. For the latest versions
of the procesrs, however, the drawback of the cahe missis increasing (see Table 2-1). It
shoud be noted that SSE instructions allow software cntrolled data-perfeding, which can
eliminate the catie misses.

Option A b c d e f g m n
Number of instructions - - 42 42 37 35 35 21 43/4
intheloop
Time [ms]
486DX4-100 670 465 460 435 147 134 131
P75 587 414 403 366 95 70.3 67.6 - -
P166 247 175 169 159 45 32 30 60 26
P300 486 | 258 226 228 16.6 156 14.0 221 9.1
Athlon 800MHz 25.8 116 104 9.9 6 5.5 5 126 7.2

Table 2-1. Number of asembler instruction in the loop and calculation time for different
procesors and ogions

Option a B c d e f g m N
486DX4-100 256 | 177 175 166 56 51 50 - -
P75 168| 118 115 105 27.2 201 19.3 - -
P166 156 111 107 101 285 203 19.0 380 165
P300 55.6 295 259 26.1 19.0 17.9 16.0 253 104
Athlon 800MHz 787 354 317 30.2 183 16.8 153 385 220

Table 2-2. Number of clock cycles required to cdculate asingle output pixel for different
procesors and ogions

3 Conclusions

A genera-purpase processor, in spite of its complex architedure, is the eaest solution
for implementation d the convder because the processor and its development environment are
commonly available. Conversely, optimisation d the convdution code requires assembler and
system level programming which knowledge is limited. However the primary drawback of the
general-purpose processor is tasks daring; the wnvdution operation may interfere with ather
tasks and Jice versa. Besides in spite of its rapid speed-up, the procesor is dill not able to
processlarge convdution kernels and image resolutions.

Architedure of microprocesors begins to saturate; a significant increase of hardware
complexity results in a much less sgnificant seed-up. Therefore in the future, further
development of the complex superscalar procesors is unlikely. Instead many processors will
operate in parale or a simultaneous-multithreading processor will be introduced. This however
will i ncrease the demand for cache memory which occupies sgnificant chip area Furthermore,
paralel processng has sveral drawbacks like memory access contention, multiple-threads
synchronisation, etc. [Hwa94], which significantly compli cates the achitedure and programming
of the paralel system. Besides, oltained speed-up is often na propational to the number of
additional parald units.

Field Programmable Gate Arrays (FPGAs) solution is an dternative to the
microprocesrs. FPGAs are more and more commonly implemented in regions originally
reserved for DSPs or even ASICs. Furthermore FPGAS' density grow surpasses the cournterpart
grow. FPGAs are very scdable on hghly concurrent tasks. Furthermore, taking into accourt the
silicon area and throughpu, the FPGAs sgnificantly outperform microprocessors [DeH98], and
in the future the performance gap will further increase. Microprocessors must confront
overheding effect, which significantly constrains design of the microprocessors. For FPGAS,
however, this problem is much less $gnificant, and in most cases, isnat considered at all.

It shoud be noted that FPGAs density increases very rapidly (abou 10 times in two
yeas) and FPGAs expand much qucker than the microprocesors do. According to Xilinx Inc.,
the FPGA convdution pocesr is cgpable of performing roughly 100 times more MACs per
semnd than DSPs do. In conclusion, FPGAs sans to be the most efficient and prosperous
architedure for the future.

References

[And9g Anderson D.: Shanley T. Pentium Processor System Architecture. Addision-Wesley 1995

10

[Bre97] Brey B. B.: TheIntel Microprocesrs. Prentice-Hall 1997
[Cas96] Castleman K. R.: Digital Image Processing. Prentice Hall 1996
[DeH98] DeHon A.: Comparing Computing Machines, SHE Conference on Configurable Computing,
Technology and Appli cations, Boston, Massachusetts, Nov. 1998
[Eved8] Evers M., Patel S. J., Chappell R. S., and Patt Y.N.: Analysis of Correlation and Predictability:
What Makes Two-Leve Branch Predictors Work, Proc. of the 25th International Sympasium on
Computer Architedure, Barcelona, June 1998
[Fly66] Flynn M. J.: Very High-Spead Computing S§stems. Proc. IEEE, Vol 54, New York 1966,Nr 12
[Gon87 Gonzalez R., Wintz P.: Digital Image Processng, Addision-Wesley 1987
[Hwa93] Hwang K.: Advanced Computer Architecture. Parallelism, Scalability, Programmability
McGraw-Hill Singapore, 1993
[Int974] Intel Co.: Intel Architecture Sdtware Dewloper’s. Manual Volume 3. System Programming
Guide. (Order Number 243192). Intel Corporation 1997
[Int971 Intel Co.: Intel Architecture Sdtware Developer’s. Manual Volume 1. Basic Architecture. (Order
Number 243190). Intel Corporation 1997
[IntOQ] Intel Co.: A Detailed Look Inside the Intel NetBurst Micro-Architecture of the Intel Pentium 4
Processor, Intel Corporation 2000
[KIa00] Klaiber A.. The Tedhnology behind Crusoe Processors. Transmeta Co. Jun 2000
http://www.transmeta.com/crusoe/downl oad/pdf/crusoetechwp.pd
[Mad95] Madisetti V. K.: VLS Digital Sgnd Processors. Butterworth Heinemann 1995
[Matrox] MATROX: Matrox MIL-32 Library. Matrox Electronic Systems Ltd, htp://www.matrox.com
limgweb/
[Meh97] Mehrotra K., Mohan C. K., Ranka S.: Elements of artificial neural networks, MIT Press,
Cambridge, London, 1997
[Omo94 Omond A.R.. Computer Arithmetic Systems. Algorithms Architecture and Implementations,
Prentice Hall, UK, 1994
[Rus95] Russ J. C.: The Image Processing Handbodk, BocaRaton FL, CRC Press1995
[Smt81] Smith J. E.: A study of branch prediction dtrategies, Proc. of the 8th Annua International
Sympasium on Computer Architecture, 1981, pp.135-148
[Tul95] Tullsen D., Eggers S., Levy H. Smultaneous Multithreading: Maximizing On-Chip Parallelism
Proceedings of the 22rd Annual International Sympaosium on Computer Architecture, June 1995
pp. 392403
[Wia97] Wiatr K.: Dedicated Hardware Procesrs for a Real-Time Image Data Pre-Processng
Implemented in FPGA Sructure. Ledure Notes in Computer Science - no 1311(Ed. Alberto Dd
Bimbo), Proc. of the 9th International Conference on Image Analysis and Processing - ICIAP 97,
Florence- Italy 1997,Berlin, Springer-Verlag 1997,vol. I1, pp. ®-75
[Wia98a] Wiatr K.: Pipelined Architecture of Specialised Reconfigurable Processors in FPGA Structures
for Real-Time Image Data Pre-Processng. Proc. of the EUROMICRO International Conference:
Digital System Design: Architedures, Methods and Tools, Vasteras - Sweden 1998, IEEE
Computer Press Washington-Brussls-Tokyo 1998, pp131-138
[Wia98b] Wiatr K.: Dedicated System Architecture for Parallel Image Computation used Specialised
Hardware Procesors Implemented in FPGA Sructures. International Journal of Paralel and
Distributed Systems and Networks, vol. 1, No. 4, Fittsburgh, 1998 pp. 161168
[Wia00a] Wiatr K., Jamro E.: Implementation Image Data Convolution Operations in FPGA
Reoonfigurable Sructures for Real-Time Vison Systems, Proc. of the IEEE International
Conference on Information Technology: Coding and Computing ITCC 2000,Nevada 2000, IEEE
Computer Society — Washington —Brussels— Tokyo 2000, pp. 15457
[Wia00b] Wiatr K., Jamro E.: Constant Coefficient Multiplication in FPGA Structures. Proc. of the 26"
Euromicro Conference on Digital Systems Design: Architecture, Methods, and Todls, Maastricht,
Netherlands 2000, IEEE Computer Society — Washington —Brussels— Tokyo 2000, pp252-259

11

[Wia0la] Wiatr K. Jamro E.: Implementation of Multipliers in FPGA Sructures, Proc. of the IEEE
International Symposium on Quality Electronic Design, San Jose, March 2001

12

