
Implementation of Multipliers in FPGA Structures

Kazimierz Wiatr, Ernest Jamro
AGH Technical University of Cracow, Mickiewicza 30, 30-059 Krakow, Poland

Abstract
This paper studies different solutions for carrying out
multiplication: a fully functional multiplier denoted as
Variable Coefficient Multiplier (VCM), Constant
Coefficient Multiplier (KCM) and self-configurable
multiplier denoted as Dynamic Constant Coefficient
Multiplier (DKCM). For FPGAs which can be easily
reconfigured, the choice between the VCM and KCM
cannot be easily defined. Furthermore, the DKCM is an
additional, middle-way between the KCM and VCM
solution, as it offers shorter reprogramming time but
occupies more area in comparison with the KCM. In
FPGAs, the choice of the optimum multiplier involves
three factors: area, propagation and reconfiguration time,
which have been thoroughly studied and respective
implementation results given. Furthermore, to speed-up
implementation of multipliers a design-automated tool has
been developed, which generates optimum (for given input
parameters), VHDL description of multipliers.

1. Introduction

Bit-parallel multiplication is a very common operation
in digital signal processing and can be carried out
implementing three different methodologies. The first is a
variable coefficient (fully functional) multiplier (VCM)
which can be implemented using for example parallel-
array multipliers or Wallace tree multipliers [1]. For the
VCM, a coefficient value can be freely changed but the
disadvantage of this solution is a relatively high cost. The
alternative solution is a Constant Coefficient Multiplier
(KCM) which in comparison to the VCM has much lower
hardware requirements (26-33% of the VCM [2,3]), and
therefore is recommended provided that the coefficient is
constant during a calculation process. For ASIC designs
the coefficient value once determined cannot be changed.
Conversely for FPGAs, the change of a coefficient value
can be implemented by reconfiguring the FPGA structure.
The process of reconfiguration usually takes several ms
[4]; therefore if the calculation process can be ceased for
that time and the coefficient is relatively constant during
data processing [5], the KCM solution should be
considered. The reconfiguration time can be however
reduced by the use of a partially reconfigurable FPGA, e.g.
a Virtex FPGA [4]. The KCM solution has another
drawback that the multiplier circuit has to be redesigned

for a different coefficient value. Fortunately, by the use of
an Automated Tool (AT) the KCM multiplier can be
redesigned [6] within the time of seconds. However a new
design has to re-employ a place and route program which
fits the new design into the FPGA. The fitting process is
usually time-consuming and takes approximately 1min ÷
1hour. In conclusion, the change of a coefficient value for
the KCM requires not only the FPGA to be reconfigured
but also the whole design cycle to be reimplied. This
causes that the change of a coefficient value for the KCM
solution is onerous and often the more-hardware-
consuming VCM solution taken instead.

An alternative solution is a Dynamic Constant
Coefficient Multiplier (DKCM). The DKCM implements
Look up table based Multiplication (LM) [3,7,8] and the
change of the coefficient can be achieved by a proper
change of LUT memory contents. This solution can
implement in-circuit coefficient reconfiguration therefore
the multiplier configuration time is shorter and the design
fitting into FPGA structure need not be reimplied. A
drawback of the solution is that the DKCM occupies more
area in comparison with the KCM.

input

LUT
B

LUT
A

 4 4

 8

 12 12

Adder

 8
 4

 12

 16

output

Figure 1. The LM for input argument width K=8 and
coefficient width L=8

At the first part of this paper the LUT based
multiplication (LM) and its modification – the DKCM is
presented. For the DKCM three different options:
multiplexing in logic, multiplexing as in tri-state buffer
and dual port are studied. Further the comparison of the
KCM, DKCM and VKM and their implementation results
are given.

2. LUT based Multiplication (LM)

In principle, the evaluation of any finite function can
be carried out using a look-up table (LUT) memory that is
addressed with the argument for the evaluation and whose
output is the result of the evaluation. This, in theory, gives
the fastest possible implementation, since no actual
arithmetic is required. Unfortunately, the use of a single
LUT for the multiplication is unlikely to be practical for
any but the smallest argument, because the table size
grows rapidly with the width of the argument. For
example, for the L-bits wide argument and K-bits wide
coefficient, the size of memory is (L+K)⋅2L, which for
K=8, L= 8 gives 4k bits. It is, however, possible to create
a practical implementation of the LM by combining a
number of small LUTs and adders. The idea is to split the
argument, use LUTs, and then use a tree of adders [2, 7,
8]. An example of the multiplier circuit for K=8 and L=8
is shown in Figure 1.

3. Dynamic Constant Coefficient
Multiplication (DKCM)

The DKCM [6] (or self-configurable binary multiplier
[9,10]) is the LUT based multiplier for which ROMs are
replaced by RAMs. The idea behind the dynamic change
of a coefficient value is to properly change the contents of
the memories. This however requires an additional RAM
programming interface and imposes constrains on the
DKCM architecture in comparison to the KCM.

The additional RAM programming interface can be
divided into two parts. The first part allows the RAMs to
be programmed and usually consists of address and (rather
seldom) data multiplexers. The second part of the
additional circuit is RAM Programming Unit (RPU) which
produces proper data sequences and control signals for
RAM programming. An example of the DKCM is shown
in Figure 2. It should be noted that this example is
equivalent to the KCM given in Figure 1.

The outputs of the RAM feed the adder block, which
structure must also consider the change of the coefficient.
The easiest solution is to calculate only the sum of

maximum and minimum values of each input (the inputs
correlation is not considered), however this usually causes
overheads of the adder width. Therefore, the correlation
amongst the adder inputs should be considered. An
example of the adder width with and without correlation is
given in Table 1. It should be noted that for the KCM, the
correlation between adder inputs influences only slightly
the adder width. Table 1 considers the adder with only two
inputs, in general case, however, the correlation between
partial sums should be also taken into consideration.

input

RAM
B

RAM
A

 4 4

 8

 12
 12

Adder

 8

 4
 12

 16

output

Mux 2:1 Mux 2:1

 4 4

 4 4

 Data Out

 Address
 Data Pr.

Write
Enable

 Address Pr.

RAM
Program

ming
Unit

(RPU)

Coefficient

 Load

 Not Ready

 4

Figure 2. An example of the DKCM for input data and
coefficient width equal 8

It can be seen from Figure 2 that RAM memories
usually have separated paths for data reads and data writes
[4], therefore data multiplexing is not required.
Unfortunately, the address bus is the same for reading and
writing RAMs, therefore additional multiplexers for
switching between these addresses have to be
implemented. The multiplexing process can be carried out
using Logic Elements (LE), e.g. in Configurable Logic
Blocks (CLBs) [4] or tri-state buffers (TSBs). The latest
solution consumes no logic area but uses the
programmable interconnect resources which can be limited
and slower than multiplexing in LEs.

KCM, coeff= -99 KCM, coeff= 99 DKCM, coeff= -99 ÷ 99
min max width Min max Width min max width

A -1 485 0 12 0 1 485 11 -1 485 1 485 12
B -594 693 11 -693 594 11 -693 693 11

Y no-corr. -10 989 11 088 15 -11 088 10989 15 -24 453 24 453 16
Y corr. -9 801 9 801 15 -9801 9801 15 -9 801 9 801 15

Table 1. Minimum and maximum values and width of the outputs: A- RAM A (see Figure 2), B- RAM B, Y- output of the adder without
and with correlation between the adder inputs. The range of the input (-99, 99)

The multiplexing process can be skipped by the use of
dual-port (DP) RAMs. The DP-RAM solution is usually
quicker (without multiplexer delay) but consumes more
area. For example, for Virtex, a 16×1DP distributed RAM

consumes the area of two single-port (SP) RAMs, but a
large 4kb Block Select RAM (BSR) can be used as a DP
RAM without any hardware overheads. Summing up,

design optimisation should consider three different
options:

• Multiplexing using logic (LEs) recourses (denoted
as DKCM-L)

• Multiplexing using programmable interconnect
(TSB) resources (DKCM-T)

• Using dual-port RAMs (DKCM-D).
The main task of the RPU is to provide the memory

with write address and data. Let consider, at first, the case
when input data in always positive and all memory
modules have the same address width. In this case all
memories are fed with the same address and data,
therefore the RPU consists of address counter and the
accumulator which starts with value zero and is
incremented every clock cycle by the coefficient value
[10]. In consequence, the data sequence is as follows:

d0= 0
d1= d0+coeff= coeff
d2= d1+coeff= 2⋅coeff (1)

where di- write data for address value i, coeff- the
coefficient value.

It should be noted that the number of memory writes
(the number of the multiplier standstill clock cycles)
depends on the memory size, e.g. for RAM 16×1, sixteen
memory writes are required. Therefore in some application
it may be beneficial to use only a part of memory in order
to reduce the multiplier standstill t ime. However, this
causes that the multiplier consumes more hardware.

The RPU becomes more complicated if memory sizes
(address widths) are different because either different
memory modules have been implemented or the input data
width can not be evenly distributed into separate
memories. In this case, each memory write-enable signal
should be disasserted whenever the write address exceeds
the memory address width. This however may require
additional write-enable logic to be implemented. The
write-enable problem can be solved by programming
RAMs form the highest address (all ones) down to zero. In
this way, all memories can be written disregarding address
width because the latest memory writes are always proper
and overwrite the previous (improper) writes. The data
sequence for programming RAMs is therefore as follows:

ds-1= (coeff<<w)-coeff= (s-1)⋅coeff;
ds-2= ds-1-coeff= (s-2)⋅coeff
....
d0= d1 - coeff= 0 (2)

where: coeff<< w - the coefficient shifted w bits to the
left, w- maximum width of memory address, s- maximum
size of memory s= 2w.

The drawback of the above solution is that an
multiplexer 2:1 is required (instead of the reset circuit for
eq. 1) for feeding the subtractor either with (coeff<< w) or
di+1.

The RPU is further complicated for negative (two’s
complement) inputs. In this case all RAMs except from the
Most Significant Bits (MSBs) RAM, operate on positive

inputs therefore can be programmed as above. For the
MSB RAM and for the MSB (sign bit) zero, the MSB
RAM is programmed as the rest of RAMs. Conversely, if
the sign bit is asserted then the RAM has to be
programmed with a different data sequence which can be
generated by continuing eq. 2, as follows:

d0= d1 – coeff= 0
d-1= d0 – coeff= -coeff
d-2= d-1 – coeff= -2⋅coeff (3)
...
d-sn= d-sn+1 – coeff= -sn ⋅ coeff

where: sn- the size of the MSB RAM divided by 2.
It should be noted that eq. 3 does not require additional

hardware, it uses the same address counter and subtractor
as eq. 2 does. However, programming two’s complement
input multiplier requires additional control logic for write-
enable signals. Consequently, the MSB RAM write-enable
is asserted during whole programming process; for the rest
of the RAMs, the write-enable signal is asserted only for
eq. 2 and disasserted for the rest of eq. 3. It should be
noted that the two’s complement input format causes that
the multiplier programming (standstill) time is longer.

4. Implementation results

The optimal architecture depends strongly on a given
FPGA device; therefore at first implementation results for
Xili nx XC4000 family [4] will be studied. The
multiplication requires mainly 2:1 multiplexing, addition
and RAM units, therefore only these modules will be
considered here. The XC4000 incorporates single-port
(SP) 16×1 and 32×1 and dual-port (DP) 16×1 distributed
RAMs at the cost of 1, 2 and 2 Logic Elements (1LE ≈ 4-
input LUT ≈ ½ XC4000 CLB) respectable, and an adder
with dedicated ripple carry logic at the cost of 1 LE/bit. A
2:1 multiplexer consumes 1 LE if implemented in logic, or
only programmable interconnects resources if
implemented as a tri-state buffer.

�

� �

� � �

� � �

� � �

� � �

	

� 	 �
 �
�

� ��
��

!"

$ % & '
() * + , - . - /

0 1

Figure 3. Area occupied by the DKCM for different input and
maximum coefficient widths K. Implementation for XC4000 and

unsigned coefficients and inputs

The area occupied by the DKCM for different
parameters is shown in Figure 3. The relatively high cost

of the multiplier for low values of K (input and coefficient
width) can be seen in Figure 3. This is a consequence of
the RAM programming unit (RPU) which has a great
influence on the overall multiplier cost, e.g. the RPU for
K= 3 and 16 occupies 63% and 23% of the whole DKCM-
L area respectively.

Up to now, XC4000 family, which incorporates only
small distributed RAMs, has been considered, but
additional RAM resources are available in Virtex [4]
which incorporates large DP 4k×1, 2k×2, 1k×4, 512×8 and
256×16 BlockSelect RAMs (BSRs).

Constructing the optimal multiplier using large BSRs,
distributed RAMs and adders is however a difficult task
which involves many trade-offs:

• Cost relations between BSRs, logic elements (LEs)
and distributed RAMs. The chip area occupied by 1
BSR is roughly 16 Virtex CLBs ≈ 64 LE, but the real
cost-relation is application- and resources-dependent,
as free BSRs can be implemented instead of fully used
logic elements and vice-versa.

• The multiplier programming time is proportional to
the memory size, therefore in applications where
operation standstill time is a critical factor, the smaller
memory blocks are preferable.

• Multiplication delay time tends to be lower with
larger memory blocks as the number of arithmetic
blocks decreases. Conversely, the memory access
time usually increases with the memory size, and
routing large RAMs with arithmetic modules is more
difficult as the BSRs have fixed position in FPGAs
and cannot be freely mixed with adders as it is the
case for distributed memories. The case is even more
complicated for pipelined architectures where a cost
of additional flip-flops and a frequency of the system
clock have to be considered.

�

� �

� �

� �

� �

	

	 �

	 �

	

� �
 � 	
 	 � 	 � 	

�

��
���

��
���

��
�

� � � � � � � � � ! " # $ $ $ % & ' () � � � *
+ , - . / 0 1 2 3 4 5 6 7 8 8 8 9 : ; < = / > ? 1 / ; > @
A B C D E F G H I J K L M N O P M J N Q
R S T U V W
S X Y W Z [T U V W

Figure 4. Number of LEs and BSRs (scaled 20:1) for Virtex
(using large BSR), and number of LEs for XC4000/Virtex (using

only small distributed RAMs), and number of LEs and ESBs
(scaled 20:1) for Apex. The RPU is not considered, the

equivalent costs: 1 BSR = 1 ESB= 20 LEs

The implementation results for combination of large
BSRs and small distributed RAMs, and for only small
distributed RAMs is shown in Figure 4. Note that the

number of used BSRs depends on the equivalent cost of
the BSR; and for the equivalent cost greater than roughly
44 LEs (11 Virtex CLBs)- the BSRs are not used at all.

Altera Apex [11] family also incorporates dedicated
ripple carry logic at the cost of roughly 1 LE/bit; but in
comparison with the Xilinx FPGAs can implement only
large DP RAMs: 2k×1, 1k×2, 512×4, 256×8 or 128×16,
one in each Embedded System Block (ESB).
Consequently, as it can be seen in Figure 4, the number of
required ESBs in comparison with BSRs is greater,
however the number of LEs is reduced. The next
consequence of the lack of distributed RAMs in Apex
FPGAs is the longer coefficient reprogramming time in
comparison with the Xilinx FPGAs when only distributed
RAMs are used.

The Multiplier Automated Tool (MAT) which was
developed in order to generate the multipliers, uses
advance full search algorithm which generates the best
solution from the given input parameters: input data range,
coefficient range and cost relations between adders,
memories, multiplexers and flip-flops, etc. These
parameters can be freely specified therefore the MAT can
generate VHDL code for any FPGAs and even ASICs. In
order to visualise architectures analysed by the MAT, an
example of the optimum structure of the multiplier for K=
12 is given in Figure 5. Note that in this example only dual
port memories and AND gates are implemented therefore
the input multiplexing is not required, and the RPU is not
shown in the figure.

256×16
DP

125

7 1

16

17

256×16
DP

2×16×1
DP

7 3

216

21

Adder

24

14

7

17

7

2×1
AND

1

2×1
AND

11

MSBs
LSBs

Figure 5. An example of the multiplier for input and coefficient
range 0÷212-1. The optimal architecture for Virtex FPGAs and

equivalent cost 1BSR= 20LEs = 5 CLBs

Initially, the architecture of the DKCM does not seem
to be much different in caparison with the KCM, only the
additional RAM Programming Unit (RPU) and address
multiplexing are required (see Figure 2 vs. Figure 1).
However, the KCM can be implemented using either the
LM or Multiplierless Multiplication (MM) [12] which is
carried out using only shifts and additions of the
multiplicand. The MM is getting more and more attractive
as the coefficient width grows because it employs more
efficient optimisation techniques such as Canonic Sign
Digit (CSD) [12] and / or Sub-structure Sharing (SS) [13].

Consequently, for Xilinx XC4000, and input and
coefficient width greater than 5, the LM consumes on
average 25÷50 % more area in comparison with the MM,
as it is shown in Figure 6.

� � �

� � �

� � �

	
 �

�

�
 �

� � �

� � �

� � �

� � �

� � �

� � � � � � � � � � � ! � � � � � �
"

$%&
'(
)# $
%&(
(

Figure 6. Relation between average area of XC4000 occupied by
the LM and MM (for the KCM). Results for the different input

width K (input range 0÷2K-1) and coeff icient values 1÷2K-1

The DKCM in comparison with the KCM can
implement a great range of coefficient values, for which,
conversely, different KCMs should be developed.
Furthermore, a KCM architecture varies significantly for
different coefficients, which causes a great difference in
area occupied by the KCM. Therefore, to compare the
DKCM with the respective KCMs, three different
statistical costs of the KCM can be used:
1. Average area occupied by a KCM for a given

coeff icient range (usually 1÷2K-1). This value is best
suitable for static configurable systems [14], for
which the cost of a static KCM and its equivalent
static DKCM is compared. The average area of the
KCM can also be suitable for dynamic configurable
systems [14] for which a great number of KCMs are
considered at the time.

2. Maximum area for a given coefficient range – is
recommended for dynamic configurable systems, for
which the coeff icient is changed by FPGA
reconfiguration.

3. Maximum area for a given coefficient set - as in point
2, but in the case when the number of possible
coeff icients is relatively small . This value seems the
best for defined designs, however may constrain
further changes in the design. This solution however
cannot be generalised and therefore is not further
referred to.

The VCM is a fully functional multiplier, usually
implemented using AND-gates and adders [1], for which a
coeff icient-change penalty is not observed. However a
drawback of the VCM, as can be seen from Figure 7, is its
large cost in comparison with the DKCM. For small
multiplier width, K, however, the cost of the DKCM is
dominated by the RPU, therefore the VCM is
recommended.

According to Figure 7, the DKCM should be
implemented for K≥7. Nevertheless this is the best cost-

throughput-relation that in real applications may not be
achieved, as the DKCM requires RAMs programming
(standstill) cycles which decrease the design throughput
and may require design modifications (additional cost). In
consequence, two different groups of application can be
distinguished:

*

+ ,

- . .

- / .

0 1 1

0 2 1

3 4 4

3 5 4

6 7 7

8 6 9 : ; < = > ? > > > @ > A > B > C
D

E FG
HIJK
LM

NPO QSRUT V
WYXSZ

Figure 7. Area XC4000 for the DKCM-T and VCM (different K)

A) Designs without reconfiguration overheads - the
change of the coefficient occurs very seldom and / or does
not disrupt the system work. For example, a real time
image processing system for which the change of the
coefficient is carried out during image blank time, or so
seldom that it is almost invisible. In this case, the DKCM
can be implemented without additional hardware
overheads. Furthermore, the KCM and a dynamic
reconfiguration system instead of DKCM should be
considered to allow additional savings.

It should be noted that for the DKCM-D (dual port
DKCM) and for adaptive systems where the difference
between the present and new coefficient is very slight, the
product obtained while RAM programming is usually only
slightly corrupted. Accordingly, the product is in the range
of the product calculated for the previous and current
coefficient; unless a simultaneous read and write occurs to
the same memory address. In the latest case, the output
value depends on specifications of the dual port RAM, e.g.
for XC4000 16×1 DP-RAMs a simultaneous read and
write access is allowed and the output value defined [4].

B) Designs with reconfiguration overheads - the
coefficient changes frequently or its change disrupts the
system work. In this case, four different approaches can be
implemented:
• DKCM-P - two parallel RAMs sets and additional

multiplexers are used [9], which allows one RAM set
to be programmed while another is operating and
vice-versa.

• DKCM-D - as described in the point A (output data
can be slightly corrupted!), but architectural
overheads are considered as the DP-RAM solution is
usually less hardware-efficient than the SP-RAM
counterpart.

• VCM, which has no coefficient change penalty.

• DKCM- the multiplier for which operational process
is stopped when RAM programming.

To quali fy the benefits from using the DKCM
reconfiguration approach, let define a functional density,
D [5, 10]:

TA
D

⋅
= 1 (4)

The functional density for the VCM, DKCM-P or
DKCM-D, and DKCM respectively, can be given as
follows:

VV
V TA

D
⋅

= 1 (5)

)1(

1

n

r
TA

D

DD

D

+⋅⋅
=

(6)

where: DV, AV, TV, AD, TD – functional density, area and
critical delay for the VCM (V) and DKCM (D)
respectively; r- number of reconfiguration cycles; n-
number of execution cycles between two subsequent
reconfigurations.

For the DKCM, a reconfiguration penalty factor, r/n,
has been introduced. The penalty can be decreased either
by the increase of n - the number of execution cycles
between two subsequent reconfigurations; or by a decrease
of the number of reconfiguration cycles, r.

5. Conclusions

The multiplication is a very common operation and as
it has been shown in this paper, the proper choice of its
architecture is a difficult task. For ASICs, two choices: the
VCR and KCM with a fixed, easil y defined applications to
be used in, can be distinguished. However, for FPGAs the
boarder between these two solutions cannot be smoothly
defined as a FPGA can be quickly reconfigured.
Therefore, implementation of the KCM instead of the
VCM is strongly recommended as the KCM occupies
17÷23% on average or 29÷41% on maximum, area of the
VCM depending on the multiplier width. Furthermore,
design’s lower area causes usually shorter propagation
time and consequently a significant increase in design
functionali ty, D. Conversely, a change of the KCM
coeff icient has a penalty of operation standstill t ime which
decreases design functionality according to eq. 6.
Consequently, to decrease the idle, reconfiguration time
there is a tendency to use a partial reconfiguration for
which only the multiplier circuit is reconfigured.

The reconfiguration time can be further decreased by
in-circuit reconfiguration, i.e. by the use of the DKCM.
The DKCM offers much quicker reconfiguration but
occupies more area in comparison with the KCM,
therefore is a middle-way solution between the VCM and
KCM. The DKCM requires additional RAM Programming
Unit (RPU) which significantly influences the DKCM cost
for small multiplier widths. An alternative solution is
programming RAMs using a FPGA partial reconfiguration

instead of the RPU but this may not be accepted by a given
FPGA, requires longer reconfiguration time and pre-
calculated RAM contents.

For adaptive signal processing, the DKCM solution is
even more attractive as the DKCM-D has no
reconfiguration penalty provided that the product can be
slightly corrupted and the number of execution cycles is
greater than memory size. Furthermore, the process of
changing coefficient for the KCM requires not only FPGA
reconfiguration but also redesigning and rerouting of the
KCM which consumes significant amount of time (about
1min÷1hour) and therefore this solution is usually
unacceptable for adaptive systems.

In this paper the multiplication in FPGAs has been
thoroughly studies, however general conclusions have not
been drawn as the optimal architecture depends strongly
on given FPGAs and design specifications. However,
possible architectures and their implementation results
have been presented, and the Multiplier Automated Tool
has been developed, which may significantly speed-up the
implementation of a multiplier.

6. References

[1] Brooks F.P., Plaisted D.A., Computer Arithmetic Systems,

Prentice Hall 1994.
[2] Chapman K., Constant Coefficient Multipliers for the

XC4000E. Xil inx App. Note, XAPP 054 December 1996.
[3] Petersen R., Hutchings B.L., An Assessment of the Suitabilit y

of FPGA-Based Systems for Use in Digital Signal
Processing, Proc. 5th Int. Workshop on Field Programmable
Logic and Applications, Oxford, pp. 293-302, August 1995.

[4] Xil inx Co., The Programmable Logic, Data Book 1999.
[5] Wirthlin M.J., Hutchings B.L., Improving Functional Density

Through Run-Time Constant Propagation, ACM/SIGDA Int.
Symp. on Field Programmable Gate Arrays, pp. 86-92, 1997.

[6] Xil inx Co., Core Generator, Foundation 2.1, 1999.
[7] Chapman K., Fast Integer Multiplier fit in FPGA’s, EDN

1993 Design Idea Winner, END May 12th 1994.
[8] Omondi A.R., Computer Arithmetic Systems. Algorithms,

Architectures and Implementations, Prentice Hall 1994.
[9] Wojko M., ElGindy H., Configuration Sequencing with Self

Configurable Multipliers, Proc. 10th Sym. on Parallel and
Distributed Processing, San Juan, April 1999, pp. 643-651.

[10] Wojko M., ElGindy H., Self Configuring Binary Multipliers
for LUT addressable FPGAs, 5th Australasian Conf. on
Parallel and Real-Time Systems. University of Adelaide,
Australia, 28-29th September 1998, pp. 201-212

[11] Altera Co., Apex 20K Programmable Logic Device Family,
Data Sheet, ver. 2.05, Nov. 1999.

[12] Garner H., Number Systems and Arithmetic, Advances in
Computing, vol. 6, pp. 131-194, 1965

[13] Hartley R.I., Subexpression Sharing in Filters Using
Canonic Signed Digit Multipliers, IEEE Transactions on
Circuits and Systems II – Analog and Digital Signal
Processing, vol. 43, no. 10, Oct. 1996.

[14] Sanchez E., Sipper M., Haenni J., Beuchat J., Perez-Uribe
A., Static and Dynamic Configurable Systems, IEEE Trans.
on Computers, col. 48, no. 6, pp. 556-563, June 1999.

