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Abstract

Addition is an essential operation for the convolution
(or FIR filters). In FPGAs, addition should be carried out
in a standard way employing ripple-carry adders (rather
than carry-save adders), which complicates search for an
optimal adder structure as routing order has a substantial
influence on the addition cost. Further, complex
parameters of addition inputs have been considered e.g.
correlation between inputs. These parameters are specified
in different ways for different convolver architectures:
Multiplierless Multiplication, Look-Up Table based
Multiplication, Distributed Arithmetic. Furthermore,
different optimisation techniques: Exhausted Search and
Simulated Annealing have been implemented, and as a
result. Otherwise, the Exhausted Search should be
employed for the number of the addition inputs n≤8, or the
Simulated Annealing for n>8. Employing the Simulated
Annealing gives about 10-20% area reduction in
comparison to the Greedy Algorithm. This paper is a part
of the research on the AuToCon – Automated Tool for
generating Convolution in FPGAs.

1 Introduction

An N tap convolution can be expressed by an
arithmetic sum of products:
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where: y(i), x(i) and h(i) represent response, input at the
time i and the convolution coefficients, respectively.

The multiplication in eq. 1 can be carried out
employing three different techniques:
Multiplierless Multiplication (MM) [1] where
multiplication employs only shifts and additions from the
binary representation (BR) of the multiplicand. For
example, A multiplied by B= 14= 11102 can be
implemented as (A<<1)+(A<<2)+(A<<3), where ‘<<’
denotes a shift to the left. To reduce the number of
operation (non-zero symbols) required in the coefficient’s

two’s complement representation, canonic signed digit
(CSD) representation [2] should be employed. The CSD
representation is a signed power-of-two representation
where each of the bits is in the set { 1,1,0 } (0 – no

operation, 1 – addition, 1  – subtraction). Summing up, for
the MM, the FIR filter (convolution) arithmetic can be
carried out using only additions and substations.
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Figure 1. Look-up table based multiplication for 8-
bit wide coefficient

Look-up-table based Multiplication (LM). In principle,
the evaluation of any finite function can be carried out
using a look-up table (LUT) memory that is addressed
with the argument for the evaluation and whose output is
the result of the evaluation. Unfortunately, the use of a
single LUT for the multiplication is unlikely to be
practical for any but the smallest argument, because the
table size grows rapidly with the width of the argument.
Therefore the solution is to split the argument, use LUTs,
and then use a tree of adders [1, 3, 4, 5]. An example of
this is given in Figure 1.
Distributed Arithmetic (DA). The idea behind the DA [5,
6] is to compute the convolution in different order than for
the LM. The following mathematical transformation is
employed:
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where: L- width of the input argument x (in bits), x,j(i-k)- -
j-th bit of the input argument at time (i-k).

Consequently, the DA carries out the convolution in a
bit-plane order, i.e. every bit of inputs values is considered
separately. In comparison with the LM, the DA LUT
output width is smaller because the inputs are the same
significance. Therefore, the smaller memories are required

which makes the DA more hardware-efficient than the
LM.

For these three different techniques, the final and very
often overlooked operation is addition (subtraction). For
example, Thien-Toan Do et. al. [5] constructed the
structure of the LM and DA and showed the final adders
tree but the order of the additions seems to be intuitive
rather than based on a thorough research. This draws a
conclusion that general rules for constructing adders tree
should be given and/or a design automated tool has to be
developed in order to find an optimal order of additions.
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Figure 2. An example for different pipelining strategies for ASIC’s and FPGA’s additions for the equation: dout= din0 +
din1 + din2 + din3. Pipelining parameters: N=2 (ASIC), K=1 (FPGA)

For ASIC designs, the classic problem of carry
propagation is resolved by numerous techniques, e.g.
carry-look-ahead, carry-select [4], which reduce the delay
of carry propagation at the expense of great increase in
hardware complexity. Another approach to the carry
propagation problem is to remove it completely through
carry-save addition [4]. Consequently, in ASICs, carry-
save addition is a substantial technique implemented in the
convolution (FIR filters) designs [7].

FPGAs incorporate a dedicated carry propagate circuit
[8, 9] which is so fast and efficient that conventional
speed-up methods are meaningless even at the 16-bit level,
and of marginal benefit at the 32-bit level [8]. Furthermore
the dedicated carry-propagate circuit is implemented
outside the standard LUT logic and therefore does not
occupy standard logic area. Consequently, using only
ripple-carry adders in FPGAs design is the best solution
with respect to both the propagation time and occupied
area.

As the result, there is a substantial difference between
pipelining the ASIC and FPGA additions. For ASIC

designs, pipelining flip-flops should be inserted every N-
logic blocks (where N is an integer which value is
application specific) therefore the carry-propagation chain
is broken as it is shown in Figure 2. For FPGAs, the fast
build-in carry logic significantly reduces carry-
propagation time and therefore pipelining flip-flops should
be rather inserted after every K additions (see Figure 2).
Nevertheless, the build-in carry logic cannot nullify the
carry propagation time, and therefore in the FPGA
solution, the most time critical path is the carry-propagate
circuit. For example, for Xilinx XC4000, delay through
LUT logic, e.g. sum-generation circuit, is approximately
six times longer than through the carry-propagate circuit.
However, when the programmable interconnects delays
are included, which essentially influence overall system
performance, the carry propagate delay is much less
significant. This holds as FPGAs incorporate dedicated
and therefore very fast routing circuit form a carry-out to
carry-in. Furthermore the propagation time through the
programmable interconnects is usually comparable or even
greater than the propagation time through LUT logic.



Nevertheless, in FPGAs, a long-width adder can be
divided into several parts by inserting pipelining flip-flops
every M carry-propagate blocks (like for VLSIs). This
solution should be used together with the pipelining
solution presented for FPGAs; i.e. a hybrid solution of the
FPGA and ASIC designs (see Figure 2) is employed. This,
however, would complicate the system design and require
additional flip-flops to be inserted according to the cut -
set pipelining rule [10]. Therefore, this solution has not
been implemented in the presented system, however, is
considered in the next step of the design development.
This hybrid solution seems to be better than delayed
addition technique [11] for which a carry-in does not
propagate to carry-out. Conversely, each 4-2 adder has the
standard carry-out logic and 2 outputs and therefore 2 flip-
flops are required for each 4-2 adder.

Summing up, for FPGAs the best solution seems to be
using dedicated addition and pipelining after every K
additions as it is shown in Figure 2.

2 Exhausted search

The best possible result can be always found by
searching through all possible solution. The problem of
finding the best solution for adders tree is NP-complete
and therefore only simple adders blocks can be routed
using the exhausted search algorithm. At first, let consider
an example of 5 input adder. The following solutions have
to be examined  (the bottom layer is only taken into
consideration, the example shows how inputs (latters: a to
e) are paired together):

(a+b)+(c+d)+e; (b+c)+(a+d)+e; 
(c+a)+(b+d)+e;
(b+c)+(d+e)+a; (c+d)+(b+e)+a; 
(d+b)+(c+e)+a;
(c+d)+(e+a)+b; (d+e)+(c+a)+b; 
(e+c)+(b+a)+b;
(d+e)+(a+b)+c; (e+a)+(d+b)+c;
(a+d)+(e+b)+c;
(e+a)+(b+c)+d; (a+b)+(e+c)+d;
(b+e)+(a+c)+d;

In order to find out the number of possible
combinations, at first let define the function S1(n) which
returns the number of all possible combinations within a
single adder layer for a given number of inputs n:
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The total number of possible solutions S(n) is defined
in an iterative way and is a product of the number of
combination on this layer and the total number of
combination for the upper (closer to the output) layers, i.e.
for adders block for which number of inputs is halved:

S(n)= S1(n)⋅S(n/2) (4)

where   - the ceiling function.

Table 1. The number of possible combinations for a given
number of inputs n to the adder block

N no. layers no. combinations
2 1 1
3 2 3
4 2 3
5 3 45
6 3 45
8 3 315
10 4 42 525
12 4 467 775
14 4 42 567 525
16 4 638 512 875
18 5 1 465 387 048 125

It can be seen from Table 1 that the number of possible
solutions is growing rapidly, making the exhausted search
(ES) method useless for the input number greater then
about 11-16.

As the number of possible solutions is growing rapidly
with the growing number of adder inputs, a modification
of the Exhausted Search (ES) method is here proposed.
This method considers at first the cost of the GrA solution
for every layer l. Consequently, the cost C(l) of the
partially routed adder (up to the adder layer l) is first
calculated (initially using the GrA) for every layer l and
then the similar to exhausted search method is
implemented. This method, however, stops calculating a
group of solutions in its early stage (on layer l) if the cost
of the partially routed adder is greater than Cb(l) + t;
where: Cb(l) – the cost C(l) for the best overall solution so
far found (initially found by the GrA), t- a certain
threshold number. The procedure of comparison is
executed after every layer of the adders tree is completed.

Table 2. Theoretical number of considered solutions for
different number of adder inputs N

N ES CS
(layer 1)

CS
(layers 1 and 2)

6 45 15 45
8 315 105 315
10 42 525 945 14 175
12 467 775 10 395 155 925
14 42 567 525 135 135 14 189 175
16 638 512 875 2 027 025 212 837 625
18 1 465 387 048 125 34 459 425 32 564 156 625



The Constrained Search (CS) technique saves the
calculation time, as solutions which are less-likely to give
the better solution are skipped on a low layer and therefore
upper layers and their combinations are not calculated for
the given partially routed adder. Conversely, it is possible
then an adder block has a very high cost on the bottom
layer(s), however the upper layers are much less costy, and
therefore this adder block solution is skipped although it
would give the best result. Consequently, the key problem
is a proper choice of the threshold number t. Increase of
the threshold number t increases the total number of
considered solutions but decreases the probabilit y of not
finding the best solution.

Table 2 shows the theoretical number of possible
solutions for the CS assuming that the calculation process
is constrained only to layer 1 and layer 1 and 2. It can been
seen that the total number of considered solution has
decreased significantly, however it is still unacceptable for
the inputs number, N, greater than 18.

In this section the results for the greedy algorithm
(GrA), exhausted search (ES) and constrained search (CS)
algorithms are given. Table 33 shows the cost of the
generated circuits by GrA, ES and CS (for different
thresholds t). Table 4 shows the calculation cost – the
number of iteration needed to find the circuit.

Table 3. The implementation costs (number of full or half adders) for different filters and techniques

Filter no inputs ES CS (t=5) CS (t=2) CS (t=0) CS (t=-1) GrA
a 16 93 93 93 93 93 111
b 11 72 72 72 73 73 74
c 13 123 126 126 126 126 128

Table 4. The number of iterations for different filters and techniques

Filter layer 1 Layer 1,2 ES CS (t=5) CS (t=2) CS (t=0) CS (t=-1)
a 2 027 025 212 837 625 638 512 875 9 556 259 4 881 543 2 963 651 2 327 927
b 945 14 175 467 775 444 927 278 735 80 051 13 173
c 135 135 14 189 175 42 567 525 3 079 789 915 375 369 357 193 057

It can be seen from Table 3 and Table 4 that acceptable
results are achieved using only the GrA. The improvement
of about 2-7 % can be obtained by the use of the ES. The
drawback of the ES is its computation cost therefore the
reasonable solution seems the CS (for the number of
inputs up to 16). For the threshold t=-1, only partial
solution which is better than the best found is taken into
consideration. This makes the CS (t=-1) similar to a GrA
for which the step is constrained not only to the single
adder (like for the GrA) but for all adders in the layer.
Besides for the CS, it is always possible to undo a
selection if the upper layers cost is high and therefore the
overall cost of the new solution is higher than the best
previously found cost. By the increase of the threshold t,
the number of considered solutions is growing. For t=0,
not only the best but also all solutions on the same cost are
also considered. This however increases the number of
iterations but very slightly influences the overall results.
Similarly is for t=2 and t=5.

It should be noted that the GrA behaves more poorly
for filters for which subtraction is implemented (for
negative coeff icients, examples A, C) as this algorithm
deals with subtraction and addition in the same way.

3 Simulated Annealing (SA)

The principle behind the SA [12, 13] is analogous to
what happens when metals are cooled at a controlled rate.
The slowly falling temperature allows atoms in the molten
metal to line themselves up and form a regular crystalli ne
structure that has high density and low energy. In the SA,
the value of an objective function which we want to
minimise, is analogous to the energy in a thermodynamic
system. At high temperatures, SA allows function
evaluations at faraway points and it is likely to accept a
new point at higher energy. At low temperatures, SA
evaluates the objective function only at local points and
the likelihood of it accepting a new point with higher
energy is much lower.

The SA algorithm, implemented for optimising adders
structures, employs the following steps:
Objective function calculates the cost C of the circuit for
the given adders tree.
Annealing Schedule regulates how rapidly the
temperature, T, goes from high to low values, as a function
of iteration counts. In our case, the starting temperature T1

equals the cost of a 2-bit wide adder CA2, the stopping
temperature TS equals ¼ of the cost of a 1-bit wide adder
CA1/4. In every iteration, the temperature Ti is decreased
according to the following equation:

Ti+1= η⋅Ti (5)



where S
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1 )(=η , S- the number of iterations.

Generating a new adders structure is obtained by
randomly selecting two adders on the same layer; i.e.
randomly selecting a first adder (input) from all adders and

randomly selecting a second adder from adders at the same
layer as the first adder. Examples of possible modification
are given in Figure 3.
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Figure 3. Examples of possible one-step modification:
A) an initial circuit, B) C) the modified circuit A

Modifications of the circuit are constrained by the
temperature Ti. In the conventional SA, also known as the
Boltzmann machine, the generating function which
specifies the change of the input vector, is a Gaussian
probabili ty density function [14]. In our approach, the
number of possible solutions is finite therefore the
Gaussian probabilit y function is useless. An alternative
solution is defining a move set [14], denoted by M(x), as a
set of legal points available for exploration. However,
constructing the move set is rather computationally
demanding task thus not implemented.  In our approach,
therefore, two adders are selected randomly (but at the
same adders layer) and then a local acceptance function
(LAF), which is further described in the next paragraph, is
calculated. The local acceptance function differs from the
(global) acceptance function as it takes under
consideration only the cost of the two involved adders
before and after modification. If modification is not
accepted locally, the change is rejected and the next
modification is randomly generated (the iteration counter
and temperature are not affected in this step).

Acceptance function. After a new network of adders has
been evaluated, the SA decides whether to accept or reject
it based on the value of an acceptance function h( ). The
acceptance function is the Boltzmann probabilit y
distribution:

)exp(1

1
),(

T
C

TCh
∆+

=∆ (6)

where: 
ii CCC −=∆ +1
- the difference of the adders cost

for the previous and current adders tree.

The new circuit is accepted with probabilit y equal the
value of the acceptance function.

The result for the SA, for different circuits are given in
Table 5. It can be seen that for the filter a, the result equal
103, the best possible – the same as for the ES, is obtained
already for 1000 iteration. For the filter c, the cost equal
123, the same as for the ES, was obtained already for 30k
iterations; for the CS, the cost is 126 even for more than
3M iterations. It should be, however, noted that the
computation cost of a single iteration is lower for the CS
than for the SA. This holds as for the CS and ES, the
change in the circuit is well -defined and usually
constrained only to the upper layer of the adders and
therefore only a part of the circuit has usually to be re-
calculated. For the SA, the change is done randomly and
on every part of the circuit, therefore cost of the whole
circuit has to be calculated again. The lower calculation
cost for the CS and ES, does not, however, compensate
much greater number of iterations required to obtained the
same result. Consequently, the overall calculation cost of
the CS is usually greater than for the SA, however for
small circuits for which the calculation cost is very low,
the CS and ES are good alternatives to the SA.

Table 5. The circuit costs for the GrA, ES and different
number of iterations for the SA;

wlaf – without local acceptance function

Ex GrA SA 1k SA 30k SA 1M ES
a 111 93±0 93±0 93±0 93
c 128 126.9 ±0.3 125 ±1.4 123 ±0 123
d 413 394 ±3 385 ±1 382 ±1 -

D(wlaf) 413 398 ±4 382 ±1 380 ±1 -
e 1358 1346 ±10 1299 ±3 1292 ±4 -

e (wlaf) 1358 1341 ±9 1293 ±4 1283 ±4 -
f 3730 3702 ±20 3338 ±14 3245 ±6 -

f (wlaf) 3730 3706 ±13 3419 ±13 3296 ±8 -



In our solution, the final circuit (obtained in the lowest
temperature) is often not the best one. Therefore, the best-
obtained circuit is every time stored as the result; this
increases calculation cost insignificantly but allows for
substantial savings.

Table 5 shows also the results when local acceptance
function (LAF) is not implemented (option: wlaf).
Calculating local cost before and after modifications,
insignificantly influences the total calculation cost and the
LAF usually rejects solutions which are unlikely to
generate a good global result. Conversely, the LAF
constrains search space and therefore may cause some
good solutions to be omitted. This is often the case for
relatively small adders circuits and for large iteration
numbers.  For example, it can be seen in Table 5 that not
implementing LAF gives better results for the circuit d and
for small number of iterations, however spoils results for
more complicated circuit f.

4 Conclusions

In this paper, thorough analysis of addition as a part of
the FIR filters has been presented. Complex input
parameters of the adder block have been considered:
inputs range (not only input width), inputs shift and even
the correlation between inputs. Consequently, finding an
optimal network of the adders tree is a difficult task which
has been investigated. Different approaches as: greedy
algorithm, exhausted search, simulated annealing and
genetic programming have been implemented and the
results given. Conversely, the best solution is obtained by
checking all possible solutions in the ES, however the
calculation time is unacceptable for the number of inputs,
n, greater than about 12. Therefore, the Constrained
Search (modification of the ES) has been proposed. For
the CS, each layer of the addition is considered, in some
degree, separately. The CS checks less solutions however
the number of solutions increases rapidly with growing n,
and therefore, this solution can be implemented for the
number of inputs n less than about 14 – insignificant
improvement in comparison to the ES. Further, the
Simulated Annealing technique has been implemented.
For small n, the SA usually finds the best solution and
requires much lower number of iterations in comparison to
the ES. However, for n≤8, the ES searches at most 315
solutions and therefore the computation cost is low.
Therefore for n≤8 the ES solution should be implemented.
For n≥9, the ES goes through at least 42 525 solutions
therefore the SA should be rather used.

Addition block is a part of the convolution and
therefore all procedures, described in this paper, are
included in the Automated Tool for Convolution in FPGAs
(AuToCon). The AuToCon [1, 15 16] generates an
optimised VHDL code of the convolver for the given
coeff icient values.
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