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Abstract

Addition is an essential operation for the convolution
(or FIR filters). In FPGAs, addition should be carried out
in a standard way employing ripple-carry adders (rather
than carry-save adders), which complicates search for an
optimal adder structure as routing order has a substantial
influence on the addition cost. Further, complex
parameters of addition inputs have been considered e.g.
correlation between inputs. These parameters are specified
in different ways for different convolver architectures:
Multiplierless Multiplication, Look-Up Table based
Multiplication, Distributed Arithmetic. Furthermore,
different optimisation techniques: Exhausted Search and
Simulated Annealing have been implemented, and as a
result. Otherwise, the Exhausted Search should be
employed for the number of the addition inputs n<8, or the
Simulated Anneding for n>8. Employing the Simulated
Anneding gves about 10-20% area reduction in
comparison to the Greedy Algorithm. This paper is a part
of the reseach on the AuToCon — Automated Toadl for
generating Convolution in FPGASs.

1 Introduction

An N tap convolution can be epresed by an
arithmetic sum of products:

y(i) = NZ:h(k) (i - k) (1)

where: y(i), x(i) and h(i) represent response, input at the
timei and the convolution coefficients, respectively.

The multiplicaion in eq. 1 can be caried out
employing threedifferent techniques:
Multiplierless Multiplication _(MM) [1] where
multi plication employs only shifts and additions from the
binary representation (BR) of the multiplicand. For
example, A multiplied by B= 14= 1110, can be
implemented as (A<<1)+(A<<2)+(A<<3), where ‘<<’
denotes a shift to the left. To reduce the number of
operation (non-zero symbols) required in the wefficient’s

two's complement representation, canonic signed dgit
(CSD) representation [2] should be employed. The CSD
representation is a signed power-of-two representation
where eat of the bits is in the set {0,,L1} (0 — no

operation, 1 —addition, 1 — subtradion). Summing wp, for
the MM, the FIR filter (convolution) arithmetic can be
caried out using only additi ons and substations.
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Figure 1. Look-up table based multiplication for 8-
bit wide coefficient

L ook-up-table based Multiplication (LM). In principle,
the evaluation of any finite function can be caried out
using a look-up table (LUT) memory that is addressed
with the agument for the evaluation and whaose output is
the result of the evaluation. Unfortunately, the use of a
single LUT for the multiplicaion is unlikely to be
pradicd for any but the smallest argument, becaise the
table size grows rapidly with the width of the agument.
Therefore the solution is to split the agument, use LUTS,
and then use atreeof adders [1, 3, 4, 5]. An example of
thisisgivenin Figure 1.

Distributed Arithmetic (DA). Theideabehind the DA [5,
6] isto compute the anvolution in different order than for
the LM. The following mathematical transformation is
employed:




N-1

DZ h(k) O, (i -k) (@

N-1 L-1
yi) =Y h(k)x(i-k)=F 2!
where: L- width of the input argument x (in hits), x;(i-k)- -

j-th bit of the input argument at time (i-k).

Consequently, the DA carries out the convolution in a
bit-plane order, i.e. every bit of inputs values is considered
separately. In comparison with the LM, the DA LUT
output width is smaller because the inputs are the same
significance. Therefore, the smaller memories are required

which makes the DA more hardware-efficient than the
LM.

For these three different techniques, the final and very
often overlooked operation is addition (subtraction). For
example, Thien-Toan Do et. a. [5] constructed the
structure of the LM and DA and showed the final adders
tree but the order of the additions seems to be intuitive
rather than based on a thorough research. This draws a
conclusion that general rules for constructing adders tree
should be given and/or a design automated tool has to be
developed in order to find an optimal order of additions.
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== Pipelining FFs for FPGAs
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Figure 2. An example for different pipelining strategies for ASC’'s and FPGA'’ s additi ons for the equation: dout= din0 +
dinl+ din2 + din3. Pipelining parameters: N=2 (ASIC), K=1 (FPGA)

For ASIC designs, the classic problem of carry
propagation is resolved by numerous techniques, e.g.
carry-look-ahead, carry-select [4], which reduce the delay
of carry propagation at the expense of great increase in
hardware complexity. Another approach to the carry
propagation problem is to remove it completely through
carry-save addition [4]. Consequently, in ASICs, carry-
save addition is a substantial technique implemented in the
convolution (FIR filters) designs[7].

FPGAs incorporate a dedicated carry propagate circuit
[8, 9] which is so fast and efficient that conventional
speed-up methods are meaningless even at the 16-bit level,
and of marginal benefit at the 32-bit level [8]. Furthermore
the dedicated carry-propagate circuit is implemented
outside the standard LUT logic and therefore does not
occupy standard logic area. Consequently, using only
ripple-carry adders in FPGAs design is the best solution
with respect to both the propagation time and occupied
area

As the result, there is a substantial difference between
pipelining the ASIC and FPGA additions. For ASIC

designs, pipelining flip-flops should be inserted every N-
logic blocks (where N is an integer which value is
application specific) therefore the carry-propagation chain
is broken as it is shown in Figure 2. For FPGAS, the fast
build-in carry logic significantly reduces carry-
propagation time and therefore pipelining flip-flops should
be rather inserted after every K additions (see Figure 2).
Nevertheless, the build-in carry logic cannot nullify the
carry propagation time, and therefore in the FPGA
solution, the most time critical path is the carry-propagate
circuit. For example, for Xilinx XC4000, delay through
LUT logic, e.g. sum-generation circuit, is approximately
six times longer than through the carry-propagate circuit.
However, when the programmable interconnects delays
are included, which essentialy influence overall system
performance, the carry propagate delay is much less
significant. This holds as FPGAs incorporate dedicated
and therefore very fast routing circuit form a carry-out to
carry-in. Furthermore the propagation time through the
programmable interconnects is usually comparable or even
greater than the propagation time through LUT logic.



Nevertheless, in FPGASs, a long-width adder can be
divided into severa parts by inserting pipelining flip-flops
every M carry-propagate blocks (like for VLSIs). This
solution should be used together with the pipelining
solution presented for FPGAS; i.e. a hybrid solution of the
FPGA and ASIC designs (see Figure 2) is employed. This,
however, would complicate the system design and require
additional flip-flops to be inserted according to the cut -
set pipelining rule [10]. Therefore, this solution has not
been implemented in the presented system, however, is
considered in the next step of the design development.
This hybrid solution seems to be better than delayed
addition technique [11] for which a carry-in does not
propagate to carry-out. Conversely, each 4-2 adder has the
standard carry-out logic and 2 outputs and therefore 2 flip-
flops are required for each 4-2 adder.

Summing up, for FPGAS the best solution seems to be
using dedicated addition and pipelining after every K
additions asit is shown in Figure 2.

2 Exhausted search

The best possible result can be always found by
searching through all possible solution. The problem of
finding the best solution for adders tree is NP-complete
and therefore only simple adders blocks can be routed
using the exhausted search algorithm. At first, let consider
an example of 5 input adder. The following solutions have
to be examined (the bottom layer is only taken into
consideration, the example shows how inputs (latters: a to
€) are paired together):

(a+b)+(c+d)+e (b+o)+(at+d)+e
(c+a)+(b+d)+e
(b+c)+(d+e)+a; (c+d)+(b+e)+a;
(d+b)+(cte)+a;
(c+d)+(e+a)+b; (d+e)+(c+a)+b;
(e+c)+ (b+a)+b;
(d+e)+(a+b)+c; (e+a)+(d+b)+c;
(a+d)+(e+b)+c;
(e+a)+(b+c)+d; (a+b)+(e+c)+d;
(b+e)+(at+c)+d;

In order to find out the number of possible
combinations, at first let define the function S(n) which
returns the number of all possible combinations within a
single adder layer for a given number of inputs n:

n{n-2){n-4)0..B1
Si(n)=0
0S.(n-1) for even n

The total number of posshle solutions S(n) is defined
in an iterative way and is a product of the number of
combination on this layer and the total number of
combination for the upper (closer to the output) layers, i.e.
for adders block for which number of inputsis halved:

for odd n ©)

Sn)= Sy(n) K20y ©)
where [} the ceiling function.

Table 1. The number of possible combinations for a given
number of inputs n to the adder block

N no. layers no. combinations

2 1 1
3 2 3
4 2 3
5 3 45
6 3 45
8 3 315
10 4 42 325
12 4 467775
14 4 42 57 525
16 4 638512 875
18 5 1 465 387 048 125

It can be seen from Table 1 that the number of possgble
solutions is growing rapidly, making the exhausted search
(ES) method wseless for the input number greder then
about 11-16.

As the number of possgble solutions is growing rapidly
with the growing number of adder inputs, a modificaion
of the Exhausted Seach (ES) method is here propaosed.
This method considers at first the mst of the GrA solution
for every layer |. Consequently, the st C(I) of the
partialy routed adder (up to the alder layer I) is first
cdculated (initially using the GrA) for every layer | and
then the similar to exhausted seach method is
implemented. This method, however, stops cdculating a
group o solutionsin its ealy stage (on layer |) if the cost
of the partially routed adder is greaer than Cy(I) + t;
where: Cy(l) — the aost C(I) for the best overall solution so
far found (initialy found by the GrA), t- a cetan
threshold number. The procedure of comparison is
exeauted after every layer of the adders treeis completed.

Table 2. Theoretical number of considered solutions for
different number of adder inputs N

N ES CSs CSs
(layer 1) | (layers1land 2)

6 45 15 45
8 315 105 315
10 42 325 945 14 175
12 467775 10 35 155925
14 42 57 525 135135 14 189175
16 638512 875 2 027 025 212837 625
18 | 1465387 048 125| 34 49 425| 32 54 156 625




The Constrained Seach (CS) technique saves the
cdculation time, as slutions which are less-likely to give
the better solution are skipped on alow layer and therefore
upper layers and their combinations are not cadculated for
the given partially routed adder. Conversely, it is possble
then an adder block has a very high cost on the bottom
layer(s), however the upper layers are much less costy, and
therefore this adder block solution is skipped athough it
would give the best result. Consequently, the key problem
is a proper choice of the threshold number t. Increase of
the threshold number t increases the total number of
considered solutions but deaeases the probability of not
finding the best solution.

Table 2 shows the theoreticd number of possble
solutions for the CS assuming that the cdculation process
isconstrained only to layer 1 and layer 1 and 2 It can been
seen that the total number of considered solution has
deaeased significantly, however it is still unacceptable for
the inputs number, N, greder than 18.

In this sdion the results for the greedy agorithm
(GrA), exhausted seach (ES) and constrained search (CS)
algorithms are given. Table 33 shows the st of the
generated circuits by GrA, ES and CS (for different
thresholds t). Table 4 shows the cdculation cost — the
number of iteration needed to find the drcuit.

Table 3. The implementation costs (number of full or half adders) for different filters and techniques

Filter no inputs ES CS (t=5) CS (1=2) CS(t=0) | CS(t=-1) GrA
a 16 93 93 93 93 93 111
b 11 72 72 72 73 73 74
c 13 123 126 126 126 126 128

Table 4. The number of iterations for different filters and techniques

Filter | layerl | Layer1.2 ES CS(t=5) | CS(t=2) | CS(t=0) | CS(t=-1)
a | 2027025 212837 625/ 638512 875 955 259| 488L543| 2 983651 2 327 927
b 945 14 175 467775 444927| 278735] 80Gbl| 13 173
c 135135| 14 189175| 42 %7525 300 789| 915375| 369357 193057

It can be seen from Table 3 and Table 4 that acceptable
results are adieved using only the GrA. The improvement
of about 2-7 % can be obtained by the use of the ES. The
drawbadck of the ES is its computation cost therefore the
reasonable solution seems the CS (for the number of
inputs up to 16). For the threshold t=-1, only partia
solution which is better than the best found is taken into
consideration. This makes the CS (t=-1) similar to a GrA
for which the step is constrained not only to the singe
adder (like for the GrA) but for al adders in the layer.
Besides for the CS, it is aways possible to undo a
seledion if the upper layers cost is high and therefore the
overal cost of the new solution is higher than the best
previously found cost. By the increase of the threshold t,
the number of considered solutions is growing. For t=0,
not only the best but also all solutions on the same st are
also considered. This however increases the number of
iterations but very dightly influences the overall results.
Similarly isfor t=2 and t=5.

It should be noted that the GrA behaves more poaly
for filters for which subtradion is implemented (for
negative wefficients, examples A, C) as this algorithm
deds with subtraction and additi on in the same way.

3 Simulated Annealing (SA)

The principle behind the SA [12, 13] is analogous to
what happens when metals are aoled at a cntrolled rate.
The slowly falling temperature dlows atoms in the molten
metal to line themselves up and form a regular crystalli ne
structure that has high density and low energy. In the SA,
the value of an objedive function which we want to
minimise, is analogous to the energy in a thermodynamic
system. At high temperatures, SA alows function
evaluations at faraway points and it is likely to accet a
new point at higher energy. At low temperatures, SA
evaluates the objedive function only at locd points and
the likelihood d it accepting a new point with higher
energy is much lower.

The SA agorithm, implemented for optimising adders
structures, employs the foll owing steps:

Objective function cdculates the mst C of the drcuit for
the given adderstree

Annealing Schedule regulates how rapidly the
temperature, T, goes from highto low values, as afunction
of iteration counts. In our case, the starting temperature T,
equals the mst of a 2-bit wide alder Cp,, the stoppng
temperature Ts equals ¥4 of the st of a 1-bit wide alder
Ca/4. In every iteration, the temperature T; is deaeased
acording to the following equation:

Tiv1= N %)



where ) - (L)%, S the number of iterations.

S
Generating a new adders structure is obtained by
randomly seleding two adders on the same layer; i.e.
randomly seleding afirst adder (input) from all adders and

randomly seleding a second adder from adders at the same
layer as the first adder. Examples of possble modificaion
aregivenin Figure 3.
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ab\_\ l_ Cb\_\ l_ ab\_1 l—lcd
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Figure 3. Examples of posgble one-step modifi cation:
A) aninitial circuit, B) C) the modified circuit A

Modificaions of the drcuit are cnstrained by the
temperature T;. In the conventional SA, also known as the
Boltzmann machine, the generating function which
spedfies the change of the input vedor, is a Gaussian
probability density function [14]. In our approad, the
number of posdsble solutions is finite therefore the
Gaussian probability function is useless An alternative
solution is defining a move set [14], denoted by M(x), as a
set of legal points available for exploration. However,
constructing the move set is rather computationally
demanding task thus not implemented. In our approach,
therefore, two adders are seleded randomly (but at the
same alders layer) and then a locd acceptance function
(LAF), which is further described in the next paragraph, is
cdculated. The locd acceptance function differs from the
(global) acceptance function as it takes under
consideration only the st of the two involved adders
before axd after modification. If modification is not
acceted locdly, the dhange is reecded and the next
modification is randomly generated (the iteration counter
and temperature ae not affeced in this gep).

Acceptance function. After a new network of adders has
been evaluated, the SA deddes whether to accept or regject
it based on the value of an acceptance function h( ). The
acceptance function is the Boltzmann probability
distribution:

h(AC,T) = 1

1+ exp(A%)
where: AC =C,,, - C, - the difference of the adders cost
for the previous and current adders tree

(6)

The new circuit is accepted with probability equal the
value of the accetance function.

The result for the SA, for different circuits are givenin
Table 5. It can be seen that for the filter a, the result equal
103 the best possble — the same &s for the ES, is obtained
already for 1000 iteration. For the filter c, the st equal
123 the same &s for the ES, was obtained already for 30k
iterations; for the CS, the mst is 126 even for more than
3M iterations. It should be, however, noted that the
computation cost of a single iteration is lower for the CS
than for the SA. This holds as for the CS and ES, the
change in the drcuit is well-defined and usualy
constrained only to the upper layer of the alders and
therefore only a part of the drcuit has usualy to be re-
cdculated. For the SA, the change is done randomly and
on every part of the drcuit, therefore st of the whole
circuit has to be cdculated again. The lower cdculation
cost for the CS and ES, does not, however, compensate
much greaer number of iterations required to oltained the
same result. Consequently, the overall cdculation cost of
the CS is usually greaer than for the SA, however for
small circuits for which the cdculation cost is very low,
the CSand ES are good alternatives to the SA.

Table 5. The circuit costs for the GrA, ES anddifferent
number of iterations for the SA;
wlaf —withou local acceptance function

Ex GrA SA 1k SA30k | SAIM | ES

a 111 930 93+0 93+0 93

C 128 | 1269+0.3 | 125+14 | 12340 | 123

d 413 394+3 385+1 | 3821 -
D(wlaf) | 413 398+4 382+1 | 3801 -

e 1358 | 1346410 | 1299+3 | 1292+4 | -
e(wlaf) | 1358 | 1341+9 1293+4 | 12834 | -

f 3730 | 3702+20 | 3338+14 | 32456 | -
f(wlaf) | 3730 | 3706+13 | 3419413 | 329648 | -




In our solution, the final circuit (obtained in the lowest
temperature) is often not the best one. Therefore, the best-
obtained circuit is every time stored as the result; this
increases cdculation cost insignificantly but alows for
substantial savings.

Table 5 shows aso the results when locd accetance
function (LAF) is not implemented (option: wilaf).
Calculating locd cost before and after modifications,
insignificantly influences the total cdculation cost and the
LAF usuadly rgeds <lutions which are unlikely to
generate a good global result. Corversely, the LAF
constrains sach space ad therefore may cause some
good solutions to be omitted. This is often the cae for
relatively small adders circuits and for large iteration
numbers. For example, it can be seen in Table 5 that not
implementing LAF gives better results for the drcuit d and
for small number of iterations, however spails results for
more complicated circuit f.

4 Conclusions

In this paper, thorough analysis of addition as a part of
the FIR filters has been presented. Complex input
parameters of the alder block have been considered:
inputs range (not only input width), inputs shift and even
the crrelation between inputs. Consequently, finding an
optimal network of the adders treeis a difficult task which
has been investigated. Different approaches as. grealy
algorithm, exhausted seach, simulated annealing and
genetic programming have been implemented and the
results given. Conversely, the best solution is obtained by
chedking al posshle solutions in the ES, however the
cdculation time is unacceptable for the number of inputs,
n, greder than about 12. Therefore, the Constrained
Seach (modificaion of the ES) has been proposed. For
the CS, ead layer of the aldition is considered, in some
degree separately. The CS checks less ®lutions however
the number of solutions increases rapidly with growing n,
and therefore, this lution can be implemented for the
number of inputs n less than about 14 — insignificant
improvement in comparison to the ES. Further, the
Simulated Anneding technique has been implemented.
For smal n, the SA usualy finds the best solution and
requires much lower number of iterationsin comparison to
the ES. However, for n<8, the ES seaches at most 315
solutions and therefore the mmputation cost is low.
Therefore for n<8 the ES solution should be implemented.
For n>9, the ES goes through at least 42525 solutions
therefore the SA should be rather used.

Addition block is a part of the onvolution and
therefore dl procedures, described in this paper, are
included in the Automated Todl for Convolution in FPGASs
(AuToCon). The AuToCon [1, 15 16] generates an
optimised VHDL code of the arnvolver for the given
coefficient values.
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