
1

FPGA Implementation of Addition as a Part of the Convolution

Ernest Jamro, Kazimierz Wiatr

AGH Technical University, Institute of Electronics

Mickiewicza 30, 30-059 Kraków, Poland

tel. +48 12 6173033, fax +48 12 6332398, email: wiatr@uci.agh.edu.pl

Abstract
Addition is a fundamental operation for the convolution (FIR filters). In FPGAs, addition should be carried out

in a standard way employing ripple-carry adders (rather than carry-save adders), which complicates search for an optimal
adder structure as routing order has a substantial influence on the addition cost. Further, complex parameters of inputs to
the adders tree have been considered, e.g. correlation between inputs. These parameters are specified in different ways for
different convolver architectures: Multiplierless Multiplication, Look-Up Table based Multiplication, Distributed
Arithmetic. Furthermore, optimisation techniques: Exhaustive Search and Greedy Algorithm have been implemented, and
as a result, the Greedy Algorithm is the best solution when time of computation is of great importance. Otherwise, the
Exhaustive Search should be employed for the number of the addition inputs n≤8. This paper is a part of the research on
the AuToCon – Automated Tool for generating Convolution in FPGAs.

Topics: image processors, processing arrays and FPGAs, reconfigurable structures

1 Introduction

1.1 Implementation of convolution in FPGAs
An N tap convolution can be expressed by an arithmetic
sum of products:

∑
−

=

−⋅=
1

0

)()()(
N

k

kixkhiy (1)

where: y(i), x(i) and h(i) represent response, input at the
time i and the convolution coefficients,
respectively.

The multiplication in eq. 1 can be carried out employing
three different techniques:
• Multiplierless multiplication (MM) [1] where

multiplication employs only shifts and additions
from the binary representation (BR) of the
multiplicand. For example, A multiplied by B= 14=
11102 can be implemented as
(A<<1)+(A<<2)+(A<<3), where ‘<<’ denotes a
shift to the left. To reduce the number of operation
(non-zero symbols) required in the coefficient’s
two’s complement representation, canonic signed
digit (CSD) representation [2] should be employed.
The CSD representation is a signed power-of-two

representation where each of the bits is in the set
{ 1,1,0 } (0 – no operation, 1 – addition, 1 –

subtraction). Summing up, for the MM, the FIR
filter (convolution) arithmetic can be carried out
using only additions and substations.

input

LUT
1

LUT
0

 4 4

 8

 12 12

Adder

 8
 4

 12

 16

output

 LSB MSB

Figure 1. Look-up table based multiplication for 8-bit
wide coefficient

• Look-up-table based multiplication (LM). In
principle, the evaluation of any finite function can
be carried out using a look-up table (LUT) memory
that is addressed with the argument for the
evaluation and whose output is the result of the

2

evaluation. Unfortunately, the use of a single LUT
for the multiplication is unlikely to be practical for
any but the smallest argument, because the table
size grows rapidly with the width of the argument.
Therefore the solution is to split the argument, use
LUTs, and then use a tree of adders [1, 3, 4, 5]. An
example of this is given in Figure 1.

• Distributed Arithmetic (DA). The idea behind the
DA [5, 6] is to compute the convolution in different
order than for the LM. The following mathematical
transformation is employed:

∑ ∑ ∑
−

=

−

=

−

=

−⋅⋅=−⋅=
1

0

1

0

1

0

)()(2)()()(
N

k

L

j

N

k
j

j kixkhkixkhiy (2)

where: L- width of the input argument x (in bits), x,j(i-
k)- -j-th bit of the input argument at time (i-k).

Consequently, the DA carries out the
convolution in a bit-plane order, i.e. every bit of inputs
is considered separately. In comparison with the LM,
the DA LUT output width is smaller because the inputs
are at the same bit-significance. Therefore, the smaller
memories are required which makes the DA more
hardware-efficient than the LM.

For these three different techniques, the final and
very often overlooked operation is addition
(subtraction). For example, Thien-Toan Do et. al. [5]
constructed the structure of the LM and DA and showed
the final adders tree but the order of the additions seems
to be intuitive rather than based on a thorough research.
This draws a conclusion that general rules for
constructing adders tree should be given and/or a design
automation tool has to be developed in order to find an
optimal order of additions.

1.2 Addition in FPGAs
For ASIC designs, the classic problem of carry

propagation is resolved by numerous techniques, e.g.
carry-look-ahead, carry-select [4], which reduce the
delay of carry propagation at the expense of great
increase in hardware complexity. Another approach to
the carry propagation problem is to remove it
completely through the usage of carry-save adders [4].
Consequently in ASICs, the usage of carry-save adders
is a technique commonly implemented in the
convolution (FIR filters) designs [7].

FPGAs incorporate a dedicated carry propagate
circuit [8, 9] which is so fast and efficient that
conventional speed-up methods are meaningless even at
the 16-bit level, and of marginal benefit at the 32-bit
level [8]. Furthermore the dedicated carry-propagate
circuit is implemented outside the standard LUT logic
and therefore does not occupy standard logic area.

Consequently, using only ripple-carry adders in FPGA
designs is the best solution with respect to the
propagation time and occupied area.

As a result, there is a substantial difference
between pipelining the ASIC and FPGA adders. For
ASIC designs, pipelining flip-flops should be inserted
every N-logic blocks (where N is an integer which value
is application specific) therefore the carry-propagation
chain is broken as it is shown in Figure 2. For FPGAs,
the fast build-in carry logic significantly reduces carry-
propagation time and therefore pipelining flip-flops
should be rather inserted after every K additions (see
Figure 2). Nevertheless, the build-in carry logic cannot
nullify the carry propagation time, and therefore in the
FPGA solution, the most time critical path is the carry-
propagate circuit. For example, for Xilinx XC4000,
delay through LUT logic, e.g. sum-generation circuit, is
approximately six times longer than through the carry-
propagate circuit. However, when the programmable
interconnects delays are included, which essentially
influence overall system performance, the carry
propagate delay is much less significant. This holds as
FPGAs incorporate dedicated and therefore very fast
routing circuit form a carry-out to carry-in. Furthermore
the propagation time through the programmable
interconnects is usually comparable or even greater than
the propagation time through LUT logic.

HA

din1(0) din0(0)

FA

din1(1) din0(1)

FA

din1(2) din0(2)

FA

din1(3) din0(3)

HA

din3(0) din2(0)

FA

din3(1) din2(1)

FA

din3(2) din2(2)

FA

din3(3) din2(3)

HAFAFAFA

dout(0)dout(1)dout(2)dout(3)

Pipelining FFs for FPGAs Pipelining FFs for ASICs

Figure 2. An example for different pipelining strategies
for ASIC’s and FPGA’s additions for the equation:

dout= din0 + din1 + din2 + din3. Pipelining
parameters: N=2 (ASIC), K=1 (FPGA)

Nevertheless, in FPGAs, a long-width adder can
be divided into several parts by inserting pipelining flip-
flops every M carry-propagate blocks (like for VLSIs).
This solution should be used together with the
pipelining solution presented for FPGAs; i.e. a hybrid
solution of the FPGA and ASIC designs (see Figure 2)
should be employed. This, however, would complicate
the system design and require additional flip-flops to be
inserted according to the cut - set pipelining rule [10].

3

Therefore, this solution has not been implemented in the
presented system, however, is considered in the next
step of the design development. This hybrid solution
seems to be better than delayed addition technique [11]
for which a carry-in does not propagate to carry-out.
Conversely, each 4-2 adder has the standard carry-out
logic and 2 outputs and therefore 2 pipelining flip-flops
are required for each 4-2 adder.

Summing up, for FPGAs the best solution seems
to be using dedicated adders and pipelining after every
K additions as it is shown in Figure 2.

1.3 Overview
In the next section, input parameters of the adder

block will be specified. Initially it might seem that only
input width is required, however, to achieve hardware
savings the input range and even inputs correlation
should be considered. Furthermore, the correlation
between inputs depends on the FIR architecture: the
MM, LM or DA, which makes implementation more
difficult.

Further, different heuristics for finding an
optimal adders tree are investigated. Implementation
approaches and results are included to illustrate how the
adders tree is optimised.

2 Addition parameters

2.1 Description of the input parameters
Section 1.1 describes methods of implementing

FIR filters. Now, let consider the adders tree block
alone, which is independent of these methods, and
therefore let define input parameters to this block. The
first intuitive parameter is the number of inputs and
their bus widths or the minimum and maximum input
values. Consequently, for the addition: y= a + b, the
relation between the inputs and the output ranges is as
follows:
ymin= amin + bmin ymax= amax + bmax (3)

It should be noted that for a subtraction y = a-b
the above equation also holds provided that the
following substitution is carried out:
bmin= -b’ max b’ max= -b’ min (3a)
The use of minimum and maximum values instead of
the bus widths can cause hardware savings, as some
inputs might not use the full input range. For example,
for input range from 0 to 9 adding three such inputs
gives output range from 0 to 27, which requires 5 bit
wide bus. If only the bus width is considered, the output
width will be 6-bit wide. In addition, some inputs may
have the LSBs fixed to zero as the argument is shifted to

the left, therefore an additional shift parameter s should
be also included.

Inputs Correlation
To further decrease additions width, correlation

between inputs should be considered. Because an
assumption is made that inputs x(i-k) (see eq. 1) are
uncorrelated, the correlation occurs only within the
multiplication h(k)⋅x(i-k) when the addition of the partial
product takes place; e.g. addition of shifted x(i-k).
Consequently, the correlation is considered separately
for each multiplication, and therefore in this section
rather a multiplication than a whole FIR filter is
considered.

The correlation should be considered for every
intermediate addition; e.g. for the addition: y= a+b+c,
at first auxiliary addition, yab= a+b, takes place and
therefore only correlation between inputs a and b should
be considered. Furthermore, the correlation should be
calculated from the very beginning for every auxiliary
addition; i.e. only inputs to the auxiliary adder block,
which are involved into the considered partial addition,
should be taken into account, and therefore the actual
adders connection network within the auxiliary adder
block is disregarded.

2.1.1 Multiplierless Multiplication
For the MM no correlation is observed unless a

subtraction between the same argument takes place: y=
a – b, where a= 2kb. In this case, the eq. 3 should be
replaced by:
ymin= amin - bmin ymax= amax - bmax (4)

2.1.2 LUT-based Multiplication
The correlation is more complicated in the case

of the LM. Let I0, I1, ... Ik be the inputs to LUT
memories for a single multiplication, where I0

represents the input to the LSBs LUT and Ik the input to
the MSBs LUT; and wo, w1, ... wk represent the input
width of the LUTs; s0, s1, ... sk represent the shift to the

left of each LUT: ∑
−

=

=
1

0

j

l
lj ws , and s denotes the shift

of the output. It can be seen that all LUTs but the MSBs
LUT inputs operate on the positive binary range:

I j max= 2Wj-1 I j min= 0 for j= 0 .. k-1. (5)

The MSBs LUT is an exception for which the following
equation holds:

Ik max= Imax>> sk Ik min= Imin>> sk (6)

4

where: Imax, Imin – maximum and minimum input values to
the multiplier, >> s- denotes a shift to the right
by s-bits.

The LUT output range can be defined as:

Oj max= h⋅I j max Oj min= h⋅I j min for h≥0
Oj max= h⋅I j min Oj min= h⋅I j max for h<0

(7)
where: h – the multiplication coefficient.

It should be noted that the total output range of
the multiplication: Omax, Omin can also be obtained by
employing the eq. 7 – only the index j disappears. The
relation between the LUT output ranges is specified:

∑
=

>><<≤
k

j
jj ssOO

0
maxmax)]([

ssOO
k

j
jj >><<≥ ∑

=
]([

0
minmin

(8)

The above inequali ty becomes the equali ty if
there is no correlation between outputs Oj or the
correlation is not taken into account.

The algorithm of finding the correlated
maximum and minimum of an auxili ary adder A (the set
A contains indices of all i nputs to the auxili ary adder
block) is based on constructing a correlation set C
(C⊆A). The set C contains the MSBs LUT k if the LUT
k feeds the auxili ary adder A, i.e. k∈A, otherwise the set
C is empty (no correlation is observed). The set C is
further constructed in an iterative way, starting from the
index j= k-1. The index j belongs to the correlation set
C if the index j+1 also belongs to. Consequently, C
contains successive elements: j, j+1, ..., k-1, k, where j-1
is the index of the MSB LUT which is not included in
the auxili ary addition block i.e. (j-1)∉A. The input range
of the of set C is calculated in similar way as input
range of the MSB LUT (eq. 6) and can be expressed as
follows:

ICmax = Imax>> sC ICmin = Imin>> sC (9)

where:
)min(C

Cj
jC swws =−= ∑

∈

, min(C) - the smallest

index in the set C.

The output range of the set C can be calculated in the
following equation which is similar to eq. 7.

CA max= h⋅IC max CA min= h⋅IC min for h≥0
CA max= h⋅IC min CA min= h⋅IC max for h<0

(10)

Finally, the output range of the auxili ary adder A is
calculated as follows:

A
CAi

iiCAA ssOsCO >><<+<<= ∑
−∈

])()[(minminmin

∑
−∈

>><<+<<=
CAi

AiiCAA ssOsCO)]()[(maxmaxmax

(11)
where: sA - the shift of the auxili ary adder A; sA= min(si)
for all i ∈A.

It should be noted that the correlation set C is
empty if the MSBs LUT is not included into the
auxiliary addition block, i.e. k∉A. In this case: CAmin= 0,
CAmax= 0.

It is important to note that the correlation is not
observed for the binary or two’s complement full range
of the input argument, e.g. for input range: 0 to 255 or –
128 to 127.

Example 1
Let consider the example form Figure 1, for

input range: –99 to 99 (8-bit wide input) and coefficient
h=100. Consequently, form eq. 5 and 6, the input range
is I0= 0 to 15 and I1= –7 to 6. Employing eq. 7 we
obtain the output range: O0min= 0, O0max= 1500 and
O1min= -700, O1max= 600. When the correlation is not
taken into account, the output range of the addition is
(from eq. 8) OA= -11 200 to 11 100. Otherwise (form
eq. 11), OA= -9 900 to 9 900.

Hardware savings, after the correlation is taken
into account, are more significant for less wide MSB
LUTs. For example, for input range –9 to 9 (5 bit wide
input), I0= 0 to 15 and I1= –1 to 0. Consequently,
uncorrelated (from eq. 8) addition range is -1600 to
1500, in comparison to –900 to 900 when the
correlation is taken into account.

Correlation savings are even more efficient if the
multiplication coefficient can be changed by employing
the self-configurable multiplier [12] also denoted as the
Dynamic Constant Coefficient Multiplier (DKCM) [13];
i.e. the LM for which RAMs instead of ROMs are
employed in order to dynamically change coefficient
values. In this case, instead of multiplication coefficient
h, coeff icient range hmin and hmax should be used.
Consequently, eq. 7 should be replaced by:

Oj max= Max (hmax⋅I j max, hmim⋅I j min)
Oj min= Min (hmax⋅I j min, hmin⋅I j max) (12)

It should be noted that for the DKCM, there is
correlation between arguments even if full input binary
range is used.

5

2.1.3 Distributed Arithmetic
For the DA, the correlation should be considered

in a similar way as for the LM. However inputs to the
LUT are from different filter inputs x,j(i-k) (see eq. 1
and 2). Therefore each input to the LUT should have a
separate correlation entry kj, Cjmin, Cjmax (see Section
2.1.4) and should be regarded as an one-input LUT.
This however complicates the input parameters set (one
input has several correlation entities). Furthermore, the
correlation is also much more difficult to be considered
within the addition block, which significantly increases
the calculation time.

Consequently, a simplified approach should be
rather employed, for which the correlation is considered
collectively for the set of inputs x(i-k). Accordingly, kj,
Cjmin, Cjmax are calculated not for a single multiplication
but for the sum of products. This, however, causes that
if a single multiplication from the set does not comply
to the correlation rules, i.e. an input miss occurs only for
a single DA-LUT, the correlation of all i nputs less
significant than the missing input is disregarded.
Therefore, the simplified approach may result in the
hardware overheads. However, the case can be
eliminated in most cases by sorting the correlation set –
the more significant output of the DA LUT the larger
index of the DA LUT.

2.1.4 Summary of the input parameters
In our approach for every input j, the following addition
input parameters are specified:
• Input shift: sj

• Input width: wj

• Input range (e.g. for the LM, output of the LUTs) :
Ojmin, Ojmax

• Kind of operation: addition / subtraction

Correlation parameters:
For MM:
• The multiplication input index: k. If two or more

inputs have the same index k then for subtraction,
the eq. 4 instead of eq. 3 should be employed.

For LM and DA:
• Correlation index : k – index of the MSBs LUT of:

a) multiplication for the LM b) sum of products for
the DA.

• Correlation range: Cimin, Cimax, these values are
calculated in eq. 10 for the correlation set C= {j,
j+1, ..., k}. If all i nputs from j to k are involved in
the auxili ary addition A then variables CAmin, CAmax

rather then Ojmin, Ojmax and eq. 3 should be
employed.

The correlation for the LM and DA is calculated
correctly according to the above schedule if indices are
correctly assigned. Correspondingly, for the LM, output
indices are assigned incrementally and separately for
every multiplication, according to increasing bit-

significance of LUTs. Similar procedure is employed
for the DA, however all i nputs associated with the DA
should be considered together.

2.2 Addition tree structure
Additional assumptions and rules for

constructing the addition tree must also be specified.
Consequently, a binary tree is employed for which the
number of inputs to the next adder stage is halved. An
example of the binary adder tree for 6 inputs is given in
Figure 3. This assumption is rather intuitive and
minimises the input-output delay. It should be however
noted that for some cases when the delay time is
disregarded, this assumption might exclude the best
solution. This, however, is a rare case and therefore this
assumption seems to be justified.

+ + +

+

+

inputs

output

layer 1

layer 2

layer 3

flip-flops (inserted for p= 1)

flip-flops (inserted for p= 1 or 2)

a b c d e f

ab cd ef

abcd

Figure 3. An example of the adders tree for 6
inputs

Consequently, the most complex part of the
design is paring inputs to form two inputs adders. This
task must be carried out with respect to the area of the
adders structure. Therefore, the cost of a Full Adder
(FA) cell should be another user-defined parameter. An
alternative, universal solution is defining the cost of the
adder for every possible adder width, e.g. from 1 to 32,
as the average cost of a FA may depend on the adder
width. Furthermore, the latter solution allows for area-
time trade-offs, i.e. the cost of the adder increases
rapidly with the increase of the adder width as the delay
through the adder increases with the adder width.
Consequently, the cost of the adders for different widths
can be specified with respect to not only the occupied
chip area but the delay time as well .

It should be noted that the actual width of adder
is smaller than the width of the addition result in the
case when one argument is shifted to another. An
example of shifted arguments is given in Figure 1, for

6

which 4 LSBs are directly copied to the output. For
subtraction, however, the LSBs of the subtrahend
cannot be copied as it is the case for addition, because
conversion to two’s complement format has to be
carried out on the subtrahend before the addition is
implemented. Two’s complement conversion involves
negation of every bit of the subtrahend and adding 1 at
the LSB position of the subtrahend. These operations
can usuall y be carried out within a standard addition
block in FPGAs, therefore no extra chip area is
required. However, if the subtrahend is shifted to the
right, the LSBs of the subtrahend have to be converted
to two’s complement representation even if the
subtraction is not performed on these bits, and therefore
additional logic and arithmetic is required in
comparison to addition. Consequently, subtraction and
addition have to be treated in a slightly different way [1]
and different optimisation rules applied for additions
and subtractions.

In order to speed-up the addition, pipelining is
implemented. Consequently, additional user-defined
parameter: level of pipelining p has been introduced.
Parameter p defines that pipelining flip-flops are
inserted after every p-layers of adders. An example of
pipelining is given in Figure 3. For p= 1, flip-flops are
inserted after every adders layer; for p= 2, flip-flops are
inserted only after layer: 2, 4, 6, etc. It should be noted
that flip-flops are incorporated in FPGAs after every
logic element, therefore, it might seem that no
additional chip area is occupied by the pipelining flip-
flops. However, some bits of an addition result may be
directly copied to the output. This happens when either
inputs are shifted to each other (the case discussed in the
previous paragraph) or an input cannot be paired (e.g.
signal ef in Figure 3). In these cases no logic cell i s
required and consequently pipelining flip-flops may not
be attached to any logic. Consequently, the design area
may be specified by the number of flip-flops rather than
the number of logic elements; and this causes the
increase of the chip area. Summing up, the chip area is
usually defined by the number of flip-flops for
pipelining parameter p= 1 and by the number of logic
elements for p≥2. However, for increasing p the design
throughput is reduced, therefore a compromise between
area and throughput is observed.

3 Greedy algorithm
Several techniques have been employed to

optimise the adder block. One of them is the Greedy
Algorithm (GrA) [14] which considers the estimated
best partial solution. The drawback of this algorithm is
that taking series of the best partial solutions often does
not lead to the best overall solution, therefore an
approximate solution is usually obtained. This algorithm

is the quickest algorithm form all considered in this
paper and very often gives an acceptable solution. The
most significant part of the GrA, which strongly
influences the overall result, is criteria which defines
priorities according to which a partial solution is taken.
In our project, different criteria have been specified for
the first input and for the second input to an adder. The
following rules has been selected:

1. First input
1.1. Take input with the smallest input shift s1. If two

or more inputs have the same input shift s1,
consider the next rule for these inputs.

1.2. Take input with the smallest input width w1.
2. Second input
2.1. Take input with the smallest significance of the

MSB m1= s1+w1. Disregard this rule if the
significance of the MSB of the first input m1=
s1+w1 is greater or equal than m2 (m1 ≥ m2). If two
or more inputs have the same m2 or m1 ≥ m2,
consider the next rule for these inputs.

2.2. Take input with the smallest shift s2. If two or
more inputs have the same shift s2 consider the next
rule.

2.3. Take input, which does not generate carry out
signal of the adder (the input with the smallest
addition result). If two or more inputs have the
same smallest addition width consider the next rule
for these inputs.

2.4. Take input with the greatest input maximum value
I2 max.

Rule 1.1 causes that the first input is taken to sort
inputs according to their shifts. Consequently, this rule
considers the overall solution rather than the best partial
solution as the unattached inputs tends to be of a greater
shift and therefore easier to be grouped in the next
iterations. Rule 1.2 tries to minimise partial solution by
taking the smallest input width. This rule also supports
finding a good overall solution as wider inputs can be
easier grouped with inputs of a greater shift, which are
left for the next iterations. The second input is taken
rather to optimise at first partial and then overall
solution. Rule 2.1 finds input which generates the
smallest result width. Rule 2.2 finds input with the
smallest shift and therefore tries to optimise overall
solution similarly as rule 1.1. It should be noted that if
input shifts are different (s1<s2), (s2-s1)-bits are copied
directly to the addition output (this copy does not
require any hardware) and this justifies that rule 2.1 is
more significant than rule 2.2. Rule 2.3 finds input
which produces the smallest output. Furthermore, to
improve the overall solution the input with the
maximum value is chosen according to rule 2.4.

The above rules, although based on extensive
research, are rather intuitive, therefore probable better

7

criteria may be found. Furthermore, the priority queue
may be different for different input parameters; e.g. for
subtraction, bit copy of shifted inputs cannot be
implemented and therefore different rules may be
specified. Furthermore, the average cost of a full adder
(FA) may be different for different adder widths to
allow area-time trade-offs, and this causes that a
different priority queue should be specified, etc.

4 Exhaustive search

4.1 Concept
The best possible result can be always found by

searching through all possible solution. The problem of
finding the best solution for adders tree is NP-complete
and therefore only simple adders blocks can be routed
using the exhaustive search algorithm. At first, let
consider an example of 5 input adder. The following
solutions have to be examined (the bottom layer is only
taken into consideration, the example shows how inputs
(latters: a to e) are paired together):

(a+b)+(c+d)+e; (b+c)+(a+d)+e; (c+a)+(b+d)+e;
(b+c)+(d+e)+a; (c+d)+(b+e)+a; (d+b)+(c+e)+a;
(c+d)+(e+a)+b; (d+e)+(c+a)+b; (e+c)+(b+a)+b;
(d+e)+(a+b)+c; (e+a)+(d+b)+c; (a+d)+(e+b)+c;
(e+a)+(b+c)+d; (a+b)+(e+c)+d; (b+e)+(a+c)+d;

In order to specify the number of possible
combinations, at first let define the function S1(n) which
returns the number of all possible combinations within a
single adder layer for a given number of inputs n:





−
⋅⋅⋅−⋅−⋅

=
nevenfornS

noddfornnn
nS

)1(

13)4()2(
)(

1
1

�

(13)
The total number of possible solutions S(n) is

defined in an iterative way and is a product of the
number of combination on this layer and the total
number of combination for the upper (closer to the
output) layers, i.e. for adders block for which number of
inputs is halved:

S(n)= S1(n)⋅S(n/2) (14)
where   - the ceiling function

N # layers # combinations
2 1 1
3 2 3
4 2 3
5 3 45
6 3 45
8 3 315

10 4 42 525

12 4 467 775
14 4 42 567 525
16 4 638 512 875
18 5 1 465 387 048 125

Table 1. The number of possible combinations for a
given number of inputs n to the adder block.

It can be seen from Table 1 that the number of
possible solutions is growing rapidly, making the
exhaustive search (ES) method useless for the input
number greater then about 11-16.

4.2 Constrained Search (CS)
As the number of possible solutions is growing

rapidly with the growing number of adder inputs, a
modification of the exhaustive search (ES) method is
here proposed. This method considers at first the cost of
the GrA solution for every layer l. Consequently, the
cost C(l) of the partially routed adder (up to the adder
layer l) is first calculated (initiall y using the GrA) for
every layer l and then the similar to exhaustive search
method is implemented. This method, however, stops
calculating a group of solutions in its early stage (on
layer l) if the cost of the partially routed adder is greater
than Cb(l) + t; where: Cb(l) – the cost C(l) for the best
overall solution so far found (initiall y found by the
GrA), t- a certain threshold number. The procedure of
comparison is executed after every layer of the adders
tree is completed.

The CS technique saves the calculation time, as
solutions which are less-likely to give the better solution
are skipped on a low layer and therefore upper layers
and their combinations are not calculated for the given
partially routed adder. Conversely, it is possible then an
adder block has a very high cost on the bottom layer(s),
however the upper layers are much less costy, and
therefore this adder block solution is skipped although it
would give the best result. Consequently, the key
problem is a proper choice of the threshold number t.
Increase of the threshold number t increases the total
number of considered solutions but decreases the
probabili ty of not finding the best solution.

N ES CS (layer 1) CS (layers 1 and 2)
6 45 15 45
8 315 105 315
10 42 525 945 14 175
12 467 775 10 395 155 925
14 42 567 525 135 135 14 189 175
16 638 512 875 2 027 025 212 837 625
18 1 465 387 048 125 34 459 425 32 564 156 625

Table 2. Theoretical number of considered
solutions for different number of adder inputs N

8

Table 2 shows the theoretical number of possible
solutions for the CS assuming that the calculation
process is constrained only to layer 1 and layer 1 and 2.
Experiments proved that the number of iterations for the
CS is in these ranges, and is greater for greater threshold
t. It can been seen that the total number of considered
solution has decreased significantly, however it is still
unacceptable for the inputs number N greater than 18.

4.3 Implementation Results
In this section the results for the greedy

algorithm (GrA), exhaustive search (ES) and
constrained search (CS) algorithms are given. Table 3
shows the cost of the generated circuits by GrA, ES and
CS (for different thresholds t).

Filter
example

#
inputs

ES CS
(t=5)

CS
(t=2)

CS
(t=0)

CS
(t=-1)

GrA

a 16 93 93 93 93 93 111
b 11 72 72 72 73 73 74
c 13 123 126 126 126 126 128

Table 3. The implementation costs (number of full or
half adders) for different filters and techniques

It can be seen from Table 3 that acceptable
results are achieved using only the GrA. The
improvement of about 2-7 % can be obtained by the use
of the ES. The drawback of the ES is its computation
cost therefore the reasonable solution seems the CS (for
the number of inputs up to 16).

5 Conclusions
In this paper, thorough analysis of addition as a

part of the FIR filters has been presented. Complex
input parameters of the adder block have been
considered: inputs range (not only input width), inputs
shift and even the correlation between inputs.
Consequently, finding an optimal network of the adders
tree is a diff icult task which has been investigated.
Different approaches as: greedy algorithm, exhaustive
search, constrained search have been implemented and
the results given. Consequently GrA gives the worst
solution but at very low calculation cost. Conversely,
the best solution is obtained by checking all possible
solutions in the ES, however the calculation time is
unacceptable for the number of inputs, n, greater than
about 12. Therefore, the Constrained Search
(modification of the ES) has been proposed. The CS
checks less solutions however the number of possible
solutions increases rapidly with growing n, and
therefore, this solution can be implemented for the
number of inputs n less than about 14 – insignificant
improvement in comparison to the ES. For small n, the
SA usually finds the best solution and requires much
lower number of iterations in comparison to the ES.
However, for n≤8, the ES searches at most 315
solutions and therefore the computation cost is low. In
conclusion, for n≤8 the ES solution should be
implemented.

Addition block is a part of the convolution and
therefore all procedures, described in this paper, are
included in the Automated Tool for Convolution in
FPGAs (AuToCon). The AuToCon [1, 13, 15] generates
an optimised VHDL code of the convolver for the given
coeff icient values.

References

[1] Wiatr K., Jamro E. Constant Coefficient Multiplication in FPGA Structures, Proceedings of the 26th Euromicro

Conference, Maastricht, The Netherlands, Sep. 5-7, 2000, Vol. I, pp. 252-259.
[2] Garner H. Number Systems and Arithmetic, Advances in Computing, vol. 6, pp. 131-194, 1965
[3] Chapman K. Fast Integer Multiplier fit in FPGA’s, EDN 1993 Design Idea Winner, END May 12th 1994.
[4] Omondi A.R Computer Arithmetic Systems. Algorithms Architecture and Implementations, Prentice Hall 1994.
[5] Do T.T. Reuter C., Pirsch P. Alternative approaches implementing high-performance FIR filters on lookup table-

based FPGAs: A comparison. SPIE Conference on Configurable Computing and Applications, Boston,
Massachusetts, pp. 248-254, 2-3 Nov. 1998.

[6] Burrus C.S.: Digital filt er structure described by arithmetic, IEEE transaction on Circuits and systems, pp. 674-680,
1977

[7] Hawley R.A., et, al. Design Techniques for Sili con Compiler Implementation of High-Speed FIR Digital Filters,
IEEE Journal of Solid-State Circuits, vol. 31, no 5, pp. 656-667, May 1996

[8] Xili nx Co. The Programmable Logic Data Book 1999.
[9] Altera Co. Apex 20K Programmable Logic Device Family, Data Sheet, ver. 2.05, Nov. 1999.
[10] Pirsch P., Architectures for Digital Signal Processing, Chichester UK, Wiley 1998.
[11] Luo Z., Martonosi M. Using Delayed Addition Techniqus to Accelerate Integer and Floating-Point Calculation in

Configurable Hardware, SPIE Conference on Configurable Computing: Technology and Applications, Boston,
Massachusetts, Nov. 1998, Vol. 3526, pp. 202-211.

9

[12] Wojko M., ElGindy H. Configuration Sequencing with Self Configurable Multipliers 13th International Parallel

Processing Symposium and 10th Symposium on Parallel and Distributed Processing, San Juan, Puerto Rico, USA,
April 1999, pp. 643-651.

[13] Wiatr K. Jamro E. Implementation of Multipliers in FPGA Structures, ISQED March 2001 San Jose, California
[14] Cormen T.H., Leiserson C.E., Rivest R.L. Intoduction to Algorithms Massachusetts Institute of Technology, 1994
[15] Wiatr K. Jamro E. Implementation of image data convolutions operations in FPGA reconfigurable structures for

real-time vision systems. International IEEE Conference on Information Technology: Coding and Computing, Nevada
2000, pp. 152-157.

