FPGA Implementation of Addition asa Part of the Convolution

Ernest Jamro, Kazimierz Wiatr

AGH Technicd University, Ingtitute of Eledronics
Mickiewicza30, 30-059 Krakdéw, Poland
tel. +48 12 6173033, fax +48 12 6332398, email: wiatr@uci.agh.edu.pl

Abstract

Addition is a fundamental operation for the convolution (FIR filters). In FPGAs, addition should be caried out
in a standard way employing ripple-carry adders (rather than carry-save alders), which complicaes sach for an optimal
adder structure & routing order has a substantial influence on the aldition cost. Further, complex parameters of inputs to
the alders treehave been considered, e.g. correlation between inputs. These parameters are spedfied in different ways for
different convolver architecures. Multiplierless Multiplicaion, Look-Up Table based Multiplication, Distributed
Arithmetic. Furthermore, optimisation techniques. Exhaustive Search and Greedy Algorithm have been implemented, and
as aresult, the Greedy Algorithm is the best solution when time of computation is of grea importance. Otherwise, the
Exhaustive Seach should be enployed for the number of the aldition inputs n<8. This paper is a part of the research on
the AuToCon — Automated Toal for generating Convolution in FPGAS.

Topics. image processors, processing arrays and FPGAs, reconfigurable structures

1 Introduction

1.1 Implementation of convolution in FPGAS

An N tap convolution can be expressed by an arithmetic
sum of products:

y(i) = Ngh(k) XGi - k) 0

where: y(i), x(i) and h(i) represent response, input at the
time i and the convolution coefficients,
respectively.

The multiplicaion in eg. 1 can be caried out employing

threedifferent techniques:

e Multiplierless multiplication (MM) [1] where
multiplicaion employs only shifts and additions
from the binary representation (BR) of the
muilti plicand. For example, A multiplied by B= 14=
1110, can be implemented as
(A<<1)+(A<<2)+(A<<3), where ‘<<’ denotes a
shift to the left. To reduce the number of operation
(non-zero symbadls) reguired in the mefficient’s
two’s complement representation, canonic signed
digit (CSD) representation [2] should be employed.
The CSD representation is a signed power-of-two

representation where eat of the bits is in the set
{011} (0 — no operation, 1 — addition, 1 —
subtradion). Summing uwp, for the MM, the FIR
filter (convolution) arithmetic can be caried out
using only additi ons and substations.

input
8
4 4
LUT LUT
MSB 1 0 LSB
12 12
8
Adder 4
12
3 16
output

Figure 1. Look-up table based multiplication for 8-bit
wide coefficient

Look-up-table based multiplicaion (LM). In
principle, the evaluation of any finite function can
be caried out using alook-up table (LUT) memory
that is addreseed with the agument for the
evaluation and whose output is the result of the

evaluation. Unfortunately, the use of a single LUT
for the multiplication is unlikely to be practical for
any but the smallest argument, because the table
size grows rapidly with the width of the argument.
Therefore the solution is to split the argument, use
LUTs, and then use a tree of adders[1, 3, 4, 5]. An
example of thisisgivenin Figure 1.

e Distributed Arithmetic (DA). The idea behind the
DA [5, 6] isto compute the convolution in different
order than for the LM. The following mathematical
transformation is employed:

y(i) = NZlh(k) (i — k) = fzi DNZIh(k) X (-k (2

where: L- width of the input argument x (in hits), x;(i-
K)- -j-th hit of the input argument at time (i-k).

Consequently, the DA carries out the
convolution in a bit-plane order, i.e. every bit of inputs
is considered separately. In comparison with the LM,
the DA LUT output width is smaller because the inputs
are at the same bit-significance. Therefore, the smaller
memories are required which makes the DA more
hardware-efficient than the LM.

For these three different techniques, the final and
very often overlooked operation is addition
(subtraction). For example, Thien-Toan Do et. a. [5]
constructed the structure of the LM and DA and showed
the final adders tree but the order of the additions seems
to be intuitive rather than based on a thorough research.
This draws a conclusion that general rules for
constructing adders tree should be given and/or a design
automation tool has to be developed in order to find an
optimal order of additions.

1.2 Additionin FPGAs

For ASIC designs, the classic problem of carry
propagation is resolved by numerous techniques, e.g.
carry-look-ahead, carry-select [4], which reduce the
delay of carry propagation at the expense of great
increase in hardware complexity. Another approach to
the carry propagation problem is to remove it
completely through the usage of carry-save adders [4].
Consequently in ASICs, the usage of carry-save adders
is a technique commonly implemented in the
convolution (FIR filters) designs[7].

FPGAs incorporate a dedicated carry propagate
circuit [8, 9] which is so fast and efficient that
conventional speed-up methods are meaningless even at
the 16-bit level, and of margina benefit at the 32-bit
level [8]. Furthermore the dedicated carry-propagate
circuit is implemented outside the standard LUT logic
and therefore does not occupy standard logic area.

Consequently, using only ripple-carry adders in FPGA
designs is the best solution with respect to the
propagation time and occupied area.

As a result, there is a substantial difference
between pipelining the ASIC and FPGA adders. For
ASIC designs, pipelining flip-flops should be inserted
every N-logic blocks (where N is an integer which value
is application specific) therefore the carry-propagation
chain is broken as it is shown in Figure 2. For FPGAS,
the fast build-in carry logic significantly reduces carry-
propagation time and therefore pipelining flip-flops
should be rather inserted after every K additions (see
Figure 2). Nevertheless, the build-in carry logic cannot
nullify the carry propagation time, and therefore in the
FPGA solution, the most time critical path is the carry-
propagate circuit. For example, for Xilinx XC4000,
delay through LUT logic, e.g. sum-generation circuit, is
approximately six times longer than through the carry-
propagate circuit. However, when the programmable
interconnects delays are included, which essentially
influence overal system performance, the carry
propagate delay is much less significant. This holds as
FPGAs incorporate dedicated and therefore very fast
routing circuit form a carry-out to carry-in. Furthermore
the propagation time through the programmable
interconnects is usually comparable or even greater than
the propagation time through LUT logic.

dinl(® dind@) dinl2 dino@) dinll) dindl) dinl(0) dino(o)
[| v v 3 ‘A
4_H FA }4 FA }4 FA }4 HA ‘
T == T

din3(3) din23) [dind@) din2) |din3(1) din2d) | din3(0) din2(0)

v v 4 v ¥ v 4
;H%M;H¥
4_{FA e e ‘HA‘
o N

dout(3) dout(2) dout(1) dout(0)

— Pipelining FFs for FPGAs — Pipelining FFs for ASICs

Figure 2. An example for different pipelining strategies
for ASC'sand FPGA' s addtions for the equation:
dou= din0 + dinl + din2 + din3. Pipelining
parameters: N=2 (ASIC), K=1 (FPGA)

Nevertheless, in FPGAS, a long-width adder can
be divided into several parts by inserting pipelining flip-
flops every M carry-propagate blocks (like for VLSIs).
This solution should be used together with the
pipelining solution presented for FPGAS; i.e. a hybrid
solution of the FPGA and ASIC designs (see Figure 2)
should be employed. This, however, would complicate
the system design and require additional flip-flops to be
inserted according to the cut - set pipelining rule [10].

Therefore, this solution has not been implemented in the
presented system, however, is considered in the next
step of the design development. This hybrid solution
seems to be better than delayed addition technique [11]
for which a carry-in does not propagate to carry-out.
Conversely, each 4-2 adder has the standard carry-out
logic and 2 outputs and therefore 2 pipelining flip-flops
arerequired for each 4-2 adder.

Summing up, for FPGASs the best solution seems
to be using dedicated adders and pipelining after every
K additions asit is shown in Figure 2.

1.3 Overview

In the next section, input parameters of the adder
block will be specified. Initially it might seem that only
input width is required, however, to achieve hardware
savings the input range and even inputs correlation
should be considered. Furthermore, the correlation
between inputs depends on the FIR architecture: the
MM, LM or DA, which makes implementation more
difficult.

Further, different heuristics for finding an
optimal adders tree are investigated. Implementation
approaches and results are included to illustrate how the
adderstree is optimised.

2 Addition parameters

2.1 Description of theinput parameters

Section 1.1 describes methods of implementing
FIR filters. Now, let consider the adders tree block
alone, which is independent of these methods, and
therefore let define input parameters to this block. The
first intuitive parameter is the number of inputs and
their bus widths or the minimum and maximum input
values. Consequently, for the addition: y= a+ b, the
relation between the inputs and the output ranges is as
follows:
Ymin= 8min + Drin Yimex= @mex + Drmax ©)

It should be noted that for a subtraction y = a-b
the above equation aso holds provided that the
following substitution is carried out:
Brin= -0’ mex b’ = -0’ min (33
The use of minimum and maximum values instead of
the bus widths can cause hardware savings, as some
inputs might not use the full input range. For example,
for input range from 0 to 9 adding three such inputs
gives output range from 0 to 27, which requires 5 bit
wide bus. If only the bus width is considered, the output
width will be 6-bit wide. In addition, some inputs may
have the LSBs fixed to zero as the argument is shifted to

the left, therefore an additional shift parameter s should
be also included.

Inputs Correlation

To further decrease additions width, correlation
between inputs should be considered. Because an
assumption is made that inputs x(i-k) (see eq. 1) are
uncorrelated, the correlation occurs only within the
multiplication h(k) X(i-k) when the addition of the partial
product takes place; e.g. addition of shifted x(i-k).
Consequently, the correlation is considered separately
for each multiplication, and therefore in this section
rather a multiplication than a whole FIR filter is
considered.

The correlation should be considered for every
intermediate addition; e.g. for the addition: y= a+b+c,
at first auxiliary addition, y,= at+b, takes place and
therefore only correlation between inputs a and b should
be considered. Furthermore, the correlation should be
calculated from the very beginning for every auxiliary
addition; i.e. only inputs to the auxiliary adder block,
which are involved into the considered partial addition,
should be taken into account, and therefore the actual
adders connection network within the auxiliary adder
block is disregarded.

211 Multiplierless Multiplication

For the MM no correlation is observed unless a
subtraction between the same argument takes place: y=
a — b where a= 2. In this case, the eq. 3 should be
replaced by:

Yrmin= 8min - Brmin Yimes™ Bimax = Brrax 4)

21.2 LUT-based Multiplication

The correlation is more complicated in the case
of the LM. Let g, Iy, ... Ik be the inputs to LUT
memories for a single multiplication, where I
represents the input to the LSBs LUT and I the input to
the MSBs LUT; and w,, Wi, ... W represent the input
width of the LUTS; s, Sy, ... S represent the shift to the

i1

left of each LUT: S, = ZW' , and s denotes the shift

of the output. It can be seen that all LUTs but the MSBs
LUT inputs operate on the positive binary range:
ma= 21 ljmn=0 forj=0.. k1. (5

The MSBs LUT is an exception for which the following
equation holds:

lkma= Tmac>> S lkmin= lmin>> S (6)

where: |y, min — mMaximum and minimum input values to
the multiplier, >>s- denates a shift to the right
by s-bits.

The LUT output range @an be defined as:

OJ' max— h[qn‘ax
Oj max— hﬂ] min

Oj min— h[qmin for h=0
Oj min= h[qmax for h<0
@)

where: h —the multi pli cation coefficient.

It should be noted that the total output range of
the multiplication: Oy, Omin Can aso be obtained by
employing the &q. 7 — anly the index j disappeas. The
relation between the LUT output rangesis edfied:

k
Omax S[(O max <<)] >>S
]ZO] I

k
Omin 2 [Z (O] min << Sj] >>S (8)
IE

The &ove inequality beammes the euality if
there is no correlation between outputs O; or the
correlation is not taken into acourt.

The dgorithm of finding the crrelated
maximum and minimum of an auxili ary adder A (the set
A contains indices of al inputs to the auxiliary adder
block) is based on constructing a orrelation set C
(COA). The set C contains the MSBs LUT k if the LUT
k feads the auxili ary adder A, i.e. KCJA, otherwise the set
C is empty (no correlation is observed). The set C is
further constructed in an iterative way, starting from the
index j= k-1. The index j belongs to the correlation set
C if the index j+1 also belongs to. Consequently, C
contains successive dements: j, j+1, ...,k-1, k, where j-1
is the index of the MSB LUT which is not included in
the auxili ary addition block i.e. (j-1)[JA. Theinput range
of the of set C is cdculated in similar way as input
range of the MSB LUT (eg. 6) and can be expressed as
follows:

lcmax = Ima™> Sc lcmin = Imin™>> Sc ©)

where: S =w- %Wj = Spno)” min(C) - the smallest
]
indexin the set C.

The output range of the set C can be cdculated in the
foll owing equation which is smilar to eq. 7.

Cama= NIE max
Cama= hIE min

CA min— hﬂ: min for h>0
Ca min= hllf e for h<O
(10

Finally, the output range of the auxiliary adder A is
cdculated as foll ows:

OAmin = [(CAmin << SC) + (OI min << S)] >> SA

iDA-C

OAmax = [(CAmax << SC) + Z (OI max << S)] >> SA

iA-C
(11)
where: s, - the shift of the auxili ary adder A; sx)= min(s)
for all i CJA.

It should be noted that the correlation set C is
empty if the MSBs LUT is not included into the
auxiliary addition block, i.e. k[JA. In this case: Camin= 0,
Camax= 0.

It is important to note that the aorrelation is not
observed for the binary or two's complement full range
of the input argument, e.g. for input range: 0 to 2550r —
128to 127.

Example 1
Let consider the example form Figure 1, for

input range: —99to 99 (8-bit wide input) and coefficient
h=100 Consequently, form eg. 5 and 6, the input range
islg= 0to 15and I,= —7 to 6. Employing eq. 7 we
obtain the output range: Ognin= 0, Ogmax= 1500 and
Opmin= -700, Oyy= 600. When the correlation is not
taken into acount, the output range of the aldition is
(from eg. 8) Op= -11200 to 11100. Otherwise (form
eg. 11), Ox= -9 900to 9 900.

Hardware savings, after the correlation is taken
into acount, are more significant for less wide MSB
LUTs. For example, for input range —9 to 9 (5 bit wide
input), lo= 0 to 15 and ;= -1 to 0. Consequently,
uncorrelated (from eq. 8) addition range is -1600 to
1500 in comparison to —-900 to 90 when the
correlation is taken into acaount.

Correlation savings are even more efficient if the
multi pli cation coefficient can be changed by employing
the self-configurable multiplier [12] also denoted as the
Dynamic Constant Coefficient Multiplier (DKCM) [13];
i.e. the LM for which RAMs instead of ROMs are
employed in order to dynamically change wefficient
values. In this case, instead of multiplication coefficient
h, coefficient range hy, and hp should be used.
Consequently, eq. 7 should be replaced by:

OJ mex= Max (hn‘ax[q maxs hm’mﬂz min)
OJ mn= Min (hmaxlq miny hm’n[q max) (12

It should be noted that for the DKCM, there is
correlation between arguments even if full input binary
rangeis used.

2.1.3 Distributed Arithmetic

For the DA, the correlation should be mnsidered
in a similar way as for the LM. However inputs to the
LUT are from different filter inputs x;(i-k) (see &. 1
and 2). Therefore eab input to the LUT should have a
separate oorrelation entry kj, Cimin, Cimax (S€€ Sedion
2.1.4) and should be regarded as an one-input LUT.
This however compli cates the input parameters %t (one
input has wvera correlation entities). Furthermore, the
correlation is also much more difficult to be mnsidered
within the adition block, which significantly increases
the cdculation time.

Consequently, a simplified approach should be
rather employed, for which the correlation is considered
colledively for the set of inputs x(i-k). Accordingly, k;,
Cimin, Cimax @re cdculated not for a single multi pli cation
but for the sum of products. This, however, causes that
if a single multiplication from the set does not comply
to the crrelation rules, i.e. an input miss occurs only for
a single DA-LUT, the oorrelation of al inputs less
significant than the missing input is disregarded.
Therefore, the simplified approach may result in the
hardware overheads. However, the @se can be
eliminated in most cases by sorting the correlation set —
the more significant output of the DA LUT the larger
index of the DA LUT.

214 Summary of theinput parameters
In our approach for every input j, the foll owing addition
input parameters are spedfied:
[nput shift: 5
[nput width: w;
Input range (e.g. for the LM, output of the LUTS) :
ijil’h OJmax
Kind of operation: addition / subtraction

Correlation parameters:

For MM :

e The multiplicaion input index: k. If two or more
inputs have the same index k then for subtradion,
the . 4 instead of eq. 3 should be employed.

For LM and DA:

Correlation index : k — index of the MSBs LUT of:
a) multiplication for the LM b) sum of products for
the DA.

e Correlation range: Cinin, Cimax, these values are
cdculated in eg. 10 for the correlation set C= {j,
j*t1, ..., K} If dl inputs from j to k are involved in
the auxiliary addition A then variables Capin, Camex
rather then Ojmin, Ojmx and eg. 3 should be
employed.

The arrelation for the LM and DA is cdculated

corredly acording to the éove schedule if indices are

corredly assigned. Correspondingly, for the LM, output
indices are asgned incrementally and separately for
every multiplicaion, acording to increasing bit-

significance of LUTs. Similar procedure is employed
for the DA, however al inputs asociated with the DA
should be mnsidered together.

2.2 Addition tree structure

Additional assumptions and rules for
congtructing the aldition tree must also be spedfied.
Consequently, a binary treeis employed for which the
number of inputs to the next adder stage is halved. An
example of the binary adder treefor 6 inputsis givenin
Figure 3. This assumption is rather intuitive and
minimises the input-output delay. It shoud be however
noted that for some ca&es when the delay time is
disregarded, this assumption might exclude the best
solution. This, however, is arare cae and therefore this
assumption seemsto bejustified.

inputs
4 b d i 4|
+ + + layer 1
e
+ layer 2
abcat‘
+ layer 3
output

— flip-flops (inserted for p=1)
..... flip-flops (inserted for p= 1 or 2)

Figure 3. An example of the adders tree for 6
inputs

Consequently, the most complex part of the
design is paring inputs to form two inputs adders. This
task must be caried out with resped to the aeaof the
adders gructure. Therefore, the st of a Full Adder
(FA) cdl should be another user-defined parameter. An
aternative, universal solution is defining the st of the
adder for every possble alder width, e.g. from 1 to 32
as the average mst of a FA may depend on the alder
width. Furthermore, the latter solution allows for area
time trade-offs, i.e. the @st of the alder increases
rapidly with the increase of the alder width as the delay
through the ader increasses with the alder width.
Consequently, the st of the alders for different widths
can be spedfied with resped to not only the occupied
chip areabut the delay time as well.

It should be noted that the adual width of adder
is smaller than the width of the aldition result in the
case when one agument is shifted to another. An
example of shifted arguments is given in Figure 1, for

which 4 LSBs are diredly copied to the output. For
subtradion, however, the LSBs of the subtrahend
cannot be mopied asiit is the cae for addition, becaise
conversion to two’'s complement format has to be
caried out on the subtrahend before the aldition is
implemented. Two's complement conversion involves
negation of every hit of the subtrahend and adding 1 at
the LSB position of the subtrahend. These operations
can usuadly be caried out within a standard addition
block in FPGAs, therefore no extra chip area is
required. However, if the subtrahend is shifted to the
right, the LSBs of the subtrahend have to be mnverted
to two's complement representation even if the
subtradion is not performed on these bits, and therefore
additional logic eand arithmetic is required in
comparison to addition. Consequently, subtradion and
addition have to betreaed in adlightly different way [1]
and dfferent optimisation rules applied for additions
and subtradions.

In order to speed-up the aldition, pipelining is
implemented. Consequently, additional user-defined
parameter: level of pipelining p has been introduced.
Parameter p defines that pipelining flip-flops are
inserted after every p-layers of adders. An example of
pipelining is given in Figure 3. For p= 1, flip-flops are
inserted after every adders layer; for p= 2, flip-flops are
inserted only after layer: 2, 4, 6, etc. It should be noted
that flip-flops are incorporated in FPGAs after every
logic dement, therefore, it might seem that no
additional chip areais occupied by the pipelining flip-
flops. However, some hits of an addition result may be
diredly copied to the output. This happens when either
inputs are shifted to ead other (the cae discussed in the
previous paragraph) or an input cannot be paired (e.g.
signal ef in Figure 3). In these caes no logic cdl is
required and consequently pipelining flip-flops may not
be dtadhed to any logic. Consequently, the design area
may be spedfied by the number of flip-flops rather than
the number of logic dements, and this causes the
increase of the chip area Summing wp, the chip areais
usualy defined by the number of flip-flops for
pipelining parameter p= 1 and by the number of logic
elements for p>2. However, for increasing p the design
throughput is reduced, therefore a @mpromise between
area and throughput is observed.

3 Greedy algorithm

Several techniques have been employed to
optimise the alder block. One of them is the Greedy
Algorithm (GrA) [14] which considers the estimated
best partial solution. The drawbadk of this algorithm is
that taking series of the best partial solutions often does
not lead to the best overal solution, therefore an
approximate solution is usually obtained. This algorithm

is the quickest algorithm form all considered in this
paper and very often gves an acceptable solution. The
most significant part of the GrA, which strongly
influences the overall result, is criteria which defines
priorities acording to which a partial solution is taken.
In our projed, different criteria have been spedfied for
the first input and for the second input to an adder. The
foll owing rules has been seleced:

1. First input

1.1. Take input with the smallest input shift s;. If two
or more inputs have the same input shift s,
consider the next rule for these inputs.

1.2. Take input with the smallest input width w;.

2. Second input

2.1. Take input with the smallest significance of the
MSB my= s+w;. Disregard this rule if the
significance of the MSB of the first input m=
Stw is greder or equal than m, (my = ny). If two
or more inputs have the same m, or my > my,
consider the next rule for these inputs.

2.2. Take input with the smallest shift s,. If two or
more inputs have the same shift s, consider the next
rule.

2.3. Take input, which does not generate cary out
signal of the alder (the input with the smallest
addition result). If two or more inputs have the
same smallest addition width consider the next rule
for these inputs.

2.4. Take input with the greaest input maximum value

IZmax-

Rule 1.1 causes that the first input is taken to sort
inputs acording to their shifts. Consequently, this rule
considers the overall solution rather than the best partial
solution as the unattached inputs tends to be of a greaer
shift and therefore eaier to be grouped in the next
iterations. Rule 1.2 tries to minimise partial solution by
taking the smallest input width. This rule dso supparts
finding a good overall solution as wider inputs can be
easier grouped with inputs of a greaer shift, which are
left for the next iterations. The second input is taken
rather to optimise a first partial and then overal
solution. Rule 2.1 finds input which generates the
smallest result width. Rule 2.2 finds input with the
smallest shift and therefore tries to ogimise overall
solution similarly as rule 1.1. It should be noted that if
input shifts are different (s,<s,), (S-Sy)-bits are copied
direaly to the aldition output (this copy does not
require any hardware) and this justifies that rule 2.1 is
more significant than rule 2.2. Rule 2.3 finds input
which produces the smallest output. Furthermore, to
improve the overall solution the input with the
maximum value is chosen acordingto rule 2.4.

The aove rules, adthough based on extensive
reseach, are rather intuitive, therefore probable better

criteria may be found. Furthermore, the priority queue
may be different for different input parameters; e.g. for
subtraction, bit copy of shifted inputs cannot be
implemented and therefore different rules may be
specified. Furthermore, the average cost of a full adder
(FA) may be different for different adder widths to
alow areatime trade-offs, and this causes that a
different priority queue should be specified, etc.

4 Exhaustive search

4.1 Concept

The best possible result can be always found by
searching through all possible solution. The problem of
finding the best solution for adders tree is NP-complete
and therefore only simple adders blocks can be routed
using the exhaustive search algorithm. At first, let
consider an example of 5 input adder. The following
solutions have to be examined (the bottom layer is only
taken into consideration, the example shows how inputs
(latters: a to €) are paired together):

(atb)+(c+d)+e (b+c)+(atd)+e (cta)+(b+d)+e;
(btrc)+(d+e)+a; (ctd)+(bte)+a; (d+b)+(cte)+a;
(c+d)+(eta)+b; (d+e)+(cta)+b; (etc)+(b+a)+b;
(d+e)+(at+b)tc; (eta)+(d+b)+c; (at+d)+(etb)+c;
(eta)+(bt+c)+d; (atb)+(etc)+d; (b+e)+(atc)+d;

In order to specify the number of possible
combinations, at first let define the function S,(n) which
returns the number of all possible combinations within a
single adder layer for a given number of inputs n:

n-2)n-4)0..30 foroddn
S)= %Ea “2n-9
(n-1) forevenn

(13
The total number of posdble solutions Sn) is
defined in an iterative way and is a product of the
number of combination on this layer and the total
number of combination for the upper (closer to the
output) layers, i.e. for adders block for which number of
inputsis halved:
S(n)= Sy(n)&(m/2L) (14)
where [JF the ceiling function

N | #layers # combinations
2 1 1
3 2 3
4 2 3
5 3 45
6 3 45
8 3 315

10 4 42 55

12 4 467775
14 4 42 %7 525
16 4 638512 875
18 5] 1465387 048125

Table 1. The number of possible combinations for a
given number of inputs n to the adder block.

It can be seen from Table 1 that the number of
posshle solutions is growing rapidly, making the
exhaustive seach (ES) method useless for the input
number greaer then about 11-16.

4.2 Constrained Search (CS)

As the number of possble solutions is growing
rapidly with the growing rumber of adder inputs, a
modificaion of the exhaustive seach (ES) method is
here proposed. This method considers at first the st of
the GrA solution for every layer |. Consequently, the
cost C(I) of the partially routed adder (up to the alder
layer 1) is first cdculated (initialy using the GrA) for
every layer | and then the similar to exhaustive seach
method is implemented. This method, however, stops
cdculating a group of solutions in its ealy stage (on
layer 1) if the st of the partialy routed adder is greder
than Cy(l) + t; where: Cy(l) — the st C(l) for the best
overall solution so far found (initially found by the
GrA), t- a cetain threshold number. The procedure of
comparison is exeauted after every layer of the alders
treeis completed.

The CS tedhnique saves the cdculation time, as
solutions which are less-likely to give the better solution
are skipped on a low layer and therefore upper layers
and their combinations are not caculated for the given
partialy routed adder. Conversely, it is posshble then an
adder block has a very high cost on the bottom layer(s),
however the upper layers are much less costy, and
therefore this adder block solution is skipped athough it
would give the best result. Consequently, the key
problem is a proper choice of the threshold number t.
Increase of the threshold number t increases the total
number of considered solutions but deaesses the
probabili ty of not finding the best solution.

N ES CS(layer1) | CS(layersland 2
6 45 15 45
8 315 105 315
10 42 225 945 14 175
12 467 775 10 35 155 @5
14 42 %67 525 135 135 14 189175
16 638 512 875 2027 @5 212 837 &5
18 | 1465 37 048125| 34 49 425 32 354 156 &25

Table 2. Theoretical number of considered
solutions for different number of adder inputs N

Table 2 shows the theoreticd number of posdble
solutions for the CS assuming that the cdculation
processis constrained only to layer 1 and layer 1 and 2
Experiments proved that the number of iterations for the
CSisintheseranges, and is greaer for greaer threshold
t. It can been seen that the total number of considered
solution has deaeased significantly, however it is dill
unacceptable for the inputs number N greaer than 18.

4.3 Implementation Results

In this sdion the results for the greedy
algorithm (GrA), exhaustive seach (ES) and
constrained search (CS) algorithms are given. Table 3
shows the st of the generated circuits by GrA, ES and
CS (for different thresholdst).

Filter # ES | CS CS CS CS | GrA
example | inputs (t=5) | (t=2) | (t=0) | (t=-1)

a 16 93 93 93 93 93 111

b 11 72 72 72 73 73 74

c 13 123 | 126 126 126 126 128

Table 3. The implementation costs (number of full or
half adders) for different filters andtechniques

It can be seen from Table 3 that acceptable
results are adieved using only the GrA. The
improvement of about 2-7 % can be obtained by the use
of the ES. The drawbadk of the ES is its computation
cost therefore the reasonable solution seems the CS (for
the number of inputs up to 16).

References

5 Conclusions

In this paper, thorough analysis of addition as a
part of the FIR filters has been presented. Complex
input parameters of the alder block have been
considered: inputs range (not only input width), inputs
shift and even the crrelation between inputs.
Consequently, finding an optimal network of the alders
tree is a difficult task which has been investigated.
Different approaches as. greedy agorithm, exhaustive
seach, constrained seach have been implemented and
the results given. Consequently GrA gives the worst
solution but at very low calculation cost. Conversely,
the best solution is obtained by checking al possible
solutions in the ES, however the cdculation time is
unacceptable for the number of inputs, n, greaer than
about 12, Therefore, the Constrained Seach
(modification of the ES) has been proposed. The CS
cheds less lutions however the number of possble
solutions incresses rapidly with growing n, and
therefore, this ®lution can be implemented for the
number of inputs n less than about 14 — insignificant
improvement in comparison to the ES. For small n, the
SA usually finds the best solution and requires much
lower number of iterations in comparison to the ES.
However, for n<8, the ES seaches a most 315
solutions and therefore the computation cost is low. In
conclusion, for n<8 the ES solution should be
implemented.

Addition block is a part of the cnvolution and
therefore dl procedures, described in this paper, are
included in the Automated Tod for Convolution in
FPGAs (AuToCon). The AuToCon [1, 13, 15] generates
an optimised VHDL code of the convolver for the given
coefficient values.

[1] Wiatr K., Jamro E. Constant Coefficient Multiplicaion in FPGA Structures, Procealings of the 26th Euromicro
Conference, Maastricht, The Netherlands, Sep. 5-7, 2000, Val. I, pp. 252-259.

[2] Garner H. Number Systems and Arithmetic, Advancesin Computing, vol. 6, pp. 131-194, 1965

[3] Chapman K. Fast Integer Multiplier fit in FPGA's, EDN 1993Design IdeaWinner, END May 12" 1994

[4] Omondi A.R Computer Arithmetic Systems. Algorithms Architedure and Implementations, Prentice Hall 1994,

[5] Do T.T. Reuter C., Pirsch P. Alternative approaches implementing high-performance FIR filters on lookup table-
based FPGAs. A comparison. SPIE Conference on Configurable Computing and Applicaions, Boston,

Massachusetts, pp. 248254, 2-3 Nov. 1998.

[6] Burrus C.S.: Digital filter structure described by arithmetic, IEEE transadion on Circuits and systems, pp. 674680,

1977

[7] Hawley R.A., et, a. Design Techniques for Silicon Compiler Implementation of High-Speed FIR Digital Filters,
IEEE Journal of Solid-State Circuits, vol. 31, no 5, pp. 656-667, May 1996

[8] Xilinx Co. The Programnable Logic Data Book 1999.

[9] Altera Co. Apex20K Programmable Logic Device Family, Data Shed, ver. 2.05, Nov. 1999.

[10] Pirsch P., Architedures for Digital Sgnal Processng, Chichester UK, Wiley 1998

[17] Luo Z., Martonosi M. Using Delayed Addition Techniqus to Accderate Integer and Floating-Point Calculation in
Configurable Hardware, SPIE Conference on Configurable Computing: Tedhnology and Applications, Boston,

Massachusetts, Nov. 1998 Vol. 3526, pp. 202-211.

[12] Wojko M., EIGindy H. Configuration Sequencing with Self Configurable Multipliers 13th International Parallel
Processing Symposium and 10th Symposium on Parallel and Distributed Processing, San Juan, Puerto Rico, USA,
April 1999, pp. 643-651.

[13] Wiatr K. Jamro E. Implementation of Multipliersin FPGA Structures, ISQED March 2001 San Jose, California

[14] Cormen T.H., Leiserson C.E., Rivest R.L. Intoduction to Algorithms Massachusetts I nstitute of Technology, 1994

[15] Wiatr K. Jamro E. Implementation of image data convolutions operations in FPGA reconfigurable structures for
real-time vision systems. International |EEE Conference on Information Technology: Coding and Computing, Nevada
2000, pp. 152-157.

