Genetic Programming in FPGA I mplementation
of Addition asa Part of the Convolution

Ernest Jamro, Kazimierz Wiatr

AGH Technicd University, Institute of Electronics
Mickiewicza 30, 36059 Krakow, Poland
tel. +48 12 6173033 ax +48 12 6332398&mail: jamro / wiatr@uci.agh.edu.d

Abstract

In FPGAs, an addition shoud be caried ou in the standard way employing ripple-cary
adders (rather than carry-save alders), which complicaes seach for an ogimal adder structure &
routing order has a substantial influence on the aldition cost. Further, complex parameters of inpus
to the adder block have been considered e.g. correlation between inpus. These parameters are
spedfied in dfferent ways for different convder architectures. Consequently optimisation d the
adder treeis a key isuue aldressd in this paper. Simulated Annealing and Genetic Programming
have been proposed, and olained results compared with the Greedy Algorithm (GrA) and the
Exhaustive Seach (ES). As aresult, the GrA is the best solution when computation time is of grea
importance Otherwise, the Simulated Annealing shodd be employed for the number of addition
inpus N>8, and the ES is recommended for N<8. Employing the Simulated Annealing gives about
10-20% area reduction in comparison to the GrA.

Topics. image processors, processing arrays and FPGAs, reconfigurable structures

1 Introduction

Field Programmable Gate Arrays (FPGAS) incorporate dedicated ripple-carry logic, which
makes Ripple Carry Adders (RCA) the best solution for FPGAs[1]. For convolution (FIR filters) and
other similar operations, addition is a fundamental operation, therefore optimising network of adder
tree significantly influences the circuit area and performance. Up to the authors knowledge little
research has been donein this area.

For FPGAs different multiplier architectures are recommended for different design options, e.g.
Look-Up-Table based Multiplier or Multiplierless Multiplier [12,13]. In order to optimise the adder
block independently from the multiplier architecture, complicated parameters of inputs to the adder
block have been defined [2], such as input range (not only input width), input shift, kind of operation
(addition/subtraction), and correlation between inputs.

Optimisation of the adder tree can be accomplished employing different techniques. A Greedy
Algorithm (GrA) has been proposed by [2]. The GrA determines quickly the network of adders, it is
the least computationally demanding algorithm from all techniques considered in this paper.
Nevertheless, better results can be obtained by employing more sophisticated techniques described in
this paper.

The best result can be dways found by cheding all possble solutions. Nevertheless the
optimisation o the adder block proved to be NP-complete [2], and therefore the Exhaustive Seach
(ES) can be dficiently implemented only for the number of inpus to the adder block N<8, which
requires analysing up to 315 combinations. For example, increasing N to 12 results that 467775
solutions have to be seached through. Consequently more sophsticaed tedhniques are propased to
solve the problem.

In this paper optimisation d the alder tree enploying Simulated Annealing (SA) and Genetic
Programming (GP) is dudied. Different methods for generating new structures of the adder treefor
the SA and dfferent crossover and mutation operations for GP are presented. Finally, implementation
results for the SA and GP, and the GrA and ES described in [2] are given.

2 Simulated Annealing (SA)

2.1 Principle

The principle behind the SA [3, 4] is analogous to what happens when metals are woled at a
controlled rate. The slowly falli ng temperature dlows atoms in the molten metal to line themselves
up and form aregular crystalli ne structure that has high density and low energy. In the SA, the value
of an ohjedive function which we want to minimise, is analogous to the energy in a thermodynamic
system. At high temperatures, SA alows function evaluations at faraway points and it is likely to
accept anew point at higher energy. At low temperatures, SA evaluates the objective function orly at
locd points and the likelihood d it accegoting anew point with higher energy is much lower.

The SA agorithm, implemented for optimising adders gructures, employs the foll owing steps:
Objective function cdculates the st C of the drcuit for the given adders tree.

Annealing Schedule regulates how rapidly the temperature, T, goes from high to low values, as a
function d iteration courts. In our case, the starting temperature T, equals the st of a 2-bit wide
adder Cap, the stoppng temperature Ts equals ¥4 of the st of a 1-bit wide alder Cai/4. In every
iteration, the temperature T; is deaeased according to the foll owing equation:

Tis1= N0 Q)

where n = (_IT_l)%, S the number of iterations.
S

Generating a new adders structure is obtained by randomly selecting two adders on the same
layer; i.e. randomly selecting a first adder (input) from all adders and randomly selecting a second
adder from adders at the same layer asthe first adder. Examples of possible modification are given in
Figure 1.

Nd b dlfe b 4l e Pdp dla
+ + + + + +
ab_\ [] Cb_\ [] abL\ l—lcd

+ | |cd + | |ad +
= = | |
+ + +

Figure 1. Examples of possible one-step modification:
A) an initial circuit, B) C) the modified circuit A.

Modificaions of the drcuit are constrained by the temperature T;. In the conventional SA, also
known as the Boltzmann madine, the generating function which spedfies the change of the inpu
vedor, is a Gausdan probability density function [5]. In ou approad, the number of possble
solutions is finite therefore the Gaussan probability function is useless An dternative solution is
defining a move set [5], denoted by M(x), as a set of legal paints avail able for exploration. However,
constructing the move set is rather computationally demanding task thus not implemented. In our
approad, therefore, two adders are seleded randamly (but at the same adders layer) and then alocd
aaceptance function (LAF), which is further described in the next paragraph, is cdculated. The local
aaceptance function dffers from the (global) acceptance function as it takes under consideration orly
the st of the two involved adders before and after modification. If modification is not accepted
locdly, the dhange is rejeded and the next modification is randamly generated (the iteration courter
and temperature are not affected in this dep).

Acceptance function. After a new network of adders has been evaluated, the SA deddes whether to
aacept or rgjed it based onthe value of an acceptance function h(). The aceptance function is the
Boltzmann probabili ty distribution:

h(AC,T) = 2

1
1+expCr)

where: AC =C,,, —C. - the difference of the adders cost for the previous and current adderstree.

The new circuit is accepted with probabili ty equal the value of the acceptancefunction.

2.2 Implementation results

The result for the SA, for different circuits are given in Table 1. It can be seen that for thefilter
a, theresult is 103, the best possble — the same & for the ES, is obtained aready for 1000iterations.
For thefilter c, the st equals 123, the same & for the ES, was obtained already for 30k iterations. It
shoud be, however, naed that the computation cost of a single iteration is lower for the ES than for
the SA. This hdds as for the ES, the change in the drcuit is well-defined and wsually constrained

only to the upper layer of the adder block and therefore only a part of the circuit has usually to be re-
calculated. For the SA, the change is done randomly and on any part of the circuit, therefore cost of
the whole circuit has to be calculated again. The lower calculation cost for the ES does not, however,
compensate much greater number of iterations required to obtain the same result. Consequently, the
overal calculation cost of the ES is usualy greater than for the SA, however for small circuits for
which the calculation cost is very low, the ES is agood aternative to the SA.

Filter GrA SA1k | SA30k | SA 1M ES

a 111 93+0 930 93+0 93

c 128 |126.9+0.3| 125+1.4 | 123+0 123
d 213 304+3 | 385+1 | 382+l -
d (wiaf) 413 3984 | 382+1 | 380+l -
e 1358 | 1346+10 | 1299+3 | 1292+4 -
e(wlaf) | 1358 | 1341+9 | 1293+4 | 12834 -
f 3730 | 3702420 | 3338 £14 | 3245 +6 -
f(wiaf) | 3730 | 3706+13 | 3419413 | 320648 -

Table 1. The drcuit costs for the GrA, ES and dferent number of iterations for the SA for
different filters; wlaf —without local acceptancefunction.

In our solution, the final circuit (obtained in the lowest temperature) is often not the best one.
Therefore, the best-obtained circuit is every time stored as the result; this increases calculation cost
insignificantly but allows for substantial savings.

Table 1 shows also the results when local acceptance function (LAF) is not implemented
(option: wlaf). Calculating local cost before and after the modification, insignificantly influences the
total calculation cost and the LAF usualy reects solutions which are unlikely to generate a good
globa result. Conversely, the LAF constrains search space and therefore may cause some good
solutions to be omitted. This is often the case for relatively small adders circuits and for large
iteration numbers. For example, it can be seen in Table 1 that not implementing LAF gives better
results for the circuit d and for small number of iterations, however spoils results for more
complicated circuit f.

3 Genetic Programming (GP)

Genetic Programming (GP) [6, 7, 8] is an optimisation method based |oosely on the concept of
natural selection and evolutionary process. Mgjor components of the GP include: encoding scheme,
fitness evaluation, parent selection, crossover operation and mutation operators, these are approached
next.

Encoding scheme transforms gene representation into the problem specific representation. In
this approach, the adder tree is represented directly using two vectors of integers. Each adder
occupies one entry in each vector. The entry specifies the index of the adder or input (from the lower
layer) which is connected to the considered adder. For example, the parent O in Figure 2 is
represented in the following two vectors of integers:

considered adder 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13
vedor O 22, 19, 18, 13, 14, 16, 0, 3, 2, 4, 9, 7
vedor 1 23, 20, 21, 17, 15, 11, 6, 8, 1, 5, 12,10

It shoud be noted that initialy it might seem that the structure of the adder can be defined
giving only the order of adder block inputs (the bottom layer order), as the rest of the structure can be
built straightforward by conneding two neighbou adders. Thisis a specia case when the number of
inpus to the alder block is a power of two. Otherwise, there is an aone signal which canna be
paired and therefore must be fed drectly (withou addition) to the next layer of the alder block. In
the given example for the parent 0, it is the cae for the inpu 11 for the first layer and signal 18 for
the seaond layer. These done signals complicae the alder structure and cause that the structure of
upper layer adders must be dso included into gene cding.

Fitness evaluation is based onevauation d the st (ared) of a given adder.

Selection - After fitnessevauation, a new generation is produced from the arrent generation.
The seledion operation determines which adder will survive, based onthe fitnessvalue — the lowest
cost of the alder, the greaest survival probabili ty. It our approach the modGA agorithm [6] has been
implemented as it has proved to surpassthe dasscd genetic dgorithm [6]. In the modGA, in every
generation we select independently (p-r) chromosomes to survive unchanged with the probabili ty
propational to the scded fitnessf;’ which is obtained as alinear scding of the aeaf; occupied by the
adder block:

f = aff+ b, 3)

Parameters a and b are cdculated independently for every generation to satisfy the following
equations:

alf,, +b=1 (4)

p
(alf, +b)=p-r ®)
where: fn_m — the fittest (minimum cost) chromosome, p —poplation size, r — number of chromosomes
determined to der<p/2;

The a. 4 peserves the fittest individual with the probability equal 1. Eq. 5 causes that on
average (p-r) chromosomes are seleded to survive in asingle whedl spin (asingle wheel spin - every
chromosome is picked to survive with probability fi only once). In ou approad, the wheel spins
until (p-r) chromosomes are selected and onaverage, asingle whed spinisrequired.

The r chromosomes slected to de are replaced by new ones, which are produced in either
crosover or mutation. Consequently, the foll owing equation hdds:

r=c+m (6)

where: ¢c- number of new chromosomes produced in the crossover operation, m- number of new
chromosomes produced in the non-overwriting mutation operation (see mutation
operation). In our approach p= 12, r=5,c= 4, m= 1.

Crossover is applied to randomly selected pairs of parents. The structure of the adders tree
seems very similar to the commonly used tree graph structure used for scheduling and partitioning [6]
or finding the optimal operation tree [9]. However for the addition, the structure of the tree is strongly
constrained. Therefore, the crossover operation implements a procedure, which generates only avalid
structure of the adder tree (no repair procedure is required).

Two different options of crossover have been implemented. The first one (option A) attempts to
copy as much as possible from the parents (considering the actual parents structure and disregarding
the indices) and then employs a greedy agorithm (simplified version of the GrA implemented in [2])
to route unconnected adders. In the second option (option B), the offspring copies the structure of the
first parent and implements changes similar as for the SA, however changes are applied according to
the structure of the second parent. In this option only indices are considered. These options are
described below.

3.1 Option A

In this option, an offspring inherits one (or all but the one) branch of adders from the first
parent. For the example given in Figure 2, the offspring O inherits from the parent O, the adder
structure: 20, 14, 15, 9, 12, 4, 5. Then, the offspring inherits as much as possible from the second
parent. In the given example, the offspring O can copy only adders 13, 2, 11; 16, 6, 7 and 17, 8, O
from the parent 1. Unfortunately, the whole adder structure may not be obtained directly from the
parents; as some connections copied from the first parent, conflict with connections in the second
parent. For the given example for the offspring O; from the parent O, the adder structure: 14, 9, 12 is
copied; this make impossible to copy the adder structure 14, 1, 9 from the parent 1 asthe input 9 is
already connected.

It should be noted that the crossover agorithm considers only indices of inputs on the bottom
layer (in the given example: inputs 0-12) and how they are connected going up to the top layer (the
indices of the adders of the upper layer are disregarded). Consequently, pairing of the upper layer
adders can be achieved provided that all adders on the lower layers can also be paired. Therefore, a
single connection that cannot be achieved on the bottom layer, prevents the adders on the upper
layers from being connected. This causes that the structure of adders on the upper layer is seldom
inherited from the parents. Nevertheless, the offspring inherits only connections which existed in
either of the parents.

This approach causes that the effectiveness of the algorithm strongly depends on crossover
points; that is how many adders are copied from the first parent. Consequently, a crossover parameter
is included into the gene-coding scheme. This parameter is optimised together with the adders
structure during the evolutionary process. The crossover parameter defines from which adders layer a
randomly chosen branch of adders is copied from the first parent to the offspring. For example, on
Figure 2, offspring O inherits adder structure: 20, 14, 15, 9, 12, 4, 5; i.e. the branch of adders
beginning from the adder 20 (adder 20 is on the layer 2). Besides, crossover parameter defines if one
branch of the adder is inherited or al but one branches are inherited. For the given example, for the
offspring O, only one branch of adders is inherited from the parent O; for the offspring 1, al but the
one branches of adders are inherited from the parent 1, i.e. except adders: 20, 14, 1, 9, 3.

The implementation results shown that in old generations, the crossover parameter is the same
for all chromosomes and is equal: copy one branch beginning from the next to the last adder, i.e.
copy half of the adder structure. Consequently, the crossover parameter is not longer included into
gene-coding scheme and the crossover point is fixed to the half-adder copping.

o L7 o] A S L]

20-[19 21
23 23 22

24| ___not used for any child 24|
— — for offspring O
— for offspring 1
........ for offspring 0 and 1

parent O parent 1

inpARSASRERERERsRERA RN
I_I.l I.I_l
13 18 14, 15, 16 17 16 15 13 18 17 14
19 20-[21 19 21 20
22 23 23 22
24. — random choice 24‘

— — from parent 0

—from parent 1 offspring 1

offspring O

Figure 2. An example of the crossover operation for Option A.

3.2 Option B

In this option, the crossover operation is similar as for the Simulated Annealing presented in the
previous section. The difference is that for the SA a modification is made in a random way, however
for the GP, the modification is carried out with respect to the structure of the second parent. An
example of the crossover operation is given in Figure 3. The crossover operation consists of three
steps:

1. Randomly selecting acommon crossover signa (in the given example: signal 0).

2. Finding swapped signals which are paired with the common signal (signal 1 for parent O and
signal 2 for parent 1). In the case when the common signal is an aone signal (is not paired), the
alone signal is chosen.

3. Swapping signals found in the previous point.

SRTIRTINE

parent O parent 1 offspring O offspring 1

Figure 3. An example of a crossover operation for Option B.

It shoud be noted that the common crosover signal can be selected onany layer of the alder
(except the top layer, which is atrivia case and therefore skipped). Besides, indices of signals on the
upper layers for different parents may not correspondto ead aher, in the sense the real adders
structure. For example, in Figure 3, signal 5 in the parent 0 (S= $+5)) is different from the signal 5
inthe parent 1 (S= S + $). This means that swapping the upper layer adders often disregards the
red connedions of the parents as indices of these alders are assgned more or lessin a randam way.
Therefore, to improve the dgorithm the indices of the upper layer adders are assgned (sorted)
acording to the increase of the input index (the lower index of two inpus). For example, for the
parent 1 in Figure 3, the adder 5 has the lowest index on the layer 1 because the inpu O is the lowest
inpu index on the bottom layer. Sorting adder indices improves correlation between parents,
nevertheless the index of the upper layer adder in ore parent often represents different addition than
in the second marent. This means that swapping is often achieved in a random way, espedally when
structure of parents differs sgnificantly. It shoud be noted that for large alder structure the
relationship between index number and its gructure is decreasing, therefore for large adders treethis
crosover methodis not recommended (seeTable 3).

The dange made by a single swapping is rather insignificant therefore, usually 1-3 similar
swapping operations are performed to oltain an off spring.

The ideabehind the modGA is that the dgorithm avoids learing the exad copies of the same
chromosomes in the new popuation, which may still happen acadentally by other means but is very
unlikely [6]. However, experiments proved that both Option A and B can produce an off spring
identicd to its parents espedaly if the parents are very similar. This causes that several copies of the
same parents exist in the popdation and therefore the modGA algorithm deteriorates the result.
Consequently, to improve the modGA results in the cae when an doff spring is an exad copy of the
parent(s) (or differs insignificantly), the mutation is performed on the offspring. Therefore, in this
approad, the alditional mutation operation revents from obtaining the exaa copy of the parent
during crossover operation and prohibits super-individuals from dominating the popuation. It shoud
be noted that in the nature, a spedmen avoids to mate with its relatives in arder not to produce
similar gene offspring. Moreover, similar solution has been proposed by Maudin [10], where the
mutation rate is changed according to the degree of homogeneity of the dromosomes. The
disadvantage of Maudlin's approad is that it requires additional computation time to evaluate the
degree of the homogeneity. In our approach, howvever, detecting crossover diversity increases
computationtime insignificantly asit is asociated drectly with the aossover operation.

3.3 Mutation

Crossover operation can only explore the aurrent gene potential therefore, a mutation operation
isincluded to sportaneously generate new chromosomes. In ou approach, mutationis carried ou in
asimilar way asfor the SA, i.e. by swapping two adders on the same layer.

Two dfferent mutation ogions has been implemented:
1. parent norroverwriting mutation (NOM)
2. parent overwriting mutation (OM)

The NOM is assciated with the modGA selection operation as the number of new
chromosomes r generated in each generation, includes the number of new chromosomes creaed
during mutation m. Therefore, randamly picked chromosomes (from the surviving chromosomes) are
copied and the mutationis performed onthe cpy of the chromosomes.

The OM is caried ou in the standard way, i.e. every unchanged chromosome is mutated with
probabili ty pm.

Two dfferent mutation ogions have been implemented to allow proper development of the
popuation. In the cae when only the OM is implemented, the high mutation ratio prohibits super-
individuals to grow as often probabili ty of generating an off spring which fitnessis comparabl e to the
parent is very low — lower than mutation rate. Therefore, the best solution is often generated rather in
arandam way then based onthe genetic dgorithm properties and the fitnessof the latest generations
is very often far from the best solution fitness Conwversely, low mutation ratio causes mutation to
have insignificant influence on the result and therefore deteriorates the result. Employing only NOM
causes that super-individuals are dways copied to the new generation withou any change (the fittest
chromosome is sleded) and therefore the popuation is dominated by the super-individuals which
may be in alocd minimum. Consequently, the best solution is a combination d the NOM and OM.
Implementation results, given in Table 2, confirm this assumption.

filter Pr=0, m=1 | pn=0.2%, m=1 | py=10%, m=0
d) iter= 6k 393 +2 392 +5 391 +2
d) iter= 200k 392 +4 388 +5 3811
€) iter= 6k 1302 +3 1303 +2 1317 +4
e) iter= 200k 1297 +3 1292 +2 1297 +2
f) iter= 6k 3580 +7 3580 +6 3616 +8
f) iter= 200k 3454 +5 3455 +4 3508 +16

Table 2. Implementation results for different mutation solutions. only NOM, combination of the
NOM and OM, and only OM; for crossover: option A.

3.4 Implementation results

Table 3 shows implementation results for the different algorithms. The number of iterations for
the GP and SA is chosen so that the calculation cost was roughly the same. It can be seen from Table
3 that the SA solution gives usually the best results and the crossover Option A is a better solution in
comparison to Option B, especially for more complicated circuits. Furthermore for the Option B and
filter f, the implementation results are even so poor that the GrA initial solution is the best-found
solution for up to 6000 iterations.

Filter, technique # iterations (GP/SA)

200/1k 6k/30k 200k/1M
d) GP Option A 399 +3 392 5 388 +5
d) GP Option B 412 +2 392 +4 387 +5
d) SA 394 +3 385+1 382 +1
€) GP Option A 1341 +6 1303 +2 1292 +2
€) GP Option B 1358 +0 1357 1 1297 +4
e) SA 1346 £10 1299 +3 1292 +4
f) GP Option A 37137 3580 +6 3455 +4
f) GP Option B 37300 37300 3645 +26
f) SA 3702 +20 333814 3245 +6
Table 3. Implementation results for different options of the GP and SA, for different number of

iterations.

4 Conclusions

The Simulated Annealing and Genetic Programming have been employed to optimise the
adders tree. These techniques proved to be good aternatives to the Greedy Algorithm and Exhaustive
Search proposed in [2]. The structure of the adder block is strictly defined. Therefore for the GP, the
crossover procedure has to copy parts of the parents in such a way that the child has a proper
structure. This, however, is difficult to be achieved and therefore some part of the offspring has to be
routed to satisfy the adder block constrains rather than to copy a structure of the parents. Two

10

different crossover procedures have been implemented as a part of the research. Nevertheless, at the
same computation time, the GP usually gives worse results than the SA. This conclusion is similar as
presented by McMahon [11] for scheduling problems and shows that for some problems the SA is
beneficial in comparison to the GP.

Addition block is a part of the convolution and therefore all procedures, described in this paper,
are included in the Automated Tool for Convolution in FPGAs (AuToCon). The AuToCon [12, 13,
14] generates an optimised VHDL code of the convoler for the given coefficient values.

References

[1] Xing S., Yu W.W.H., FPGA Adders: Performance Evaluation andOptimal Design, IEEE Design

& Test of Computers, pp. 24-29, Jan.-Mar. 1998.

[2] Jamro E., Wiatr K., FPGA Implementation of Addition as a part of the convolution, Proc. of the IEEE Int. Conf.
Digital System Design, Warszawa, Poland, 4-6 Sep 2001.

[3] Aarts, E.H., Korst, J. Smulated Annealing andBoltzman Machines, Wiley, Chichester, UK, 1989

[4] Kirkpatrick, S. Gelatt, C.D., Vecchi, M.P. Optimisation by simulated Annealing, Science, 220
(4598): 671-680, May 1983.

[5] Jang JS.R., Sun C.T., Mizutani E., Neuro-Fuzzy and S& Computing, Prentice-Hall, London,
UK, 1997.

[6] Koza, JR. Genetic Programming: On the Programming of Computers by Means of Natural
Selection. Cambridge, MA: The MIT Press, 1992.

[7] Michalewicz Z. Genetic Algorithm + Data Sructure = Evolutions Programs, Spinger-Verlag,
Berlin, 1992.

[8] Goldberg D.E. Genetic Algorithms in Search Optimisation & Machine Learning, Addison-
Wesley, Massachusetts, 1989.

[9] Aytekin T., Korkmaz E.E. Guvernir H.A. An Application of genetic Programmning to the 4-Op
Problem using Map-Trees, pp.28-40 in Xin Yao Progressin Evolutionary Computation, Seleded
Papers on Al’ 93 nadAl’ 94 Wor kshops on Evolutionary Computation, Springer, Berlin, 1995.

[10] Maudlin, M.L. Maintaining Diversity in Genetic Search, AAAI Proc. National Conference on
Artificial Inteligence, 1984, pp. 247-250.

[11] McMahon G. Hadinoto D. Comparison of Heuristic Search Algorithms for Sngle Machine
Scheduling Problems, pp. 293-304 in Xin Yao Progressin Evolutionary Computation, Seleded
Papers on Al’ 93 nadAl’ 94 Workshops on Evolutionary Computation, Springer, Berlin, 1995.

[12] Wiatr K., Jamro E. Constant Coefficient Multiplication in FPGA Structures, Proceedings of the
26th Euromicro Conference, Maastricht, The Netherlands, Sep. 5-7, 2000, Val. |, pp. 252-259.

[13] Wiatr K. Jamro E. Implementation of Multipliers in FPGA Structures, ISQED March 2001 San
Jose, Cdlifornia

[14] Wiatr K. Jamro E. Implementation d image data convolutions operations in FPGA
reconfigurable structures for real-time \vision systems. International IEEE Conference on
Information Technology: Coding and Computing, Nevada 2000, pp. 152-157.

11

