
Constant Coefficient Convolution Implemented in FPGAs

Abstract

This paper reviews different architectural solutions for

calculating constant coefficient convolution operation in

FPGAs and. At first, different architectures of multipliers

are approached, as the multiplication is the most complex

operation performed in the convolutions. Nevertheless,

disregarding the multiplier entity allows for further circuit

optimisations, therefore Look-Up-Table (LUT) based

Convolver (LC) versus the sum of the LUT-based

Multipliers is described. Further, an alternative technique

- (Parallel) Distributed Arithmetic Convolver (DAC) is

approached. The key issue of this paper is, however, a

novel architectural solution: Irregular Distributed

Arithmetic Convolver (IDAC) which, in comparison to the

DAC, has an irregular form, and therefore allows for

better circuit optimisation. All architectural solutions

described hereby can be automatically generated by the

Automated Tool for generation Convolvers in FPGAs

(AuToCon).

1. Introduction

An N-tap convolution (FIR filter) can be expressed by

an arithmetic sum of products:







1

0

)()()(
N

k

kixkhiy (1-1)

where: y(i), x(i) and h(i) represent response, input at the

time i and the convolution coefficients,

respectively.

The convolution is usually carried out employing

separate multipliers and finally an adder. An example of a

convolver is shown in Figure 1-1.

x(i)
Input

h(0)

z
-1 x(i-1)

h(1)

z
-1 x(i-2)

h(2)

+

Output

Figure 1-1. An example of the 3 tap convolver

Multiplication is the most complex operation in the

convolver, and several techniques have been adopted to

perform it more efficiently. First at all, coefficient values

are usually constant, therefore the values of the coefficient

can be built-in the circuit, this solution is further denoted

as Constant Coefficient Multiplier (KCMs). The KCM

occupies 1723% on average or 2941% on maximum

[1], area of the fully functional, Variable Coefficient

Multiplier (VCM). Consequently, the KCM should be

implemented whenever the coefficient values are constant.

Alternatively, when coefficients are changed infrequently,

a part of the Field Programmable Gate Array (FPGA) can

be reconfigured in order to change the coefficient. FPGA

can be reconfigured in a few milliseconds time,

nevertheless a new multiplier circuit must be redesigned

and re-implemented, which is much more time-consuming

than FPGA reconfiguration. Therefore this approach can

be practically adopted provided that only a finite number

of coefficient values are allowed. In this case every

coefficient value has a separate pre-implemented entry

which can be quickly download into the FPGA.

FPGAs implement logic cells as a Look Up Table

(LUT) memory, therefore the inherent way of performing

multiplication seems the LUT based Multiplication (LM)

[2, 3] where the value of the coefficient is coded into the

contents of the LUT memory.

Distributed Arithmetic Convolver (DAC) [4, 5] is an

alternative way for performing convolution. The DAC

similarly like the LM employs LUT memory however the

multiplication is carried out in a bit-plane order.

Consequently all inputs to the DAC LUTs are at the same

bit-significance and therefore the width of the LUT data

bus is smaller. The DAC has a regular structure – the same

for different input bit-significance, and this causes that

grouping the inputs to the LUT is constrained.

Consequently a novel design approach Irregular

Distributed Arithmetic (IDAC) is proposed for which LUT

inputs can be different for different bit-significance.

2. Constant Coefficient Multipliers (KCMs)

2.1 Multiplierless Multiplication (MM)

The KCM is usually implemented in a multiplierless

fashion by using only hardwired shifts and adders from the

binary representation of the multiplicand. For example, A

multiplied by B= 14= 11102 can be implemented as

(A<<1)+(A<<2)+(A<<3), where ‘<<’ denotes a shift to

the left. It should be noted that the hardware requirements

depend on the choice of the coefficient, i.e. the number of

1’s in the binary representation of the coefficient should be

as low as possible.

Canonic Signed Digit (CSD) Representation

This area reduction technique attempts to reduce the

number of 1s required in the coefficient’s two’s

complement representation by the use of Canonic Signed

Digit (CSD) representation [6, 7]. The CSD representation

is a signed power-of-two representation where each of the

bits is in the set { 1,1,0 } (0 – no operation, 1 – addition, 1

– subtraction). It should be noted that the general

conversion algorithm to CSD [6, 7] considers addition and

subtraction to be the same cost operations. However, for a

subtraction in the case when the subtrahend is shift to the

right with respect to the minuend, the LSB cannot be

directly copied to the output as it is the case for the

addition. Therefore a modified conversion algorithm has

been proposed in [3], for which a 1 is introduced only

when the total number of non-zero symbols is reduced. In

this paper, the modified CSD conversion algorithm is

implemented.

Substructure sharing

Additional area reduction can also be achieved by Sub-

structure Sharing (SS) [8]. For example, multiplication by

27=110112 can be implemented by the use of an

intermediate variable tmp, as it is shown in the following

equations: tmp= a + (a<<1), and 27a= tmp + (tmp<<3).

By the use of the SS the number of required additions has

been reduced from 3 to 2.

It should be noted that the SS area-reduction may be

implemented also on the CSD, therefore the combination

of the SS and CSD techniques should be also considered

during the optimisation process.

2.2. LUT based Multiplier (LM)

In FPGAs, a multiplication can be carried out

employing Look-up-table (LUT) based multiplication

(LM). In principle, the evaluation of any finite function

can be carried out using a look-up table (LUT) memory

that is addressed with the argument for the evaluation and

whose output is the result of the evaluation. Unfortunately,

the use of a single LUT for the multiplication is unlikely to

be practical for any but the smallest argument, because the

table size grows rapidly with the width of the argument.

Therefore the solution is to split the argument, use LUTs,

and then use a tree of adders [2, 3, 4]. An example of this

is given in Figure 2-1.

For the LM some optimisation can be achieved [3]. To

further describe these optimisation techniques, an example

of LUT contents for the multiplication Y= 19X is given in

the example in Table 2-1.

input

LUT

1

LUT

0

 4 4

 8

 12 12

Adder

 8

 4

 12

 16

output

 LSB MSB

Figure 2-1. Look-up table based multiplication for 8-bit

wide coefficient

It can be easily proved that an output bit of the LUT

depends only on the address bits which weights are lower

or equal to the output bit weight. In the example, the

memory cell y0 depends only on the address line a0,

memory cell y1 depends on a0 and a1, etc. In general, an

output bit yi depends on the MAX(i+1, n) address lines,

where n denotes the width of the LUT address bus. In

consequence, (n-1) LSBs require smaller memory

modules, which implies substantial hardware savings.

These hardware savings will be denoted as LSBs Address

Width Reduction (LAWR).

Address Value y5 y4 y3 y2 y1 y0

0 0 0 0 0 0 0 0

1 19 0 1 0 0 1 1

2 38 1 0 0 1 1 0

3 57 1 1 1 0 0 1

address width 1 1 2 2 2 1

Table 2-1. The contents of the memory (y5-y0) for

different address values and the coefficient equal

19. Address width – the width of address bus for

each memory cell

An additional decrease of the address width may be

observed when the contents of the memory do not depend

on a curtain address line. This address width reduction

cannot be generalised and differs for different coefficient

values and LUT address widths. Therefore, a complex

search algorithm has to be employed to find a don’t-care

address line. This saving is denoted as Don’t-care Address

Width Reduction (DAWR). In the example given in Table

3-3, the DAWR is observed for memory cells y5 and y4. It

should be noted that the DAWR usually occurs for MSBs

of the product.

Further savings can be achieved by Memory Sharing

(MS). In the given example, memory cells y0 and y4 are the

same therefore only one of them is needed. This

optimisation requires similar complex search as the

DAWR does.

The XC4000 family [9] incorporates basically only

161 RAMs and 321 RAMs, however the latest occupies

twice the area of a 161 RAM, and therefore it is not

recommended. Figure 2-1 shows a very simple example

for which input is 8 bit-wide, therefore the split of the

input is rather intuitively selected to be 4+4= 8. In general

case, optimal splitting of the input argument is much more

complicated [3]. In addition to 161 and 321 small

distributed memories, Virtex family [9] incorporates

several large BlockSelectRAM (BSR) memories which are

4 kb in size and may have different data width: 4k1,

2k2, 1k4, 5128, 25616. The area in silicon, occupied

by a BSR is equivalent to roughly 16 Virtex CLBs or 64

LEs (a Logic Element (LE) is approximately equivalent to

a single 161 LUT). However the actual cost (area) of

these memories differs with respect to available FPGA

resources. For example, a design does not implement any

BSRs but uses all available CLBs, therefore it is

recommended to allocate more logic into the BSRs.

Consequently, a trade-off between the distributed

RAMs and the BSRs is design-dependent, and the actual

cost of each memory module should be specified

independently for different designs. This, however,

complicates circuit optimisation which should consider

variable cost of different memory modules, adders and

flip-flops, and generate a circuit with the lowest cost. The

optimal circuit will differ with respect to the cost-relation

between basic elements therefore the optimisation

procedure cannot make any circuit presumptions which

significantly complicates the procedure.

25616 321 3161

147

7 5 4 1

3116

21

25616 321 3161

7 5 4

3116

21

Adder

28

14

7

21

7

21

1

21

11

Figure 2-2. A LM for input and coefficient width

equal 14

As a result, an exhaustive search algorithm (with some

obvious simplifications) has been implemented [3],

therefore the BSRs together with the distributed RAMs

and adders are combined and the best circuit taken. In

order to illustrate considered architectures, an example of

the LM for input and coefficient width equal 14 is shown

in Figure 2-2. The given example shows only the LAWR

optimisation and therefore may be even more complicated

if a concrete coefficient value is given, for which the MS

and DAWR optimisations are implemented. It should be

noted that the exhaustive search algorithm can be

smoothly implemented only for a multiplier, and in the

case of the convolver the number of possible solution is

prohibitively large, which causes that a novel design

approach should be developed.

2.3. Comparison of the KCM

2.3.1. Area

In Section 2.1 and 2.2 two different multiplication

techniques have been presented: the multiplierless

multiplication (MM) and the LUT based multiplication

(LM). Therefore a question arises which of them is more

hardware efficient. The statistical cost-relation between

the MM and LM for XC4000 is shown in Figure 2-3.

Accordingly, the LM is usually more attractive for the

input and coefficient width less than 5, for the greater

widths a better result is usually obtained by the use of the

MM. It should be noted that the choice of the best

architecture depends on the actual coefficient value and

Figure 2-3 shows only statistical relationship. Therefore

both architectures should be considered and the best of

them chosen for an individual coefficient. However,

experimental results show that the gain from considering

the best of the LM and MM is insignificant for K greater

than 5. Therefore for K>5 only the MM should be

employed.

The general conclusion can be drawn from Figure 2-3.

The MM optimisation techniques (CSD and SS) are more

and more efficient with the increase of width K. Therefore

for greater K, the MM is getting more and more attractive

in comparison to the LM.

The next question is how much hardware reduction is

achieved by the use of the DAWR and MS for the LM.

Experimental results show that the reduction is on average

520% depending on the input width K.

LM/MM

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

3 4 5 6 7 8 9 10 11 12 13 14 15 K

Figure 2-3. Relation between average area of XC4000

occupied by the LM vs. MM. Results for the

different input width K (input range 02
K

-1)

and coefficient values 12
K

-1

2.3.2. Speed

In the previous section only area occupied by the

multipliers has been considered. However, relation

between the design cost and speed should be also

considered. Consequently in order to increase the design

throughput, design pipelining has been implemented.

FPGAs incorporate a flip-flop (FF) after each logic cell.

Therefore conceptually design pipelining can be

implemented without any hardware overheads. However,

some design paths do not require any logic, therefore

frequently FFs have to be inserted without associated logic

(according to cut-set method [7]). In consequence, for a

fully pipelined circuit (a flip-flop inserted after every logic

element), the area is defined by the number of flip-flips

rather than the number of logic cells, and as a result, there

is a pipelining overhead of about 050%. This overhead

disappears if the number of pipeline stages is decreased

(flip-flops are not inserted after every logic cell) but in

consequence the circuit speed decreases. Conversely,

design pipelining considerably increases the throughput,

therefore the design efficiency [7] is usually improved and

therefore the slight hardware overhead can be neglected. It

should be noted that the design pipelining has been also

taken under consideration when searching for the optimal

architecture. For example, the sub-structure sharing

architecture tends to incorporate more flip-flops than the

CSD architecture.

Area

0

2

4

6

8

10

12

14

16

18

MM LB CoreGen

X
C

4
0
0

0
 C

L
B

s

Speed

0

2

4

6

8

10

12

14

16

18

MM MM Pipe LB LB Pipe CoreGen CoreGen

Pipe

n
s

Figure 2-4. Average area without pipelining and system

period without and with pipelining for the MM,

LM and Core Generator [10] multiplier.

Implementation results for XC4000E-1 and for

the 8-bit unsigned input and 5 randomly chosen

coefficients

Figure 2-4 shows average hardware requirements and

the system clock for the MM and LM multipliers. It can be

seen that the MM multipliers are generally more hardware

efficient than the LM counterparts. Besides, the MM and

LM developed during the course of this work, surpass the

multipliers generated by Core Generator [10] – a

commercial program.

3. LUT based Convolver (LC)

The structure of the constant coefficient LUT based

Convolver (LC) is similar to the sum of products obtained

employing LUT based multipliers (LM). However to

optimise the structure of the adders, all additions are

performed within a single adders block, therefore

multiplier entities are disregarded. To illustrate savings

obtained by the use of the LC instead of the sum of the

LMs, an example is given in Figure 3-1, for 2-tap

convolution and 88 multipliers.

z
-1

LUT

M0

LUT

L0

LUT

M1

LUT

L1

Adder1 Adder0

Adder2

In
8

4 4 4 4

12
12 12

12

13

9

4
14

18

Adders Block

A)

z
-1

LUT

M0

LUT

L0

LUT

M1

LUT

L1

Adder1 Adder0

Adder2

In
8

4 4 4 4

12
12 12

12

13 13
4

18

4

B)

Figure 3-1. The structure of the convolver for Y= AB0

+ z
-1
AB1

for input and coefficient width K= 8.

A) LC, B) sum of LM

Let us consider savings obtained by disregarding the

multiplier bounds, for LUT output width equal w= 12 and

LUT address width (shift between the same multiplier

LUTs) s= 4. For the LM, the adder width within the

multipliers (Adder0 and Adder 1 in Figure 3-1B) equals

roughly w. The final adder (Adder2) width equals roughly

w+s. Therefore total number of 1-bit adders for the sum of

the LM is equal

wLM= 3w+s. (3-1)

For the LC, three adders of width equal w are

employed, and therefore the total number of Full / Half

Adders is equal

wLC= 3w. (3-2)

A penalty factor p, a result of employing the sum of

LMs instead of the LC, is roughly

w

s

w

ww
p

LC

LCLM







3
 (3-3)

It should be also noted that employing the LC rather

than the sum of LMs reduces the maximum width of the

adders from roughly w+s to w, and therefore reduces

maximum propagation time.

Figure 3-1 shows 2-tap convolver which is a very

simple example. In general case, the adder network is

more complicated. Therefore finding an optimal adder

tree, i.e. the netlist of adders for which every adder has

only two inputs and the total sum of adder widths is the

lowest, is a difficult task, which cannot be solved in an

intuitive way. Consequently, different optimisation

algorithms, such as an Exhaustive Search, Greedy

Algorithm, Genetic Programming and Simulated

Annealing, have been implemented [11, 12]. As a result,

the Greedy Algorithm should be chosen whenever the

circuit-generation time is an important factor, otherwise

the Simulated Annealing is recommended as about 10-

20% adders area reduction is obtained in comparison to

the Greedy Algorithm [12].

The LC employs the sophisticated optimisation

algorithm for the adder tree. However, the LC requires

also optimisation of LUT memory, esp. when different

memory modules can be used (see Figure 2-2). For the

LM, which requires few LUT memories and rather a small

adder tree, the exhausted search algorithm has been used.

Therefore the adder tree and LUT memories together with

optimisation techniques described in Section 2.2, are

optimised all together. Unfortunately, for the LC, this

optimisation technique is impractical to be implemented.

Consequently for the LC, only local exhausted search

optimisation is implemented, for which each multiplier

(the LUT memories and associated adder tree) is optimised

separately using the exhausted search technique. Then, all

adder trees associated with every multiplier are merged

into a single adder tree which is then separately optimised

by the techniques described in [11, 12].

In addition, optimisation techniques characteristic only

for convolvers are employed.

Similar Coefficients Optimisation (SCO)

FIR filters are very often implemented as linear phase

filters, for which the impulse respond is symmetric. By

exploiting this symmetry, the number of multipliers can be

nearly halved through mirroring of the signal flow graph

in the point of symmetry of the coefficients [7].

Nevertheless, different symmetries and coefficient

combinations can be used, especially for 2D filters [13].

Therefore, the Automated Tool for generation Convolvers

in FPGAs (AuToCon) [15] compares all coefficients and

groups them into similar coefficients blocks. Coefficients

grouped together can be shifted and negated. Grouped

inputs are shifted in respect to the coefficient value, and

then added (subtracted). Finally, a single multiplier is only

implemented. This method allows for reducing the number

of multipliers.

For example, for the filter:

H(z)= H1(z) + 5z-i
 - 5z-j

 - 10z-k
 + 20zl

 (3-4)

similar coefficient inputs are added:

A5= z
i
 - z

j
 - 2zk

 + 4zl
, (3-5)

and the final result is:

H(z) = H1(z) + 5A5. (3-6)

In this example the number of multipliers has been

reduced by 3.

Pipelining Optimisation

The AuToCon generates a convolver with a

sophisticated pipelining architecture, for which an

additional pipelining parameter p defines maximum

number of logic elements between pipelining registers.

Figure 3-2a shows an example of a convolver with a

straightforward pipelining architecture. For this method

additional pipelining registers are often required to

compensate different pipelining delays. To reduce this

drawback, the pipelining optimisation is implemented, for

which feeding points of arithmetic units are relocated in

order to reduce unnecessary registers (similar optimisation

is implemented in [8]). A result of the optimisation is

shown in Figure 3-2b. It should be noted that the total

convolver pipelining delay is often reduced by the

optimisation. This optimisation technique is implemented

for every architecture described in this paper.

-

LUT

5

+

-

LUT

5

+

a) b)

flip-flops

Figure 3-2. Implementation of (2 + 5z
-1

 - 5z
-2

) filter for

pipelining parameter p= 1 and a) without b)

with pipelining optimisation

4. Distributed Arithmetic Convolver (DAC)

The idea behind the DAC [4, 5] is to compute the

convolution in different order than for the LC. The

following mathematical transformation has been

employed:

   





















1

0

1

0

1

0

,

1

0

1

0

, 22
N

i

L

j

N

i

jii

j
N

i

L

j

ji

j

iii ahahah (4-1)

where: N- size of the convolution kernel, L- width of the

input argument a (in bits), hi- i-th coefficient of the

convolution, ai,j- -j-th bit of the i-th input argument.

In comparison with the LC, the LUT data width of the

DAC is smaller, as it can be seen from eq. 4-2.

WDAC=K+log2(N+1) (4-2a)

WLC= K+WIN (4-2b)

where: WDAC - data width of LUTs for the DAC, WLC - data

width of LUTs for the LC, WIN - width of the input of the

LUTs, K- width of the coefficients of the convolution, N-

the size of the convolution kernel.

a0,0 a1,0 ... aN-1,0

LUT

S0

a0,1 a1,1 ... aN-1,1

LUT

S1<<1

a0,L-1 a1,L-1 ... aN-1,L-1

LUT

SL-1<<(L-1)

Adder

WDAC

. . .

Figure 4-1. Diagram of the Distributed Arithmetic

Convolver

The data width of the LUTs is a direct sum for the LC,

and is a sum of the logarithm of the number of inputs to

the LUT for the DAC. This is a consequence that input bits

are at the same significance for the DAC. The lower

output width of the LUTs causes substantial FPGAs area

savings, because not only smaller memory modules but

also shorter adders are required. As a result, the DAC is

preferable to the LC.

A diagram of the DAC is shown in Figure 4-1.

Similarly as for the LM, the size of the LUT memory

grows rapidly with the size of the convolution kernel N.

Therefore the LUT memory should be split into two or

more independent LUTs, and then adders employed. The

split of the memory should be implemented with respect to

the cost-relation between different memory modules and

adders, similarly like for the LM.

Consequently, in some cases the LUT based Hybrid

Convolver (LHC) [14] - a hybrid solution of the LM and

DAC, should be implemented in order to obtain optimum

memory split. For example, for the 33 convolution, the

number of multipliers equals N=9=33, for coefficient

width K=8 and input width L=8, two different memory

modules should be used: four and five input memory

blocks (4+5=9), but the 321 memory module occupies

twice the area of the 161 module. Alternatively, the LHC

employs the DAC for N=8 and a single LM. The cost for

the pure DAC is 226 XC4000 CLBs and 209 CLBs for the

LHC [14]. Therefore 17 CLBs are saved by the use of the

LHC.

5. Irregular Distributed Arithmetic

Convolver (IDAC)

The DAC architecture assumes that its structure is

regular, i.e. the same LUT memory assignments for

different significance of input bits. However, this need not

be the case, and bits of different significance can be

grouped together in the same LUT, in such a way that the

total LUT data width is the lowest. Therefore more or less

a combination of the LC and DAC is obtained. This novel,

introduced by the authors of this paper, design approach is

denoted as Irregular Distributed Arithmetic Convolver

(IDAC). An IDAC optimisation algorithm should optimise

rather the address and data widths of memories and adder

widths, and the bit-significance of inputs is only an input

parameter which influences the LUT data widths.

A greedy algorithm for the IDAC is proposed. This

algorithm optimises a partial solution, i.e. determines the

LUT address width and the LUT inputs, according to the

algorithm given in Listing 5-1. The key issue of this

algorithm is not only an optimal assignment of inputs to

the memory but also selecting the optimal size of the

memory – it should be noted that similarly like for the LM

(see e.g. Figure 2-2) different memory modules can be

used. Before the optimisation algorithm is applied, every

coefficient is shifted to the left until it is made odd. This

reduces the data width of the LUT as the LSB(s) of an

even coefficient is fixed to zero. The input bit for which

the coefficient is shifted is further treated as the input bit

with significance increased by the number of shifts.

The algorithm given in Listing 5-1 employs the

following priority queue: At first input bits with the lowest

shift si (step S1) are selected. Step S2 tends to allocate

firstly inputs for which coefficient width is the lowest and

this step is applied only to input bits at the lowest shift, i.e.

for input bits selected at step S1. Step S3 optimises sign of

the output, i.e. allocates at first input bits which

representation (either positive or two’s complement)

corresponds with the representation of the LUT output.

Step S3, however, is of the lowest importance and is

considered only if two previous steps do not give the best

solution.

Listing 5-1. Algorithm choosing the best partial

solution for the IDAC

cbest=  (Initial conditions)

width= 1

Start of the loop

S1: Find an unassigned input bit with the lowest shift si

S2: If two or more input bits are found with the lowest

shift si, take the input with the lowest coefficient

width wi.

S3: If two or more input bits are found in step S2, take

the one which output sign corresponds with the

output sign of the LUT.

S4: Calculate average cost ca per input bit (consider also

inputs found in the previous iterations of this

loop)

S5: If ca<cbest then ca= cbest (the better circuit has been

found)

S6: width= width+1

S7: If width>max_width

then finish the algorithm and return the circuit with the

lowest cost cbest

else go to the start of the loop

where:

width – address width of the considered IDAC LUT

max_width – maximum address width for the considered

memories (or the number of unassigned input-bits if

smaller)

si – shift of the input bit, si= significance of the input bit + shift

of the coefficient (while making coefficient an odd value)

wi – width of the coefficient after the coefficient is shifted (made

odd).

ca – average cost of the input bit,

width

adderCostmemoryCost
ca

__ 


Cost_memory – cost of the memory module which address width

is equal or greater than width and data width is obtained

from output range of the memory.

Cost_adder – adder cost which width is equal the width of the

memory data + 1.

cbest – the lowest average cost per input bit – this cost is

associated with the best-found circuit.

Step S4 calculates the average cost (per input bit) of

the memory module and the associated adder. In this step,

an assumption is made that the width of the adders is equal

the memory data width plus one. Actual width of the adder

depends on routing the adders in the adder tree. Step S5

determines the best circuit, i.e. the circuit for which

average cost per bit is the lowest. The next steps S6 and S7

are loop control instructions. An example of circuit

obtained by this algorithm is given in Section 6.

The above novel algorithm deals with the problem

which has not been considered. Probably better

optimisation techniques can be developed and better

optimisation criteria in the greedy algorithm selected.

Furthermore, optimisation techniques, which focus on

global optimisation, should be implemented, e.g. a

Simulated Annealing.

6. Implementation Results

To compare implementation results of the DAC and

IDAC, an example of a filter is given below:

H(z)= 59 + 183z-1
 + 162z-2

 - 7z-3
 - 48z-4

 + 12z-5
 +

+ 9z-6
 + 2z-7

. (6-1)

The IDAC circuit for this filter is given in Figure 6-1.

FF FF FF FF FF FF FF

-

LUT9 LUT10 LUT11 LUT12 LUT13 LUT14 LUT15

D0 D1 D2 D3 D4 D5 D6 D7

D8

Adder tree

Figure 6-1. Block diagram of the IDAC

Before the algorithm given in Listing 5-1 is applied,

similar coefficients are first grouped and

addition/subtraction on grouped inputs implemented.

Similar coefficients are coefficients which values are

shifted and/or negated with respect to each other. For the

given filter, coefficients: -48z-4
 + 12z-5

 are similar,

therefore associated inputs are shifted and subtracted from

one another, and a single multiplication is applied (signal

D8 in Figure 6-1). Then coefficients are shifted until made

odd. Consequently after shifting the coefficient 162, a

coefficient 81 with shift equals 1 is obtained. The final

coefficient values are shown in Table 6-1 in row 2 (coef).

According to the algorithm given in Listing 5-1, input

D6 (coef=9), then input D3 (coef=-7), input D0 (coeff=

59) and finally input D1 (coeff= 183) are selected.

According to the given cost of memories and adders, the

lowest average cost per coefficient is obtained for 4-input

RAM (161), therefore the next input bits are grouped to

the next DA-LUTs. It should be noted that input D7 for

which coefficient is equal a power of 2 is fed directly to

the adder tree.

Input D0 D1 D2 D3 D6 D7 D8

Coef 59 183 81 -7 9 1 3

Bit 0 9,2 9,3 9,1 9,0

Bit 1 10,2 11,0 10,3 10,1 10,0 D

Bit 2 12,0 12, 2 12,1 11,3 11,2 I 11,1

Bit 3 13,2 14,0 13,3 13,1 13,0 R 12,3

Bit 4 14,2 E 14,1

Bit 5 C 14,3

Bit 6 T 15,0

Bit 7 15,1

Bit 8 15,2

Table 6-1. IDA-LUT assignment for different inputs

bits (compare with Figure 6-1)

The implementation results for the filter in eq. 6-1 are

given in Table 6-2. CORE Generator [10] developed by

the Xilinx Inc. generates the circuit employing (Parallel)

Distributed Arithmetic Convolver (DAC). The AuToCon

generates the circuit employing the IDAC for which two

different pipelining options are given in Table 6-2. For

p=, pipelining is not implemented; for p= 1, pipelining

flip-flops are inserted after every logic cell. It can be seen

from Table 6-2 that the IDAC significantly outperforms

the DAC, which corresponds with the proposal of this

paper.

The architecture of the IDAC is irregular in

comparison the DAC, therefore it might seem that this

would cause a rapid increase of the minimal clock period

T. Nevertheless it is not the case. In some cases (e.g. in

Table 6-1) the IDAC outperforms the DAC even when the

minimal period is only considered. This can be explained

by the fact that a lower area circuit can be better placed

and routed in a FPGA.

Circuit # 161 LUTs # FFs T [ns]

1) Core Generator 169 205 9.2

2) AuToCon p= 125 28 28.4

3) AuToCon p=1 126 179 8.7

Table 6-1. Implementation results for XC4005PC84-09

for different filter options

7. Conclusions and suggestions for further

work

This paper proposes a novel architectural solution for a

convolver: the Irregular Distributed Arithmetic Convolver

(IDAC). The IDAC improves the DAC by introducing

irregularity, which makes possible the circuit optimisation.

The implementation results show that the IDAC allows for

significant area reduction in comparison to the DAC.

An IDAC optimisation algorithm has been proposed.

This algorithm is a greedy algorithm therefore better

priority queue might be found. Furthermore, a more

sophisticated optimisation algorithm, such as Simulated

Annealing (e.g. a similar algorithm as proposed in [11] for

optimisation of the adder tree) should be proposed, which

might reduce the IDAC area. Furthermore, this algorithm

might consider address width reduction (the LAWR and

DAWR, see the LM). For example, the IDAC LAWR is

observed in LUT 11 for which only a single address line is

required for bit 1.

In Section 2.1 a Multiplierless Multiplication is

proposed for caring out multiplication. Implementation

results presented in Section 2.3 shows that the MM

outperforms the LM. Consequently a similar technique –

Multiplierless Convolution might be implemented for the

convolver. This is a suggestion for comparing different

convolver architectures and selecting the better of them.

The IDAC architecture is incorporated in the

Automated Tool generating 2D Convolvers in FPGAs

(AuToCon) [15]. The AuToCon generates automatically a

VHDL description of a convolver for different parameters

such as kernel size and coefficient values, etc.

References

[1] Wiatr K., Jamro E. Implementation of Multipliers in FPGA

Structures, Proc. of the IEEE Intern. Symposium on Quality

Electronic Design, San Jose, California, 26-28 March 2001,

pp. 415-420, IEEE Computer Society Press.

[2] Omondi A.R Computer Arithmetic Systems. Algorithms

Architecture and Implementations, Prentice Hall 1994

[3] Wiatr K., Jamro E. Constant Coefficient Multiplication in

FPGA Structures, Proc. of the IEEE Int. Conf. Euromicro,

Maastricht, The Netherlands, Sep. 5-7, 2000, Vol. I, pp. 252-

259, IEEE Computer Society Press.

[4] Burrus C.S.: Digital filter structure described by arithmetic,

IEEE Transaction on Circuits and Systems, pp. 674-680,

1977

[5] Do T.T., Reuter C., Pirsch P. Alternative approaches

implementing high-performance FIR filters on lookup table-

based FPGAs: A comparison. SPIE Conference on

Configurable Computing and Applications, Boston,

Massachusetts, pp. 248-254, 2-3 Nov. 1998.

[6] Garner H. Number Systems and Arithmetic, Advances in

Computing, vol. 6, pp. 131-194, 1965

[7] Pirsch P., Architectures for Digital Signal Processing,

Chichester UK, Wiley 1998.

[8] Hartley R.I. Subexpression Sharing in Filters Using Canonic

Signed Digit Multipliers, IEEE Transactions on Circuits and

Systems II – Analog and Digital Signal Processing, vol. 43,

no. 10, Oct. 1996.

[9] Xilinx Inc. The Programmable Logic Data Book, San Jose,

California, 2000.

[10] Xilinx Inc. Core Generator, Foundation 2.1, 1999

[11] Jamro E., Wiatr K., Genetic Programming in FPGA

Implementation of Addition as a Part of the Convolution,

Proc. of the IEEE Int. Conf. Digital System Design,

Warszawa, Poland, 4-6 Sep. 2001, pp. 466-473, IEEE

Computer Society Press.

[12] Jamro E., Wiatr K. Implementation of convolution operation

on general purpose processors Proceedings of the Euromicro

Conf. Warszawa, Poland, 4-6 Sep. 2001, pp. 410-417, IEEE

Computer Society Press.

[13] Lu W.-S., Two-Dimensional Digital Filters, Marcel Dekker,

New York, 1992.

[14] Wiatr K., Jamro E., Implementation of image data

convolutions operations in FPGA reconfigurable structures

for real-time vision systems. International IEEE Conference

on Information Technology: Coding and Computing, Nevada

2000, pp. 152-157.

[15] Jamro E. Parameterised automated generation of convolvers

implemented in FPGAs, Ph.D. Thesis, AGH Technical

University, Kraków, Poland, June 2001.

