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Abstract 
 

This paper reviews different architectural solutions for 

calculating constant coefficient convolution operation in 

FPGAs and. At first, different architectures of multipliers 

are approached, as the multiplication is the most complex 

operation performed in the convolutions. Nevertheless, 

disregarding the multiplier entity allows for further circuit 

optimisations, therefore Look-Up-Table (LUT) based 

Convolver (LC) versus the sum of the LUT-based 

Multipliers is described. Further, an alternative technique 

- (Parallel) Distributed Arithmetic Convolver (DAC) is 

approached. The key issue of this paper is, however, a 

novel architectural solution: Irregular Distributed 

Arithmetic Convolver (IDAC) which, in comparison to the 

DAC, has an irregular form, and therefore allows for 

better circuit optimisation. All architectural solutions 

described hereby can be automatically generated by the 

Automated Tool for generation Convolvers in FPGAs 

(AuToCon).  

 

1. Introduction 
 

An N-tap convolution (FIR filter) can be expressed by 

an arithmetic sum of products: 
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where: y(i), x(i) and h(i) represent response, input at the 

time i and the convolution coefficients, 

respectively. 

 

The convolution is usually carried out employing 

separate multipliers and finally an adder. An example of a 

convolver is shown in Figure 1-1. 
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Figure 1-1. An example of the 3 tap convolver 

Multiplication is the most complex operation in the 

convolver, and several techniques have been adopted to 

perform it more efficiently. First at all, coefficient values 

are usually constant, therefore the values of the coefficient 

can be built-in the circuit, this solution is further denoted 

as Constant Coefficient Multiplier (KCMs). The KCM 

occupies 1723% on average or 2941% on maximum 

[1], area of the fully functional, Variable Coefficient 

Multiplier (VCM). Consequently, the KCM should be 

implemented whenever the coefficient values are constant. 

Alternatively, when coefficients are changed infrequently, 

a part of the Field Programmable Gate Array (FPGA) can 

be reconfigured in order to change the coefficient. FPGA 

can be reconfigured in a few milliseconds time, 

nevertheless a new multiplier circuit must be redesigned 

and re-implemented, which is much more time-consuming 

than FPGA reconfiguration. Therefore this approach can 

be practically adopted provided that only a finite number 

of coefficient values are allowed. In this case every 

coefficient value has a separate pre-implemented entry 

which can be quickly download into the FPGA.  

FPGAs implement logic cells as a Look Up Table 

(LUT) memory, therefore the inherent way of performing 

multiplication seems the LUT based Multiplication (LM) 

[2, 3] where the value of the coefficient is coded into the 

contents of the LUT memory. 

Distributed Arithmetic Convolver (DAC) [4, 5] is an 

alternative way for performing convolution. The DAC 

similarly like the LM employs LUT memory however the 

multiplication is carried out in a bit-plane order. 

Consequently all inputs to the DAC LUTs are at the same 

bit-significance and therefore the width of the LUT data 

bus is smaller. The DAC has a regular structure – the same 

for different input bit-significance, and this causes that 

grouping the inputs to the LUT is constrained. 

Consequently a novel design approach Irregular 

Distributed Arithmetic (IDAC) is proposed for which LUT 

inputs can be different for different bit-significance.  

 

2. Constant Coefficient Multipliers (KCMs) 
 

2.1 Multiplierless Multiplication (MM) 
 

The KCM is usually implemented in a multiplierless 

fashion by using only hardwired shifts and adders from the 

binary representation of the multiplicand. For example, A 

multiplied by B= 14= 11102 can be implemented as 

(A<<1)+(A<<2)+(A<<3), where ‘<<’ denotes a shift to 



the left. It should be noted that the hardware requirements 

depend on the choice of the coefficient, i.e. the number of 

1’s in the binary representation of the coefficient should be 

as low as possible. 

 

Canonic Signed Digit (CSD) Representation 

This area reduction technique attempts to reduce the 

number of 1s required in the coefficient’s two’s 

complement representation by the use of Canonic Signed 

Digit (CSD) representation [6, 7]. The CSD representation 

is a signed power-of-two representation where each of the 

bits is in the set { 1,1,0 } (0 – no operation, 1 – addition, 1  

– subtraction). It should be noted that the general 

conversion algorithm to CSD [6, 7] considers addition and 

subtraction to be the same cost operations. However, for a 

subtraction in the case when the subtrahend is shift to the 

right with respect to the minuend, the LSB cannot be 

directly copied to the output as it is the case for the 

addition. Therefore a modified conversion algorithm has 

been proposed in [3], for which a 1  is introduced only 

when the total number of non-zero symbols is reduced. In 

this paper, the modified CSD conversion algorithm is 

implemented. 

 

Substructure sharing 

Additional area reduction can also be achieved by Sub-

structure Sharing (SS) [8]. For example, multiplication by 

27=110112 can be implemented by the use of an 

intermediate variable tmp, as it is shown in the following 

equations: tmp= a + (a<<1), and 27a= tmp + (tmp<<3). 

By the use of the SS the number of required additions has 

been reduced from 3 to 2.  

It should be noted that the SS area-reduction may be 

implemented also on the CSD, therefore the combination 

of the SS and CSD techniques should be also considered 

during the optimisation process. 

 

2.2. LUT based Multiplier (LM) 
 

In FPGAs, a multiplication can be carried out 

employing Look-up-table (LUT) based multiplication 

(LM). In principle, the evaluation of any finite function 

can be carried out using a look-up table (LUT) memory 

that is addressed with the argument for the evaluation and 

whose output is the result of the evaluation. Unfortunately, 

the use of a single LUT for the multiplication is unlikely to 

be practical for any but the smallest argument, because the 

table size grows rapidly with the width of the argument. 

Therefore the solution is to split the argument, use LUTs, 

and then use a tree of adders [2, 3, 4]. An example of this 

is given in Figure 2-1. 

For the LM some optimisation can be achieved [3]. To 

further describe these optimisation techniques, an example 

of LUT contents for the multiplication Y= 19X is given in 

the example in Table 2-1. 
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Figure 2-1. Look-up table based multiplication for 8-bit 

wide coefficient 

It can be easily proved that an output bit of the LUT 

depends only on the address bits which weights are lower 

or equal to the output bit weight. In the example, the 

memory cell y0 depends only on the address line a0, 

memory cell y1 depends on a0 and a1, etc. In general, an 

output bit yi depends on the MAX(i+1, n) address lines, 

where n denotes the width of the LUT address bus. In 

consequence, (n-1) LSBs require smaller memory 

modules, which implies substantial hardware savings. 

These hardware savings will be denoted as LSBs Address 

Width Reduction (LAWR). 

 

Address Value y5 y4 y3 y2 y1 y0 

0 0 0 0 0 0 0 0 

1 19 0 1 0 0 1 1 

2 38 1 0 0 1 1 0 

3 57 1 1 1 0 0 1 

address width 1 1 2 2 2 1 

Table 2-1. The contents of the memory (y5-y0) for 

different address values and the coefficient equal 

19. Address width – the width of address bus for 

each memory cell 

An additional decrease of the address width may be 

observed when the contents of the memory do not depend 

on a curtain address line. This address width reduction 

cannot be generalised and differs for different coefficient 

values and LUT address widths. Therefore, a complex 

search algorithm has to be employed to find a don’t-care 

address line. This saving is denoted as Don’t-care Address 

Width Reduction (DAWR). In the example given in Table 

3-3, the DAWR is observed for memory cells y5 and y4. It 

should be noted that the DAWR usually occurs for MSBs 

of the product.  

Further savings can be achieved by Memory Sharing 

(MS). In the given example, memory cells y0 and y4 are the 

same therefore only one of them is needed. This 

optimisation requires similar complex search as the 

DAWR does. 

 



The XC4000 family [9] incorporates basically only 

161 RAMs and 321 RAMs, however the latest occupies 

twice the area of a 161 RAM, and therefore it is not 

recommended. Figure 2-1 shows a very simple example 

for which input is 8 bit-wide, therefore the split of the 

input is rather intuitively selected to be 4+4= 8. In general 

case, optimal splitting of the input argument is much more 

complicated [3]. In addition to 161 and 321 small 

distributed memories, Virtex family [9] incorporates 

several large BlockSelectRAM (BSR) memories which are 

4 kb in size and may have different data width: 4k1, 

2k2, 1k4, 5128, 25616. The area in silicon, occupied 

by a BSR is equivalent to roughly 16 Virtex CLBs or 64 

LEs (a Logic Element (LE) is approximately equivalent to 

a single 161 LUT). However the actual cost (area) of 

these memories differs with respect to available FPGA 

resources. For example, a design does not implement any 

BSRs but uses all available CLBs, therefore it is 

recommended to allocate more logic into the BSRs. 

Consequently, a trade-off between the distributed 

RAMs and the BSRs is design-dependent, and the actual 

cost of each memory module should be specified 

independently for different designs. This, however, 

complicates circuit optimisation which should consider 

variable cost of different memory modules, adders and 

flip-flops, and generate a circuit with the lowest cost. The 

optimal circuit will differ with respect to the cost-relation 

between basic elements therefore the optimisation 

procedure cannot make any circuit presumptions which 

significantly complicates the procedure.  
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Figure 2-2. A LM for input and coefficient width 

equal 14 

 

As a result, an exhaustive search algorithm (with some 

obvious simplifications) has been implemented [3], 

therefore the BSRs together with the distributed RAMs 

and adders are combined and the best circuit taken. In 

order to illustrate considered architectures, an example of 

the LM for input and coefficient width equal 14 is shown 

in Figure 2-2. The given example shows only the LAWR 

optimisation and therefore may be even more complicated 

if a concrete coefficient value is given, for which the MS 

and DAWR optimisations are implemented. It should be 

noted that the exhaustive search algorithm can be 

smoothly implemented only for a multiplier, and in the 

case of the convolver the number of possible solution is 

prohibitively large, which causes that a novel design 

approach should be developed. 

 

2.3. Comparison of the KCM 
 

2.3.1. Area 

 

In Section 2.1 and 2.2 two different multiplication 

techniques have been presented: the multiplierless 

multiplication (MM) and the LUT based multiplication 

(LM). Therefore a question arises which of them is more 

hardware efficient. The statistical cost-relation between 

the MM and LM for XC4000 is shown in Figure 2-3. 

Accordingly, the LM is usually more attractive for the 

input and coefficient width less than 5, for the greater 

widths a better result is usually obtained by the use of the 

MM. It should be noted that the choice of the best 

architecture depends on the actual coefficient value and 

Figure 2-3 shows only statistical relationship. Therefore 

both architectures should be considered and the best of 

them chosen for an individual coefficient. However, 

experimental results show that the gain from considering 

the best of the LM and MM is insignificant for K greater 

than 5. Therefore for K>5 only the MM should be 

employed. 

The general conclusion can be drawn from Figure 2-3. 

The MM optimisation techniques (CSD and SS) are more 

and more efficient with the increase of width K. Therefore 

for greater K, the MM is getting more and more attractive 

in comparison to the LM.  

The next question is how much hardware reduction is 

achieved by the use of the DAWR and MS for the LM. 

Experimental results show that the reduction is on average 

520% depending on the input width K. 
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Figure 2-3. Relation between average area of XC4000 

occupied by the LM vs. MM. Results for the 

different input width K (input range 02
K

-1) 

and coefficient values 12
K

-1 

 

2.3.2. Speed 

 

In the previous section only area occupied by the 

multipliers has been considered. However, relation 



between the design cost and speed should be also 

considered. Consequently in order to increase the design 

throughput, design pipelining has been implemented. 

FPGAs incorporate a flip-flop (FF) after each logic cell. 

Therefore conceptually design pipelining can be 

implemented without any hardware overheads. However, 

some design paths do not require any logic, therefore 

frequently FFs have to be inserted without associated logic 

(according to cut-set method [7]). In consequence, for a 

fully pipelined circuit (a flip-flop inserted after every logic 

element), the area is defined by the number of flip-flips 

rather than the number of logic cells, and as a result, there 

is a pipelining overhead of about 050%. This overhead 

disappears if the number of pipeline stages is decreased 

(flip-flops are not inserted after every logic cell) but in 

consequence the circuit speed decreases. Conversely, 

design pipelining considerably increases the throughput, 

therefore the design efficiency [7] is usually improved and 

therefore the slight hardware overhead can be neglected. It 

should be noted that the design pipelining has been also 

taken under consideration when searching for the optimal 

architecture. For example, the sub-structure sharing 

architecture tends to incorporate more flip-flops than the 

CSD architecture. 
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Figure 2-4. Average area without pipelining and system 

period without and with pipelining for the MM, 

LM and Core Generator [10] multiplier. 

Implementation results for XC4000E-1 and for 

the 8-bit unsigned input and 5 randomly chosen 

coefficients 

 

Figure 2-4 shows average hardware requirements and 

the system clock for the MM and LM multipliers. It can be 

seen that the MM multipliers are generally more hardware 

efficient than the LM counterparts. Besides, the MM and 

LM developed during the course of this work, surpass the 

multipliers generated by Core Generator [10] – a 

commercial program. 

 

3. LUT based Convolver (LC) 
 

The structure of the constant coefficient LUT based 

Convolver (LC) is similar to the sum of products obtained 

employing LUT based multipliers (LM). However to 

optimise the structure of the adders, all additions are 

performed within a single adders block, therefore 

multiplier entities are disregarded. To illustrate savings 

obtained by the use of the LC instead of the sum of the 

LMs, an example is given in Figure 3-1, for 2-tap 

convolution and 88 multipliers.  
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Figure 3-1. The structure of the convolver for Y=  AB0 

+ z
-1
AB1

  
for input and coefficient width K= 8. 

A) LC, B) sum of LM 

Let us consider savings obtained by disregarding the 

multiplier bounds, for LUT output width equal w= 12 and 

LUT address width (shift between the same multiplier 

LUTs) s= 4. For the LM, the adder width within the 

multipliers (Adder0 and Adder 1 in Figure 3-1B) equals 

roughly w. The final adder (Adder2) width equals roughly 



w+s. Therefore total number of 1-bit adders for the sum of 

the LM is equal  

wLM= 3w+s.    (3-1) 

For the LC, three adders of width equal w are 

employed, and therefore the total number of Full / Half 

Adders is equal  

wLC= 3w.    (3-2) 

A penalty factor p, a result of employing the sum of 

LMs instead of the LC, is roughly 

w

s
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ww
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   (3-3) 

It should be also noted that employing the LC rather 

than the sum of LMs reduces the maximum width of the 

adders from roughly w+s to w, and therefore reduces 

maximum propagation time. 

Figure 3-1 shows 2-tap convolver which is a very 

simple example. In general case, the adder network is 

more complicated. Therefore finding an optimal adder 

tree, i.e. the netlist of adders for which every adder has 

only two inputs and the total sum of adder widths is the 

lowest, is a difficult task, which cannot be solved in an 

intuitive way. Consequently, different optimisation 

algorithms, such as an Exhaustive Search, Greedy 

Algorithm, Genetic Programming and Simulated 

Annealing, have been implemented [11, 12]. As a result, 

the Greedy Algorithm should be chosen whenever the 

circuit-generation time is an important factor, otherwise 

the Simulated Annealing is recommended as about 10-

20% adders area reduction is obtained in comparison to 

the Greedy Algorithm [12]. 

The LC employs the sophisticated optimisation 

algorithm for the adder tree. However, the LC requires 

also optimisation of LUT memory, esp. when different 

memory modules can be used (see Figure 2-2). For the 

LM, which requires few LUT memories and rather a small 

adder tree, the exhausted search algorithm has been used. 

Therefore the adder tree and LUT memories together with 

optimisation techniques described in Section 2.2, are 

optimised all together. Unfortunately, for the LC, this 

optimisation technique is impractical to be implemented. 

Consequently for the LC, only local exhausted search 

optimisation is implemented, for which each multiplier 

(the LUT memories and associated adder tree) is optimised 

separately using the exhausted search technique. Then, all 

adder trees associated with every multiplier are merged 

into a single adder tree which is then separately optimised 

by the techniques described in [11, 12]. 

In addition, optimisation techniques characteristic only 

for convolvers are employed.  

 

Similar Coefficients Optimisation (SCO) 

FIR filters are very often implemented as linear phase 

filters, for which the impulse respond is symmetric. By 

exploiting this symmetry, the number of multipliers can be 

nearly halved through mirroring of the signal flow graph 

in the point of symmetry of the coefficients [7]. 

Nevertheless, different symmetries and coefficient 

combinations can be used, especially for 2D filters [13]. 

Therefore, the Automated Tool for generation Convolvers 

in FPGAs (AuToCon) [15] compares all coefficients and 

groups them into similar coefficients blocks. Coefficients 

grouped together can be shifted and negated. Grouped 

inputs are shifted in respect to the coefficient value, and 

then added (subtracted). Finally, a single multiplier is only 

implemented. This method allows for reducing the number 

of multipliers. 

For example, for the filter:  

H(z)= H1(z) + 5z-i
 - 5z-j

 - 10z-k
 + 20zl

  (3-4) 

similar coefficient inputs are added:  

A5= z
i
 - z

j
 - 2zk

 + 4zl
,   (3-5) 

and the final result is:  

H(z) = H1(z) + 5A5.   (3-6) 

In this example the number of multipliers has been 

reduced by 3. 

  

Pipelining Optimisation 

The AuToCon generates a convolver with a 

sophisticated pipelining architecture, for which an 

additional pipelining parameter p defines maximum 

number of logic elements between pipelining registers. 

Figure 3-2a shows an example of a convolver with a 

straightforward pipelining architecture. For this method 

additional pipelining registers are often required to 

compensate different pipelining delays. To reduce this 

drawback, the pipelining optimisation is implemented, for 

which feeding points of arithmetic units are relocated in 

order to reduce unnecessary registers (similar optimisation 

is implemented in [8]). A result of the optimisation is 

shown in Figure 3-2b. It should be noted that the total 

convolver pipelining delay is often reduced by the 

optimisation. This optimisation technique is implemented 

for every architecture described in this paper. 
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Figure 3-2. Implementation of (2 + 5z
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4. Distributed Arithmetic Convolver (DAC) 
 

The idea behind the DAC [4, 5] is to compute the 

convolution in different order than for the LC. The 



following mathematical transformation has been 

employed: 
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where: N- size of the convolution kernel, L- width of the 

input argument a (in bits), hi- i-th coefficient of the 

convolution, ai,j- -j-th bit of the i-th input argument. 

 

In comparison with the LC, the LUT data width of the 

DAC is smaller, as it can be seen from eq. 4-2.  

WDAC=K+log2(N+1)  (4-2a) 

WLC= K+WIN   (4-2b) 

where: WDAC - data width of LUTs for the DAC, WLC - data 

width of LUTs for the LC, WIN - width of the input of the 

LUTs, K- width of the coefficients of the convolution, N- 

the size of the convolution kernel. 
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Figure 4-1. Diagram of the Distributed Arithmetic 

Convolver 

 

The data width of the LUTs is a direct sum for the LC, 

and is a sum of the logarithm of the number of inputs to 

the LUT for the DAC. This is a consequence that input bits 

are at the same significance for the DAC. The lower 

output width of the LUTs causes substantial FPGAs area 

savings, because not only smaller memory modules but 

also shorter adders are required. As a result, the DAC is 

preferable to the LC.  

A diagram of the DAC is shown in Figure 4-1. 

Similarly as for the LM, the size of the LUT memory 

grows rapidly with the size of the convolution kernel N. 

Therefore the LUT memory should be split into two or 

more independent LUTs, and then adders employed. The 

split of the memory should be implemented with respect to 

the cost-relation between different memory modules and 

adders, similarly like for the LM. 

Consequently, in some cases the LUT based Hybrid 

Convolver (LHC) [14] - a hybrid solution of the LM and 

DAC, should be implemented in order to obtain optimum 

memory split. For example, for the 33 convolution, the 

number of multipliers equals N=9=33, for coefficient 

width K=8 and input width L=8, two different memory 

modules should be used: four and five input memory 

blocks (4+5=9), but the 321 memory module occupies 

twice the area of the 161 module. Alternatively, the LHC 

employs the DAC for N=8 and a single LM. The cost for 

the pure DAC is 226 XC4000 CLBs and 209 CLBs for the 

LHC [14]. Therefore 17 CLBs are saved by the use of the 

LHC. 

 

5. Irregular Distributed Arithmetic 

Convolver (IDAC) 
 

The DAC architecture assumes that its structure is 

regular, i.e. the same LUT memory assignments for 

different significance of input bits. However, this need not 

be the case, and bits of different significance can be 

grouped together in the same LUT, in such a way that the 

total LUT data width is the lowest. Therefore more or less 

a combination of the LC and DAC is obtained. This novel, 

introduced by the authors of this paper, design approach is 

denoted as Irregular Distributed Arithmetic Convolver 

(IDAC). An IDAC optimisation algorithm should optimise 

rather the address and data widths of memories and adder 

widths, and the bit-significance of inputs is only an input 

parameter which influences the LUT data widths.  

A greedy algorithm for the IDAC is proposed. This 

algorithm optimises a partial solution, i.e. determines the 

LUT address width and the LUT inputs, according to the 

algorithm given in Listing 5-1. The key issue of this 

algorithm is not only an optimal assignment of inputs to 

the memory but also selecting the optimal size of the 

memory – it should be noted that similarly like for the LM 

(see e.g. Figure 2-2) different memory modules can be 

used. Before the optimisation algorithm is applied, every 

coefficient is shifted to the left until it is made odd. This 

reduces the data width of the LUT as the LSB(s) of an 

even coefficient is fixed to zero. The input bit for which 

the coefficient is shifted is further treated as the input bit 

with significance increased by the number of shifts.  

The algorithm given in Listing 5-1 employs the 

following priority queue: At first input bits with the lowest 

shift si (step S1) are selected. Step S2 tends to allocate 

firstly inputs for which coefficient width is the lowest and 

this step is applied only to input bits at the lowest shift, i.e. 

for input bits selected at step S1. Step S3 optimises sign of 

the output, i.e. allocates at first input bits which 

representation (either positive or two’s complement) 

corresponds with the representation of the LUT output. 

Step S3, however, is of the lowest importance and is 

considered only if two previous steps do not give the best 

solution. 

Listing 5-1. Algorithm choosing the best partial 

solution for the IDAC 

cbest=  (Initial conditions) 

width= 1 

Start of the loop 

S1: Find an unassigned input bit with the lowest shift si 

S2: If two or more input bits are found with the lowest 

shift si, take the input with the lowest coefficient 

width wi. 



S3: If two or more input bits are found in step S2, take 

the one which output sign corresponds with the 

output sign of the LUT. 

S4: Calculate average cost ca per input bit (consider also 

inputs found in the previous iterations of this 

loop) 

S5: If ca<cbest then ca= cbest (the better circuit has been 

found) 

S6: width= width+1 

S7: If width>max_width  

then finish the algorithm and return the circuit with the 

lowest cost cbest 

else go to the start of the loop 

 

where: 

width – address width of the considered IDAC  LUT 

max_width – maximum address width for the considered 

memories (or the number of unassigned input-bits if 

smaller)  

si – shift of the input bit, si= significance of the input bit + shift 

of the coefficient (while making coefficient an odd value) 

wi – width of the coefficient after the coefficient is shifted (made 

odd). 

ca – average cost of the input bit, 

width

adderCostmemoryCost
ca

__ 
  

Cost_memory – cost of the memory module which address width 

is equal or greater than width and data width is obtained 

from output range of the memory. 

Cost_adder – adder cost which width is equal the width of the 

memory data + 1. 

cbest – the lowest average cost per input bit – this cost is 

associated with the best-found circuit. 
 

Step S4 calculates the average cost (per input bit) of 

the memory module and the associated adder. In this step, 

an assumption is made that the width of the adders is equal 

the memory data width plus one. Actual width of the adder 

depends on routing the adders in the adder tree. Step S5 

determines the best circuit, i.e. the circuit for which 

average cost per bit is the lowest. The next steps S6 and S7 

are loop control instructions. An example of circuit 

obtained by this algorithm is given in Section 6. 

The above novel algorithm deals with the problem 

which has not been considered. Probably better 

optimisation techniques can be developed and better 

optimisation criteria in the greedy algorithm selected. 

Furthermore, optimisation techniques, which focus on 

global optimisation, should be implemented, e.g. a 

Simulated Annealing. 

 

6. Implementation Results 
 

To compare implementation results of the DAC and 

IDAC, an example of a filter is given below: 

H(z)= 59 + 183z-1
 + 162z-2

 - 7z-3
 - 48z-4

 + 12z-5
 +  

+ 9z-6
 + 2z-7

.    (6-1) 

The IDAC circuit for this filter is given in Figure 6-1. 

 

FF FF FF FF FF FF FF

-

LUT9 LUT10 LUT11 LUT12 LUT13 LUT14 LUT15

D0 D1 D2 D3 D4 D5 D6 D7

D8

Adder tree

Figure 6-1. Block diagram of the IDAC 

 

Before the algorithm given in Listing 5-1 is applied, 

similar coefficients are first grouped and 

addition/subtraction on grouped inputs implemented. 

Similar coefficients are coefficients which values are 

shifted and/or negated with respect to each other. For the 

given filter, coefficients: -48z-4
 + 12z-5

 are similar, 

therefore associated inputs are shifted and subtracted from 

one another, and a single multiplication is applied (signal 

D8 in Figure 6-1). Then coefficients are shifted until made 

odd. Consequently after shifting the coefficient 162, a 

coefficient 81 with shift equals 1 is obtained. The final 

coefficient values are shown in Table 6-1 in row 2 (coef).  

According to the algorithm given in Listing 5-1, input 

D6 (coef=9), then input D3 (coef=-7), input D0 (coeff= 

59) and finally input D1 (coeff= 183) are selected. 

According to the given cost of memories and adders, the 

lowest average cost per coefficient is obtained for 4-input 

RAM (161), therefore the next input bits are grouped to 

the next DA-LUTs. It should be noted that input D7 for 

which coefficient is equal a power of 2 is fed directly to 

the adder tree. 

 

Input D0 D1 D2 D3 D6 D7 D8 

Coef 59 183 81 -7 9 1 3 

Bit 0 9,2 9,3  9,1 9,0   

Bit 1 10,2 11,0 10,3 10,1 10,0 D  

Bit 2 12,0 12, 2 12,1 11,3 11,2 I 11,1 

Bit 3 13,2 14,0 13,3 13,1 13,0 R 12,3 

Bit 4   14,2   E 14,1 

Bit 5      C 14,3 

Bit 6      T 15,0 

Bit 7       15,1 

Bit 8       15,2 

Table 6-1. IDA-LUT assignment for different inputs 

bits (compare with Figure 6-1) 

 

The implementation results for the filter in eq. 6-1 are 

given in Table 6-2. CORE Generator [10] developed by 

the Xilinx Inc. generates the circuit employing (Parallel) 



Distributed Arithmetic Convolver (DAC). The AuToCon 

generates the circuit employing the IDAC for which two 

different pipelining options are given in Table 6-2. For 

p=, pipelining is not implemented; for p= 1, pipelining 

flip-flops are inserted after every logic cell. It can be seen 

from Table 6-2 that the IDAC significantly outperforms 

the DAC, which corresponds with the proposal of this 

paper.  

The architecture of the IDAC is irregular in 

comparison the DAC, therefore it might seem that this 

would cause a rapid increase of the minimal clock period 

T. Nevertheless it is not the case. In some cases (e.g. in 

Table 6-1) the IDAC outperforms the DAC even when the 

minimal period is only considered. This can be explained 

by the fact that a lower area circuit can be better placed 

and routed in a FPGA.  

 

Circuit # 161 LUTs # FFs T [ns] 

1) Core Generator 169 205 9.2 

2) AuToCon p= 125 28 28.4 

3) AuToCon p=1 126 179 8.7 

Table 6-1. Implementation results for XC4005PC84-09 

for different filter options 

 

7. Conclusions and suggestions for further 

work 
 

This paper proposes a novel architectural solution for a 

convolver: the Irregular Distributed Arithmetic Convolver 

(IDAC). The IDAC improves the DAC by introducing 

irregularity, which makes possible the circuit optimisation. 

The implementation results show that the IDAC allows for 

significant area reduction in comparison to the DAC.  

An IDAC optimisation algorithm has been proposed.  

This algorithm is a greedy algorithm therefore better 

priority queue might be found. Furthermore, a more 

sophisticated optimisation algorithm, such as Simulated 

Annealing (e.g. a similar algorithm as proposed in [11] for 

optimisation of the adder tree) should be proposed, which 

might reduce the IDAC area. Furthermore, this algorithm 

might consider address width reduction (the LAWR and 

DAWR, see the LM). For example, the IDAC LAWR is 

observed in LUT 11 for which only a single address line is 

required for bit 1. 

In Section 2.1 a Multiplierless Multiplication is 

proposed for caring out multiplication. Implementation 

results presented in Section 2.3 shows that the MM 

outperforms the LM. Consequently a similar technique – 

Multiplierless Convolution might be implemented for the 

convolver. This is a suggestion for comparing different 

convolver architectures and selecting the better of them. 

The IDAC architecture is incorporated in the 

Automated Tool generating 2D Convolvers in FPGAs 

(AuToCon) [15]. The AuToCon generates automatically a 

VHDL description of a convolver for different parameters 

such as kernel size and coefficient values, etc. 
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