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Abstract. This paper describes different techniques for implementing in FPGAs 

convolution operation for which coefficients are relatively constant. 

Multiplication is a very basic operation required for convolution, therefore a 

thorough study of different multipliers (Constant Coefficient Multiplier vs. 

Dynamic Constant Coefficient Multiplier vs. Variable Coefficient Multiplier), 

their hardware efficiency and dynamic change of the coefficient are described. 

Further, different optimisation techniques such as grouping similar coefficients, 

pipelining optimisation and sharing a common circuit required for dynamic 

change of coefficients are described. 

1 Introduction 
 

An N-tap convolution (FIR filter) can be expressed by an arithmetic sum of products: 
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where: y(i), x(i) and h(i) represent response, input at the time i and the convolution 

coefficients, respectively. 

Multiplication is the most complex operation in the convolver, and several 

techniques have been adopted to perform it more efficiently. First at all, coefficient 

values are usually constant, therefore the values of the coefficient can be built-in the 

circuit, this solution is further denoted as a Constant Coefficient Multiplier (KCMs). 

The KCM occupies 1723% on average or 2941% on maximum [1], area of a fully 

functional, Variable Coefficient Multiplier (VCM). Consequently, the KCM should 

be implemented whenever the coefficient values are constant. Alternatively, when 

coefficients are changed infrequently, a part of the FPGA can be reconfigured in order 

to change the coefficient. A FPGA can be reconfigured in time of a few milliseconds, 

nevertheless a new multiplier circuit must be redesign and re-implemented, which is 

much more time consuming than the FPGA reconfiguration. Therefore, this approach 

can be practically adopted provided that only a finite number of coefficient values are 

allowed. In this case every coefficient value has a separate pre-implemented entry 

which can be quickly download into the FPGA.  

FPGAs implement logic cells as a Look Up Table (LUT) memory, therefore the 

inherent way of performing multiplication seems the LUT based Multiplication (LM) 

[2, 3] where the value of the coefficient is coded into the contents of the LUT 



memory. The coefficient change can be obtained by a proper sequence of writes into 

the LUT memory [1, 4]. This multiplication technique allows for quick change of the 

coefficient and is further denoted as Dynamic Constant Coefficient Multiplier 

(DKCM). 

The convolver is usually implemented employing multipliers and finally the 

adders. Nevertheless, disregarding the multipliers entities causes a substantial 

hardware savings, therefore the convolution operation should not be considered as a 

separated sum of delayed products. In the case when dynamic change of coefficients 

is implemented the circuit optimisation is even more complicated as some blocks 

(RAM programming unit or address multiplexers) can be shared by all multipliers. 

This causes substantial hardware savings, however causes that much more idle (RAM 

programming) clock cycles have to be inserted. In conclusion, this paper studies 

different options of convolvers especially when dynamic change of the coefficients is 

required. 

There are also alternative techniques performing convolution operation which are 

beyond the scope of this paper basically because they are typical only for the constant 

coefficient option. First of them is Distributed Arithmetic Convolver (DAC) [5, 6]. 

The DAC similarly like the LM employs LUT memory however the convolution is 

carried out in a bit-plane order. Consequently all inputs to the DAC LUTs are at the 

same bit-significance and therefore the width of the LUT data bus is smaller. The 

LUTs contents of the DAC are obtained in a more sophisticated way than for the LM. 

Therefore, in practice, for the DAC it is prohibitively difficult to produce a proper 

LUT write sequence inside the FPGA circuit therefore the DKCM should be used.  

The second technique is Multiplierless Convolution [9] which is carried out in a 

similar way as for the Multiplierless Multiplication (MM) which is described in 

Section 2.1. However for the Multiplierless Convolution, a more complex 

substructure sharing algorithm is required in comparison to the MM.  

2. Constant Coefficient Multipliers (KCMs) 

2.1 Multiplierless Multiplication (MM) 

The KCM is usually implemented in a multiplierless fashion by using only hardwired 

shifts and adders from the binary representation of the multiplicand. For example, A 

multiplied by B= 14= 11102 can be implemented as (A<<1)+(A<<2)+(A<<3), 

where ‘<<’ denotes a shift to the left.  

There are optimisation techniques described below, which attempts to reduce the area 

of the MM. Canonic Sign Digit (CSD) [7, 8] representation attempts to reduce the 

number of non-zero digits. The CSD representation is a signed power-of-two 

representation where each of the bits is in the set { 1,1,0 } (0 – no operation, 1 – 

addition, 1  – subtraction). The modified conversion algorithm proposed in [3] has 

been implemented hereby, for this algorithm the digit 1  is introduced only when the 

total number of non-zero symbols is reduced.  

Substructure sharing (SS) [9] is another optimisation technique implemented in this 

paper. For example, multiplication by 27=110112 can be implemented by the use of 



an intermediate variable tmp, as it is shown in the following equations: tmp= a + 

(a<<1), and 27a= tmp + (tmp<<3). It should be noted that the SS area-reduction is 

implemented on the CSD. 

2.2 LUT based Multiplier (LM) 

In FPGAs, a multiplication can be carried out employing Look-up-table (LUT) based 

multiplication (LM). In order to reduce the LUT memory size the input argument is 

split and then a tree of adders is used [2, 3, 5]. An example of this is given in Figure 

2-1. In addition, optimisation techniques such as LSBs Address Width Reduction 

(LAWR), Don’t-care Address Width Reduction (DAWR), Memory Sharing (MS) 

have been implemented [3]. 
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Fig. 2-1. Look-up table based multiplication for 8-bit wide coefficient 

Figure 2-1 shows a very simple example for which input is 8 bit wide, therefore 

the split of the multiplication argument is rather intuitively selected to be 4+4= 8, as 

FPGAs incorporate mostly 161 LUTs. In general case, optimal splitting of the input 

argument is much more complicated [3]. Besides Virtex family [11] incorporates not 

only small distributed memory but also several large BlockSelectRAM (BSR) which 

can be configured for different data bus width: 4k1, 2k2, 1k4, 5128, 25616. 

The area in silicon, occupied by a BSR is equivalent to roughly 16 Virtex CLBs or 64 

LEs (a Logic Element (LE) is equivalent to a single 161 LUT). However the actual 

cost (area) of these memories differs with respect to free FPGA resources. For 

example, a design does not implement any BSRs but uses all available CLBs, 

therefore it is recommended to allocate more logic into the BSRs. 
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Fig. 2.2. A LM for input and coefficient width equal 14 



In order to find an optimal LM architecture, an exhaustive search algorithm (with 

some obvious simplifications) has been implemented in [3] for which BSRs together 

with distributed RAMs and adders were combined and the best circuit taken. In order 

to illustrate considered architectures, an example of the LM for input and coefficient 

width equal 14 is shown in Figure 2-2. 

2.3. Comparison of the KCMs 

In Section 2.1 and 2.2 two different multiplication techniques have been presented, 

and therefore a question arises which of them is more hardware efficient. The 

statistical cost-relation between the MM and LM for XC4000 is shown in Figure 2-3. 

A general conclusion can be drawn from Figure 2-3. The MM optimisation techniques 

(CSD and SS) are more and more efficient with the increase of width K. Therefore for 

greater K, the MM is getting more and more attractive in comparison to the LM.  
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Fig. 2-3. Relation between average area of XC4000 occupied by the LM and MM. Results for 

the different input width K (input range 02K-1) and coefficient values 12K-1 

3 Dynamic Constant Coefficient Multiplier (DKCM) 

3.1 Concept 

The DKCM [1] (or self-configurable binary multiplier [4]) is the LUT based 

multiplier for which ROMs are replaced by RAMs. The idea behind the dynamic 

change of the coefficient is to properly change the contents of the memories. This, 

however, requires an additional RAM Programming Unit (RPU) which feeds RAM 

memory with proper address and data sequence while changing coefficient value. An 

example of the DKCM is shown in Figure 3-1. It should be noted that this example is 

equivalent to the KCM given in Figure 2-1. 
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Fig. 3-1. An example of the DKCM for input data and coefficient width equal 8 

3.2 Comparison of the KCM, DKCM and VCM 

The KCM can be implemented using either the LM or MM (see Section 2) and the 

MM is getting more and more attractive as the coefficient width increases. 

Furthermore, even the LM can employ advance optimisation techniques which are 

suitable only for the KCM [1]. The KCM architecture varies significantly for different 

coefficients, which causes a great difference in area occupied. Therefore, to compare 

the DKCM with the corresponding KCMs, two different statistical costs of the KCM 

can be used: average and maximum area occupied by a KCM for a given coefficient 

range (usually 12
K
-1).  
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Fig. 3-2. Area for Xilinx XC4000, occupied by: the DKCM-T, maximum area of the 

KCM-LM and KCM (the best architecture of the MM or LM) and average area for the 

KCM. The input range 02
K
-1 and the coefficient range 12

K
-1 



The comparison of the KCM and DKCM is given in Figure 3-2. For small values 

of K, area occupied by the DKCM is much greater than for the KCMs due to the 

strong influence of the RPU; on Figure 3-2 the cost of the RPU is illustrated as the 

difference between DKCM-T (multiplexing in tri-state buffers) and maximum cost of 

the KCM-LM. As K increases, the relative cost of the RPU decreases, and additional 

cost of the DKCM over the KCM is related rather to the comparison strategy (the 

average or maximum cost of the KCM). 

The VCM is a fully functional multiplier, usually implemented using AND-gates and 

adders [2], for which a coefficient-change penalty is not observed. The drawback of 

the VCM, as can be seen in Figure 3-3, is its large cost in comparison with the 

DKCM. For small multiplier width K, however, the cost of the DKCM is dominated 

by the RPU, therefore the VCM is recommended.  
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Fig. 3-3. Area (Xilinx XC4000) for the DKCM-T and VCM for different K 

Figure 3-3 presents the best results for the DKCM as in real applications the 

DKCM requires RAMs programming (idle) cycles which decrease the design 

throughput. Consequently, design density D, which is described usually as: 

TA
D




1 ,    (3-1) 

decreases as follows [13]: 
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where: D, A, T – functional density, area and critical delay respectively; r- number of 

reconfiguration cycles, e.g. r=16 for 161 LUT RAMs; n- number of 

execution cycles between two consecutive reconfigurations. 

Comparing Figure 3-3 and eq. 3-2, a conclusion can be drawn that the DKCM should 

be used for n>r (see [1]), which is the case for most FIR filters, as the coefficients 

change occurs relatively seldom.  

Recently, Xilinx Co. has introduced dedicated 18 bit  18 bit fully functional 

multipliers to Virtex II family. Therefore it might seem that the VCM should be 

employed all the time. Nevertheless the number of dedicated multipliers is limited to 

4 for XC2V40 to 192 for XC2V10000, so in a great number of designs the number of 



dedicated multipliers is still insufficient, and therefore the standard DKCM or KCM 

should be still considered. 

4 Constant Coefficient LUT based Convolver (KLC) 
The structure of the Constant Coefficient LUT based Convolver (KLC) is similar to 

the sum of products obtained employing LUT based multipliers (LM). However to 

optimise the structure of the adders, all additions are performed within a single adders 

block, therefore multiplier entities are disregarded. To illustrate savings obtained by 

the use of the KLC instead of the sum of the LMs, an example is given in Figure 4-1, 

for 2-taps convolution and 88 multipliers.  
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Fig. 4-1. The structure of the convolver for Y= AB0 + z-1AB1
  for input and coefficient width 

K= 8. A) KLC, B) sum of LM 

Figure 4-1 shows 2-tap convolver which is a very simple example. In general case, 

the adder network is more complicated. Therefore finding an optimal adder tree, i.e. 

the netlist of adders for which every adder has only two inputs and the total sum of 

adder widths is the lowest, is a difficult task, which cannot be solved in an intuitive 

way. Consequently, different optimisation algorithms, such as Exhaustive Search, 

Greedy Algorithm, Genetic Programming and Simulated Annealing, have been tested 

[14, 15]. As a result, Greedy Algorithm should be chosen when the circuit generation 

time is an important factor, otherwise Simulated Annealing is recommended as about 

10-20% area reduction of the adders is obtained in comparison to the Greedy 

Algorithm [15]. 

The KLC employs the sophisticated optimisation algorithm for the adder tree. 

However, the KLC requires also optimisation of LUT memory, esp. when different 

memory modules can be used (see Figure 2-2). For the LM which requires few LUT 

memories and rather small adder tree, the exhausted search algorithm has been used. 

Therefore the adder tree and LUT memories are optimised all together. Unfortunately, 

for the KLC, this optimisation technique is impractical to be implemented. 

Consequently for the KLC, only the local exhausted search optimisation is 

implemented, for which each multiplier (the LUT memories and associated adder 

tree) is optimised separately using the exhausted search technique. Then, all adder 



trees associated with each multiplier are merged into a single adder tree which is then 

separately optimised by the techniques described in [14, 15]. 

In addition, optimisation techniques characteristic only for convolvers are 

employed. 

Similar Coefficients Optimisation (SCO) 

FIR filters are very often implemented as the linear phase filters, for which the 

impulse respond is symmetric. By exploiting this symmetry the number of multipliers 

can be nearly halved through mirroring of the signal flow graph in the point of 

symmetry of the coefficients [8]. Nevertheless, different symmetries and coefficient 

combinations can be used, especially for 2D filters [16]. Therefore, the AuToCon 

compares all coefficients and groups them into similar coefficients blocks. 

Coefficients grouped together can be shifted and negated. Grouped inputs are shifted 

in respect to the coefficient value and then added (subtracted). Finally, a single 

multiplier is only implemented. This method allows for reducing the number of 

multipliers. 

For example, for the filter: H(z)= H1(z) + 5z-i
 - 5z-j

 - 10z-k
 + 20zl

 similar coefficient 

inputs are added: A5= z
i
 - z

j
 - 2zk

 + 4zl
, and the final result is: H(z) = H1(z) + 5A5. In 

this example the number of multipliers has been reduced by 3. 

Pipelining Optimization 

The AuToCon generates a convolver with a sophisticated pipelining architecture, for 

which an additional parameter p defines maximum number of logic elements between 

pipelining registers. Figure 4-2a shows an example of a convolver with 

straightforward pipelining architecture. For this method, however, additional 

pipelining registers are often required to compensate different pipelining delays. To 

reduce this drawback, pipelining optimisation is implemented, for which feeding 

points of arithmetic units are relocated in order to reduce unnecessary registers 

(similar optimisation is implemented in [9]). A result of the optimisation is shown in 

Figure 4-2b. It should be noted that the total convolver pipelining delay is often 

reduced in this method. This optimisation technique is implemented for every 

architecture described in this paper. 
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Fig. 4-2. Implementation of (2 + 5z-1 - 5z-2) filter a) without b) with pipelining optimization 



5 Dynamic Constant coefficients LUT based Convolver (DKLC) 
For the DKLC, the value of coefficients can be changed in similar way, as it is in the 

case for the DKCM; rearranging the order of adders (see Figure 4-1) does not 

influence the LUTs programming schedule. For the DKCM, address multiplexing is 

located at the input of each RAM. Similarly for the DKLC, the multiplexer can be 

placed at the input of each multiplier (RAM). Let us denote this option as DKLC-M. 

An alternative solution, denoted as DKLC-C, is to place the multiplexer at the 

convolver input, so the address sequence for programming LUTs will propagate 

through the convolution delay elements to the input of the LUTs. The drawback of 

this method is a more sophisticated control logic. Besides, the number of 

programming cycles increases because of additional propagation time through the 

filter delay elements.  
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Fig. 5-1. Different strategies for dynamic change of coefficients 

 

It should be noted that the LUTs can be programmed either in sequence: a single 

multiplier is programmed at the time, or in parallel, when all multipliers are 

programmed simultaneously. The serial option has longer programming time but a 

single RAM Programming Unit (RPU) is required. The parallel option has short 

programming time but each multiplier requires its own RPU and therefore this option 

occupies more hardware. The choice between the serial and parallel option should be 

taken after considering the average time between coefficients changes in similar way 

as it was described in Section 3.2. 

6 Conclusions 
Convolution is a fundamental operation for digital signal processing, therefore its 

efficient implementation in FPGAs is getting more and more important, as FPGAs are 

recognised as the best solution for high speed data driven algorithms. The significant 

part of this paper describes implementation of different multipliers in FPGA. A 

multiplication is a very basic operation for the convolution and, what is more 

important, can be smoothly described by the average or maximum area for the given 

coefficient and input ranges. The statistic area of the multiplier can be further 

analysed in order to find the best solution for the given parameters of the convolver. 

For example, let’s consider a real time image (8-bit representation) convolution 

for which the coefficient change is required only for different external light conditions 

(e.g. day/night light). In this case the best solution is employing the KCM (or 

Distributed Arithmetic Convolution or Multiplierless Convolution) and reconfiguring 

the FPGA whenever the filter change is required. Another example is a case when 



coefficient change may occur after every image frame, in this case the best solution 

seems the DKCM-C with a single RPU. During image processing often different filter 

length is required e.g. in order to eliminate padding effect at the beginning and end of 

each line. In this case DKCM-M and the RPU associated with each multiplier should 

be considered. 

Design automation is one of the most significant design factor, often more 

important that occupied area. Consequently, an Automated Tool for generating 

Convolvers in FPGAs (AuToCon) has been designed by the authors of this paper. The 

AuToCon can therefore automatically generate an optimised and synthesizable VHDL 

description of the convolver, only input parameters such as: the input width, 

convolution kernel size, coefficient values, pipelining parameter need to be entered. 
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