

HETEROGENEOUS HARDWARE-SOFTWARE PROTOTYPING SYSTEM
FOR PC-CONTROLLED FPGA-BASED DESIGNS

Ernest Jamro, Kazimierz Wiatr

AGH University of Science and Technology
al. Mickiewicza 30, 30-059 Kraków, Poland

(jamro,wiatr)@agh.edu.pl

Abstract. This paper describes the Advanced Programmable System Interface (APSI),
dedicated for an FPGA-based board controlled by a PC. The APSI includes: the dedicated
script language interpreter to efficiently communicate with a FPGA-based board;
heterogeneous hardware-software co-simulation to simulate either PC or hardware
(FPGA-based board) sides; and internal logic state analyzer. The whole APSI system has
been design by the authors and significantly seeds up development cycle for the FPGA-
based designs. The proposed system contains several novel ideas, e.g. the concept
hardware-software co-simulation, internal logic state analyzer with data compression,
clock enable and VHDL-based interface.

Keywords: hardware-software co-design, design systems, simulators, prototyping,
testability, modelling.

1. INTRODUCTION

A great number of prototyping systems e.g. [1, 2] and
tools for hardware-software designs [3, 4] have been
designed. These systems however cannot be used as a
complete system which include: a PC communication
port, dedicated easy-to-use interface, heterogeneous
hardware-software co-simulation, modular design
and internal logic state analyzer.
The APSI employs new script command language
which makes data transfer and other basic
communication with FPGA-based board much easier.
For example a single instruction is employed to
transfer a file to a specified address range on the
FPGA-based board.
The APSI uses modular hardware design. For
example, for an FPGA board connected with the PC
by the Parallel Port (PP), a special module (bridge) is
used to transmit PC-controlled transfers to the On-
Chip Peripheral Bus (OPB) [5] or the Wishbone bus
[6], two separate versions are supported. The bridge
module can be straightforward instantiated in a
system employing the Xilinx Embedded
Development Kit (EDK) which main feature is fast
and easy core connection.
The APSI includes heterogeneous hardware-software
co-simulation, which allows the PC activity to be
smoothly simulated. The user can easily switch
between hardware-execution mode, when the script
interpreter communicates with the FPGA-based
board, and hardware-simulation mode, when the
script interpreter communicates with a VHDL
simulator. Consequently the user need not write long

stimulus to simulate the PC-side activity. This is a
very important feature as the PC often plays a key
role in the whole system.
Similar systems have been built but neither of them is
a complete system. Most systems concentrate on
hardware-software co-simulation [2, 7, 8] but they
assume that hardware and software is on the same
platform. The presented system assumes that some
procedures are processed on the PC and the result of
the PC-side activity is generated directly in the PC
(in the original platform). Other procedures are
processed on the FPGA-based board and therefore
hardware description language, e.g. VHDL simulator
is used. The key issue of the proposed system is the
communication between the script interpreter and the
VHDL simulator.
The simulation is a very important part of design
process. Nevertheless often the simulation process
takes too much time, the hardware model is not
available or not complete, timing conditions are not
met (or even not simulated) or great many other
unpredictable effects occur, which cause that the real
system does not function properly. In this case a
logic state analyzer is often the only solution to trace
the error. An external one is often the only option e.g.
was used in [1]. The external logic state analyzer has
several disadvantages over the internal one. It can
trace only external signals, consequently the internal
signals are often probed (driven the a external pin)
and this caused that only a limited number (e.g. only
10-20 [1]) of signals can be probed simultaneously.
Consequently to view different signals, the

incremental probe routing had to be repeated and this
was time consuming [1].
Xilinx Inc. also provides the internal logic state
analyzer denoted as ChipScope [9]. ChipScope is a
commercial tool which uses its own interface and
communication ports. This experiences several
drawbacks: the communication port may not be
available in the tested board and the capture moment
cannot be easily synchronized with the system
activity, as it is the case for the proposed Logic
Analyser for Reconfigurable Computing Systems
(LA_RCS). The LA_RCS has several additional
advantages over the ChipScope especially for the
system prototyping, e.g. uses a VHDL simulator to
view the captured signals and therefore can be easily
integrated with the simulator, incorporates Run-
Length Coding (RLC) capture data compression,
which significantly increase the number of recorded
samples (the internal memory size is very limited),
uses advanced clock enable logic, which allows to
capture only selected samples, e.g. active bus cycles,
or bus cycles that address a specified device.

2. THE APSI INTERFACE

The main part of the described system is the script
interpreter: the program apsi.exe which acts
according to a script command file. The APSI system
and its documentation are freely available at [10],
therefore hereby only a few script commands will be
enumerated, in order to illustrate capabilities of the
APSI:

config file_name- configure the FPGA with the
configuration file file_name.
readblock file_name adr_start adr_stop- read block
from the address adr_start to adr_stop. The read data
are written to the file file_name.
readbyte address – read a single byte from the
address address. The read value updates a status
registers and is displayed in the program console.
sleep integer – suspend the program execution for
integer milliseconds.
run command – run the DOS command command,
e.g. execute another script file when the command is:
apsi.exe script_file.
goto label – go to label (change program flow).
loop integer label – go to label (integer-1) times.
waitbit0 bit_mask address – wait until the data read
from address satisfies the bit_mask condition.
gobit1 bit_mask label – go to label if the status
register satisfies the bit_mask condition.
go> integer label – go to label when the status
register is greater than integer.
stat+= integer – add integer to the status register.
stat=>m integer – write the status register to the
internal program memory at address integer.
filecomp file1 file2 – compare the contents of two
files.

The script commands allow advance communication
between the PC and FPGA-based boards. It is
relatively easy to configure FPGA and write/read
internal/external memory. Nevertheless the program
apsi.exe allows to execute much more sophisticated
commands e.g. to control a loop, conditional branch
or postpone program activity (sleep). One of the most
important commands is waitbit0 (waitbit1) which
reads the memory until the bit-mask condition is met.
This command can be used e.g. to wait until a receive
/ transmit control register satisfies a specified bit
condition (the write buffer is full), etc. Another very
useful command is filecomp which compares two
files and can be used e.g. to check if transmitted and
received data are the same, e.g. to check whether the
transfer between PC and FPGA-based board is
correct.
It should be noted that the proposed script language
has limited resources in comparison to e.g. C++
language. Therefore some designs may require a
more sophisticated language to be used. Fortunately,
the program apsi.exe was written in C++ and
therefore new-sophisticated functions can be added
directly in the C++. The C++ source code of the
program apsi.exe consists of two classes: the first
one, denoted as LowLevel, communicates with the
FPAG-based board using very basic commands:
readbyte, readblock, etc. The second class reads the
script commands and translates them into the basic
commands used in the class LowLevel. Consequently
a user can easily refer to the LowLewel functions to
write own sophisticated commands directly in C++.

2.1. Modular Design

Complex designs require a bus standard to be
established in order to easily connect separate
modules. Two different bus standards are available in
the APSI: Wishbone [11] and On-chip Peripheral Bus
(OPB) [12]. The OPB is preferred as designed
modules can be directly added to the Xilinx
Embedded Development Kit (EDK) system, which
was developed to speed-up modular designs. Another
advantage of OPB and EDK designs is the soft-
processor MicroBlaze (provided by Xilinx Inc.) and
PowerPC processor (PowerPC hard-macro is
incorporated only in the Xilinx Virtex II Pro) which
are provided together with the EDK and are OPB-
compatible.
 The program apsi.exe communicates with a
hardware module incorporated inside the FPGA. This
module, denoted as opb_epp for the OPB or epp for
the Wishbone bus, is a bridge between the Parallel
Port (PP) mode EPP and OPB (Wishbone). The
module opb_epp (epp) is a master device which
makes core connection much easier and does not
requires a microprocessor to master data transfers.
Besides the module opb_epp can be used instead of

the microprocessor. For example, the UART module
opb_uartlite can be tested by opb_epp instead of the
microprocessor. This kind of test may give better
result as commands are written directly in the PC
(APSI script file or in the C++ compiler) and every
OPB communication is recorded in the PC. The
drawback of this method is a relatively slow transfer
rate on the Parallel Port (PP) in comparison to the
system bus and therefore fast cores cannot be tested
in this way. It should be noted that the PP is only an
example of the communication port and another
interface e.g. UART, USB, PCI can be adopted in a
similar way.

3. APSI SIMULATION MODE

 The APSI plays a key role in the system therefore
has to be taken into account while the whole system
is simulated.
The novel heterogeneous simulation system included
in the APSI consists of two parts:
1) The APSI script language interpreter (apsi.exe)
which has been modified for the heterogeneous
simulation.
2) The VHDL testbench module: epp_model which
emulates the PP mode EPP and the APSI system.

Adding the new script command: vhdlsim changes
the APSI script interpreter mode. After the command
vhdlsim is executed, the script interpreter does not
refer to the hardware any longer, but writes every
transfer to a special binary file denoted as apsi.tst.
This file format consists essentially of tree basic
instructions:
1) write a single address byte
2) write a single data byte
3) read a single data byte.

It should be noted that adapting the APSI to
incorporate heterogeneous simulation was rather
simple, only the above three basic instructions has
been modified to write data to file apsi.tst rather than
to send them to the PP.
After the script interpreter generates the file apsi.tst,
the next step is to simulate the whole system in a
VHDL simulator. Before the simulation is started the
VHDL module epp_model should be instantiated into
the top-level simulation file. The epp_model should
be instantiated at the place where the real PP is
connected. This is illustrated in Fig 1.

system (FPGA chip to be simulated)

opb_epp

Micro-
Blaze

opb_sram sram_
model

epp_
model

OPB Parallel Port
(Communication
port with a PC

External
SRAM
memory

Fig. 1. An example of simulation block diagram

During the VHDL-simulation, all signals can be
traced, as it is the case for a standard simulation, the
epp_model drives the PP signals similarly as if the
real PP was connected to the system. Besides during
simulation, the epp_model writes the data read from
the PP to the file apsi.out.
The simulation results can be analyzed directly by
tracing simulation signals or by apsi.exe which
should be re-executed. This time, however, apsi.exe
reads the file apsi.out and behaves as data
incorporated inside this file are read directly from the
PP. Consequently, each time command: read data is
executed from the script file, apsi.exe reads data from
the file apsi.out rather than from the PP. Summing
up, data read from the file apsi.out are treated as the
real PP data, and the data are e.g. displayed on the
monitor for the command readbyte or written to the
separate file file_name for the command: readblock
file_name.
The whole heterogeneous simulation process is
summarized in Fig. 2.

Script Commands

apsi.exe
script interpreter

apsi.tst
test commands

epp_model.vhd
testbench module

VHDL
simulation

apsi.out
simulation result

apsi.exe
script interpreter

user-friendly
simulation results

Signal tracing

Fig. 2. Heterogeneous simulation scheme

Example 1
Below a simple project example is given. This
example tests communication between the PC and
on-board SRAM memory (e.g. for the system given
in Fig. 1), i.e. compares transmitted (file test.hex) and
received data (file read.hex). The following APSI
script is proposed:

Listing 2. An example of a simple test procedure

vhdlsim // the vhdl-simulation mode
writeblock test.hex 1 400 //transfer the file test.hex to
address: 1 to 400
readblock read.hex 1 400 // read data from address: 1
to 400 and write them to file read.hex
filecomp read.hex test.hex // compare the files
contents

It should be noted that if the command vhdlsim is
removed, apsi.exe will communicated with the PP
and the same procedure will be tested for real. A
similar simulation without the proposed APSI system
would take hours to write the stimulus, trace and
compare the transmitted and received data. In the
case when large amount of data are transmitted, the
standard simulation method cannot be practically
employed.

Conversely, functions writeblock, readblock,
filecomp might be written directly in a VHDL
testbench file. This would however require these
commands to be implemented inside epp_model (in
VHDL) . Furthermore, every change made in the
APSI script file would require a similar change to be
made in the testbench file. It should be noted that the
above functions are rather simple and if the more
sophisticated APSI commands are taken into account
the VHDL-testbench approach could not be adopted.
Furthermore, the APSI can simulate sophisticated PC
programs running directly on the PC, which speed-
ups the simulation process and does not suffer from
compatibility problem. The latest argument is very
important as even if the C-language simulator
(debugger) is included directly to the VHDL
simulation program, C-language compilation may
vary from the original compilation or the C source
code may not be available.

4. INTERNAL LOGIC STATE ANALYZER
(LA_RCS)

4.1. Hardware Interface

The integral part of the APSI system is the Logic
Analyzer for Reconfigurable Computing Systems
(LA_RCS). The LA_RCS is an internal logic state
analyzer which at first captures the signals into
FPGA internal BlockRAMs (BRAMs) and then off-
line transfers them to the PC where they can further
be analyzed.
The LA_RCS can be used as a stand-alone module,
nevertheless the script interpreter supports commands
which controls the LA_RCS. The LA_RCS can be
activated (or even directly triggered) from the script
and this allows for better processes synchronization,
e.g. the LA_RCS is activated just before an observed
data transfer (or other processes executed or triggered
from the script). In this case previous data transfers
wont trigger the LA_RCS. Furthermore, a single key-
press will activate the whole system. For example it
is a common rule to use three separate programs to
configure the FPGA device, activate a logic state
analyzer and to execute data transfers (or other
commands). This is however time consuming and
may not be acceptable in a real-time system. Another
advantage of the described system is that the
LA_RCS can be used several times while a single
script file is executed. For example, for a system
which checks communication between the PC and
the FPGA-based board i.e. transmits and receives the
same data, at first the LA_RCS captures the
transmission process, then the captured data are read
(written to a file on the PC hard disk) and then the
LA_RCS again captures the receive process and
again the captured data are read. The only constrain
of the system is the additional time-slot required to

transmit the captured data from the LA_RCS to the
PC.
The full description of the LA_RCS is given in [10],
here only the most significant features which are
specific for this LA_RCS are enumerated. The
LA_RCS is a VHDL module which should be
instantiated in a design in the same way as other
modules (the LA_RCS is a module available in the
Xilinx EDK). Also the traced signals have to be
defined during design cycle.
The LA_RCS includes two separate interfaces: data-
capture and control. The control interface is used to
set the trigger condition, activate the LA_RCS and to
read the captured data. The control interface is OPB
or Wishbone compatible and should be connected to
opb_epp (OPB), epp (Wishbone) or another module
for communication with the PC.

opb_epp

opb_la

opb_la

bridge tested
device 1

tested
device 2

PC

Fig 3. An example of a prototyping system with two

LA_RCS

An example of a system with two independent
LA_RCS is given in Fig. 3. It should be noted
however that two (or more) independent LA_RCSs
should be used when they are used simultaneously
and independently. Otherwise a bus multiplexer (only
one bus is traced at the time) or a LA_RCS with
greater capture data width (two buses are traced
synchronously) should be employed in order to save
the area.

4.2. Run-Length Coding (RLC) and Clock Enable
Logic (CED)

The LA_RCS has several distinctive features: Run-
Length Coding (RLC) compression of the captured
data and advanced Clock Enable logic for captured
Data (CED). These features are principal as the size
of the build-in BlockRAM is very limited. The RLC
decrements the number of traced signals by 1 bit –
the Most Significant Bit (MSB) is used to indicate
whether the signal value or the signal count is coded.
For example the signal sequence: 1, 2, 2, 3, 3, 3, 4, 4,
4, 4 is encoded as: 01, 02, 80, 03, 81, 04, 82 (hex).
The RLC is a very efficient compression method for
data captured by the logic analyzer as signals usually
do not change on every clock cycles.

For example, in the case when the RLC is not
implemented, tracing the UART module requires a
very large number of samples as UART signals
change infrequently. Alternatively the sampling
frequency might be decreased, however in this case
signal glitches may not be captured.
The RLC compresses the LA_RCS idle states very
efficiently; the same state can be captured millions of
times and this causes that the idle state may dominate
the waveform, and therefore the user cannot
efficiently watch the captures signals. Consequently
in the LA_RCS, the user can adjust the maximum
number of times the same state is repeated and
therefore the waveform reading is much easier. For
example watching UART activity might be difficult
as a signal change is observed infrequently (e.g.
every 1000 clocks). Scaling the watching time might
cause that the signal glitches are invisible.

The LA_RCS incorporates also advanced clock
enable logic (CED) for which the signals are
captured only on selected clock edges. The CED
logic is similar as for the standard trigger logic, the
input signal is compared with a defined (by a control
interface write) pattern and only for the match
condition the input signals are sampled. This allows
e.g. that only active bus cycles, or bus transactions
that refer to a define address space (device) are

captured. The RLC and CED can be combined and
this forms a very powerful tool. The CED logic not
only increases virtually the memory size but also
limits the number of displayed samples.
Consequently the user is not distracted by
insignificant samples, e.g. need not search for
samples which address only a specific device. The
latest reason is essential and in the authors’ opinion
the CED-like logic should be adopted also for other
(also external) logic analyzers and even VHDL
simulators. The functionality of the CED logic is
illustrated in Fig. 4.

Fig. 4 shows OPB cycles for the MicroBlaze
software debugging - the UART is the debugging
interface through which the microprocessor is
controlled. Fig 4a shows a standard simulator and
logic analyzer view for which the CED logic is not
active. Consequently only a single bus transfer can be
viewed at a time. Fig 4b shows only active OPB
cycles – the LA_RCS captures data only when
OPB_xferAck signal is active. This figure provides
much more information than Fig 4a and the designer
can trace the microprocessor state much easier. Fig
4c shows only active OPB cycles that refer to the
UART. This figure allows the designer to concentrate
only on the UART and this simplifies significantly
the design verification.

a)

b)

c)
Fig. 2. The LA_RCS results for different Clock Enable Logic: a) no clock enable logic, b) capture only active

OPB cycles, c) capture only UART data transfers

4.3. Software Interface

The LA_RCS does not incorporate its own GUI. The
APSI script interpreter is only used to control the
hardware and to transfer the captured data from the
LA_RCS to the PC. In order to watch the captured
signals a special VHDL module denoted as la_view
was designed. This module reads the captured data
from the hard disk and displays them using a
standard VHDL simulator. This gives additional
possibilities:
1) The captured signals can be further processed
directly in the VHDL simulator.
2) The captured signals can be used as stimulus for
simulation.
3) The simulation and captured signals can be
automatically compared and differences quickly
detected.

The above features are significant and may form a
very powerful tool. For example, the authors often
use the LA_RCS as a stimulus to check whether the
real signals captured by the LA_RCS causes a
designed module to work correctly during simulation.

5. CONCLUSIONS

This paper presents a complete prototyping system
which includes PC interface, its simulation model
and the internal logic state analyzer. The APSI
system makes the design cycle much quicker, the
simulation and testing time is significantly reduced.
Let us give an example of practical use of the APSI
system. Only 40% of students’ designs functioned
properly before the APSI system was introduced.
Nowadays about 90% of projects are working
properly, furthermore these projects are more
complicated and much better tested.
 The proposed system is under development, now
only the PP interface is supported, however other
communication ports can be adopted to the system.
The system has been thoroughly tested on the XSV

board [13] but other FPGA-based boards can be
straightforward adopted to the APSI system.

REFERENCES

[1]. Krupnova, H., Meurou, V., Barnichon, C., Serra, C.,

Morsi, F., How Fast Is Rapid FPGA-based Prototyping:
Lessons and Challenges from the Digital TV Design
Prototypes Project, Proc. Field-Programmable Logic
FPL 2002 Montpellier, France, Sep. 2-4, pp.26-35.

[2]. Gschwind, M., Salapura, V., Maurer, D., FPGA
Prototyping of a RISC Processor Core for Embedded
Applications, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 9, no. 2, April 2001,
pp. 241-250.

[3]. Goering, R., French EDK startup is fluent in co-design
EE Times, Oct. 31, 2003, www.eedesign.com.

[4]. Dolphin Integration, SUCCESS™ Hardware / Software
cosimulation http://www.dolphin.fr
/medal/success/success_overview.html

[5]. IBM, CoreConnect™ bus architecture, http://www-
3.ibm.com/chips/products/coreconnect/

[6]. OpenCores Org. WISHBONE SoC Interconnection
http://www.opencores.org/wishbone/

[7]. R. Goering French EDK startup is fluent in co-design
EE Times, Oct. 31, 2003, www.eedesign.com.

[8]. Dolphin Integration, SUCCESS™ Hardware / Software
cosimulation http://www.dolphin.fr
/medal/success/success_overview.html

[9]. Xilinx Inc. ChipScope Pro Software and Cores User
Manual,v6.1 August 29 2003.

[10]. Jamro, E. Advanced Programable System Interface,
http://galaxy.uci.agh.edu.pl/~jamro/apsi

[11]. OpenCores Org. WISHBONE SoC Interconnection
http://www.opencores.org/wishbone/

[12]. IBM, CoreConnect™ bus architecture, http://www-
3.ibm.com/chips/products/coreconnect/

[13]. Xess Co. http://www.xess.com/manuals.html

