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Abstract. This paper describes the Advanced Programmable System Interface (APSI), 
dedicated for an FPGA-based board controlled by a PC. The APSI includes: the dedicated 
script language interpreter to efficiently communicate with a FPGA-based board; 
heterogeneous hardware-software co-simulation to simulate either PC or hardware 
(FPGA-based board) sides; and internal logic state analyzer. The whole APSI system has 
been design by the authors and significantly seeds up development cycle for the FPGA-
based designs. The proposed system contains several novel ideas, e.g. the concept 
hardware-software co-simulation, internal logic state analyzer with data compression, 
clock enable and VHDL-based interface. 
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1. INTRODUCTION 

A great number of prototyping systems e.g. [1, 2] and 
tools for hardware-software designs [3, 4] have been 
designed. These systems however cannot be used as a 
complete system which include: a PC communication 
port, dedicated easy-to-use interface, heterogeneous 
hardware-software co-simulation, modular design 
and internal logic state analyzer.  
The APSI employs new script command language 
which makes data transfer and other basic 
communication with FPGA-based board much easier. 
For example a single instruction is employed to 
transfer a file to a specified address range on the 
FPGA-based board.  
The APSI uses modular hardware design. For 
example, for an FPGA board connected with the PC 
by the Parallel Port (PP), a special module (bridge) is 
used to transmit PC-controlled transfers to the On-
Chip Peripheral Bus (OPB) [5] or the Wishbone bus 
[6], two separate versions are supported. The bridge 
module can be straightforward instantiated in a 
system employing the Xilinx Embedded 
Development Kit (EDK) which main feature is fast 
and easy core connection. 
The APSI includes heterogeneous hardware-software 
co-simulation, which allows the PC activity to be 
smoothly simulated. The user can easily switch 
between hardware-execution mode, when the script 
interpreter communicates with the FPGA-based 
board, and hardware-simulation mode, when the 
script interpreter communicates with a VHDL 
simulator. Consequently the user need not write long 

stimulus to simulate the PC-side activity. This is a 
very important feature as the PC often plays a key 
role in the whole system.  
Similar systems have been built but neither of them is 
a complete system. Most systems concentrate on 
hardware-software co-simulation [2, 7, 8] but they 
assume that hardware and software is on the same 
platform. The presented system assumes that some 
procedures are processed on the PC and the result of 
the PC-side activity is generated directly in the PC 
(in the original platform). Other procedures are 
processed on the FPGA-based board and therefore 
hardware description language, e.g. VHDL simulator 
is used. The key issue of the proposed system is the 
communication between the script interpreter and the 
VHDL simulator. 
The simulation is a very important part of design 
process. Nevertheless often the simulation process 
takes too much time, the hardware model is not 
available or not complete, timing conditions are not 
met (or even not simulated) or great many other 
unpredictable effects occur, which cause that the real 
system does not function properly. In this case a 
logic state analyzer is often the only solution to trace 
the error. An external one is often the only option e.g. 
was used in [1]. The external logic state analyzer has 
several disadvantages over the internal one. It can 
trace only external signals, consequently the internal 
signals are often probed (driven the a external pin) 
and this caused that only a limited number (e.g. only 
10-20 [1]) of signals can be probed simultaneously. 
Consequently to view different signals, the 



incremental probe routing had to be repeated and this 
was time consuming [1]. 
Xilinx Inc. also provides the internal logic state 
analyzer denoted as ChipScope [9]. ChipScope is a 
commercial tool which uses its own interface and 
communication ports. This experiences several 
drawbacks: the communication port may not be 
available in the tested board and the capture moment 
cannot be easily synchronized with the system 
activity, as it is the case for the proposed Logic 
Analyser for Reconfigurable Computing Systems 
(LA_RCS). The LA_RCS has several additional 
advantages over the ChipScope especially for the 
system prototyping, e.g. uses a VHDL simulator to 
view the captured signals and therefore can be easily 
integrated with the simulator, incorporates Run-
Length Coding (RLC) capture data compression, 
which significantly increase the number of recorded 
samples (the internal memory size is very limited), 
uses advanced clock enable logic, which allows to 
capture only selected samples, e.g. active bus cycles, 
or bus cycles that address a specified device. 
 
 

2. THE APSI INTERFACE 
 

The main part of the described system is the script 
interpreter: the program apsi.exe which acts 
according to a script command file. The APSI system 
and its documentation are freely available at [10], 
therefore hereby only a few script commands will be 
enumerated, in order to illustrate capabilities of the 
APSI: 
 
config file_name- configure the FPGA with the 
configuration file file_name. 
readblock file_name adr_start adr_stop- read block 
from the address adr_start to adr_stop. The read data 
are written to the file file_name. 
readbyte address – read a single byte from the 
address address. The read value updates a status 
registers and is displayed in the program console. 
sleep integer – suspend the program execution for 
integer milliseconds. 
run command – run the DOS command command, 
e.g. execute another script file when the command is: 
apsi.exe script_file. 
goto label – go to label (change program flow). 
loop integer label – go to label ( integer-1) times. 
waitbit0 bit_mask address – wait until the data read 
from address satisfies the bit_mask condition. 
gobit1 bit_mask label – go to label if the status 
register satisfies the bit_mask condition. 
go> integer label – go to label when the status 
register is greater than integer. 
stat+= integer – add integer to the status register. 
stat=>m integer – write the status register to the 
internal program memory at address integer. 
filecomp file1 file2 – compare the contents of two 
files. 

 
The script commands allow advance communication 
between the PC and FPGA-based boards. It is 
relatively easy to configure FPGA and write/read 
internal/external memory. Nevertheless the program 
apsi.exe allows to execute much more sophisticated 
commands e.g. to control a loop, conditional branch 
or postpone program activity (sleep). One of the most 
important commands is waitbit0 (waitbit1) which 
reads the memory until the bit-mask condition is met. 
This command can be used e.g. to wait until a receive 
/ transmit control register satisfies a specified bit 
condition (the write buffer is full), etc. Another very 
useful command is filecomp which compares two 
files and can be used e.g. to check if transmitted and 
received data are the same, e.g. to check whether the 
transfer between PC and FPGA-based board is 
correct. 
It should be noted that the proposed script language 
has limited resources in comparison to e.g. C++ 
language. Therefore some designs may require a 
more sophisticated language to be used. Fortunately, 
the program apsi.exe was written in C++ and 
therefore new-sophisticated functions can be added 
directly in the C++. The C++ source code of the 
program apsi.exe consists of two classes: the first 
one, denoted as LowLevel, communicates with the 
FPAG-based board using very basic commands: 
readbyte, readblock, etc. The second class reads the 
script commands and translates them into the basic 
commands used in the class LowLevel. Consequently 
a user can easily refer to the LowLewel functions to 
write own sophisticated commands directly in C++. 
 
 
2.1. Modular Design 
 
Complex designs require a bus standard to be 
established in order to easily connect separate 
modules. Two different bus standards are available in 
the APSI: Wishbone [11] and On-chip Peripheral Bus 
(OPB) [12]. The OPB is preferred as designed 
modules can be directly added to the Xilinx 
Embedded Development Kit (EDK) system, which 
was developed to speed-up modular designs. Another 
advantage of OPB and EDK designs is the soft-
processor MicroBlaze (provided by Xilinx Inc.) and 
PowerPC processor (PowerPC hard-macro is 
incorporated only in the Xilinx Virtex II Pro) which 
are provided together with the EDK and are OPB-
compatible. 
 The program apsi.exe communicates with a 
hardware module incorporated inside the FPGA. This 
module, denoted as opb_epp for the OPB or epp for 
the Wishbone bus, is a bridge between the Parallel 
Port (PP) mode EPP and OPB (Wishbone). The 
module opb_epp (epp) is a master device which 
makes core connection much easier and does not 
requires a microprocessor to master data transfers. 
Besides the module opb_epp can be used instead of 



the microprocessor. For example, the UART module 
opb_uartlite can be tested by opb_epp instead of the 
microprocessor. This kind of test may give better 
result as commands are written directly in the PC 
(APSI script file or in the C++ compiler) and every 
OPB communication is recorded in the PC. The 
drawback of this method is a relatively slow transfer 
rate on the Parallel Port (PP) in comparison to the 
system bus and therefore fast cores cannot be tested 
in this way. It should be noted that the PP is only an 
example of the communication port and another 
interface e.g. UART, USB, PCI can be adopted in a 
similar way. 
 
 

3. APSI SIMULATION MODE 
 
 The APSI plays a key role in the system therefore 
has to be taken into account while the whole system 
is simulated.  
The novel heterogeneous simulation system included 
in the APSI consists of two parts: 
1) The APSI script language interpreter (apsi.exe) 
which has been modified for the heterogeneous 
simulation. 
2) The VHDL testbench module: epp_model which 
emulates the PP mode EPP and the APSI system. 
 
Adding the new script command: vhdlsim changes 
the APSI script interpreter mode. After the command 
vhdlsim is executed, the script interpreter does not 
refer to the hardware any longer, but writes every 
transfer to a special binary file denoted as apsi.tst. 
This file format consists essentially of tree basic 
instructions:  
1) write a single address byte  
2) write a single data byte  
3) read a single data byte. 
 
It should be noted that adapting the APSI to 
incorporate heterogeneous simulation was rather 
simple, only the above three basic instructions has 
been modified to write data to file apsi.tst rather than 
to send them to the PP. 
After the script interpreter generates the file apsi.tst, 
the next step is to simulate the whole system in a 
VHDL simulator. Before the simulation is started the 
VHDL module epp_model should be instantiated into 
the top-level simulation file. The epp_model should 
be instantiated at the place where the real PP is 
connected. This is illustrated in Fig 1. 
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Fig. 1. An example of simulation block diagram 

During the VHDL-simulation, all signals can be 
traced, as it is the case for a standard simulation, the 
epp_model drives the PP signals similarly as if the 
real PP was connected to the system. Besides during 
simulation, the epp_model writes the data read from 
the PP to the file apsi.out. 
The simulation results can be analyzed directly by 
tracing simulation signals or by apsi.exe which 
should be re-executed. This time, however, apsi.exe 
reads the file apsi.out and behaves as data 
incorporated inside this file are read directly from the 
PP. Consequently, each time command: read data is 
executed from the script file, apsi.exe reads data from 
the file apsi.out rather than from the PP. Summing 
up, data read from the file apsi.out are treated as the 
real PP data, and the data are e.g. displayed on the 
monitor for the command readbyte or written to the 
separate file file_name for the command: readblock 
file_name. 
The whole heterogeneous simulation process is 
summarized in Fig. 2. 
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Fig. 2. Heterogeneous simulation scheme 
 
Example 1 
Below a simple project example is given. This 
example tests communication between the PC and 
on-board SRAM memory (e.g. for the system given 
in Fig. 1), i.e. compares transmitted (file test.hex) and 
received data (file read.hex). The following APSI 
script is proposed: 
 

Listing 2. An example of a simple test procedure 
 

vhdlsim // the vhdl-simulation mode 
writeblock test.hex 1 400 //transfer the file test.hex to 
address: 1 to 400 
readblock read.hex 1 400 // read data from address: 1 
to 400 and write them to file read.hex 
filecomp read.hex test.hex // compare the files 
contents 
 
It should be noted that if the command vhdlsim is 
removed, apsi.exe will communicated with the PP 
and the same procedure will be tested for real. A 
similar simulation without the proposed APSI system 
would take hours to write the stimulus, trace and 
compare the transmitted and received data. In the 
case when large amount of data are transmitted, the 
standard simulation method cannot be practically 
employed.  
 



Conversely, functions writeblock, readblock, 
filecomp might be written directly in a VHDL 
testbench file. This would however require these 
commands to be implemented inside epp_model (in 
VHDL) . Furthermore, every change made in the 
APSI script file would require a similar change to be 
made in the testbench file. It should be noted that the 
above functions are rather simple and if the more 
sophisticated APSI commands are taken into account 
the VHDL-testbench approach could not be adopted. 
Furthermore, the APSI can simulate sophisticated PC 
programs running directly on the PC, which speed-
ups the simulation process and does not suffer from 
compatibility problem. The latest argument is very 
important as even if the C-language simulator 
(debugger) is included directly to the VHDL 
simulation program, C-language compilation may 
vary from the original compilation or the C source 
code may not be available. 
 
 

4. INTERNAL LOGIC STATE ANALYZER 
(LA_RCS) 

 
4.1. Hardware Interface 
 
The integral part of the APSI system is the Logic 
Analyzer for Reconfigurable Computing Systems 
(LA_RCS). The LA_RCS is an internal logic state 
analyzer which at first captures the signals into 
FPGA internal BlockRAMs (BRAMs) and then off-
line transfers them to the PC where they can further 
be analyzed.  
The LA_RCS can be used as a stand-alone module, 
nevertheless the script interpreter supports commands 
which controls the LA_RCS. The LA_RCS can be 
activated (or even directly triggered) from the script 
and this allows for better processes synchronization, 
e.g. the LA_RCS is activated just before an observed 
data transfer (or other processes executed or triggered 
from the script). In this case previous data transfers 
wont trigger the LA_RCS. Furthermore, a single key-
press will activate the whole system. For example it 
is a common rule to use three separate programs to 
configure the FPGA device, activate a logic state 
analyzer and to execute data transfers (or other 
commands). This is however time consuming and 
may not be acceptable in a real-time system. Another 
advantage of the described system is that the 
LA_RCS can be used several times while a single 
script file is executed. For example, for a system 
which checks communication between the PC and 
the FPGA-based board i.e. transmits and receives the 
same data, at first the LA_RCS captures the 
transmission process, then the captured data are read 
(written to a file on the PC hard disk) and then the 
LA_RCS again captures the receive process and 
again the captured data are read. The only constrain 
of the system is the additional time-slot required to 

transmit the captured data from the LA_RCS to the 
PC. 
The full description of the LA_RCS is given in [10], 
here only the most significant features which are 
specific for this LA_RCS are enumerated. The 
LA_RCS is a VHDL module which should be 
instantiated in a design in the same way as other 
modules (the LA_RCS is a module available in the 
Xilinx EDK). Also the traced signals have to be 
defined during design cycle. 
The LA_RCS includes two separate interfaces: data-
capture and control. The control interface is used to 
set the trigger condition, activate the LA_RCS and to 
read the captured data. The control interface is OPB 
or Wishbone compatible and should be connected to 
opb_epp (OPB), epp (Wishbone) or another module 
for communication with the PC.  
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Fig 3. An example of a prototyping system with two 

LA_RCS  
 
An example of a system with two independent 
LA_RCS is given in Fig. 3. It should be noted 
however that two (or more) independent LA_RCSs 
should be used when they are used simultaneously 
and independently. Otherwise a bus multiplexer (only 
one bus is traced at the time) or a LA_RCS with 
greater capture data width (two buses are traced 
synchronously) should be employed in order to save 
the area. 
 
 
4.2. Run-Length Coding (RLC) and Clock Enable 
Logic (CED) 
 
The LA_RCS has several distinctive features: Run-
Length Coding (RLC) compression of the captured 
data and advanced Clock Enable logic for captured 
Data (CED). These features are principal as the size 
of the build-in BlockRAM is very limited. The RLC 
decrements the number of traced signals by 1 bit – 
the Most Significant Bit (MSB) is used to indicate 
whether the signal value or the signal count is coded.  
For example the signal sequence: 1, 2, 2, 3, 3, 3, 4, 4, 
4, 4 is encoded as: 01, 02, 80, 03, 81, 04, 82 (hex). 
The RLC is a very efficient compression method for 
data captured by the logic analyzer as signals usually 
do not change on every clock cycles.  
 



For example, in the case when the RLC is not 
implemented, tracing the UART module requires a 
very large number of samples as UART signals 
change infrequently. Alternatively the sampling 
frequency might be decreased, however in this case 
signal glitches may not be captured. 
The RLC compresses the LA_RCS idle states very 
efficiently; the same state can be captured millions of 
times and this causes that the idle state may dominate 
the waveform, and therefore the user cannot 
efficiently watch the captures signals. Consequently 
in the LA_RCS, the user can adjust the maximum 
number of times the same state is repeated and 
therefore the waveform reading is much easier. For 
example watching UART activity might be difficult 
as a signal change is observed infrequently (e.g. 
every 1000 clocks). Scaling the watching time might 
cause that the signal glitches are invisible. 
 
The LA_RCS incorporates also advanced clock 
enable logic (CED) for which the signals are 
captured only on selected clock edges. The CED 
logic is similar as for the standard trigger logic, the 
input signal is compared with a defined (by a control 
interface write) pattern and only for the match 
condition the input signals are sampled. This allows 
e.g. that only active bus cycles, or bus transactions 
that refer to a define address space (device) are 

captured. The RLC and CED can be combined and 
this forms a very powerful tool. The CED logic not 
only increases virtually the memory size but also 
limits the number of displayed samples. 
Consequently the user is not distracted by 
insignificant samples, e.g. need not search for 
samples which address only a specific device. The 
latest reason is essential and in the authors’ opinion 
the CED-like logic should be adopted also for other 
(also external) logic analyzers and even VHDL 
simulators. The functionality of the CED logic is 
illustrated in Fig. 4. 
 
Fig. 4 shows OPB cycles for the MicroBlaze 
software debugging  - the UART is the debugging 
interface through which the microprocessor is 
controlled. Fig 4a shows a standard simulator and 
logic analyzer view for which the CED logic is not 
active. Consequently only a single bus transfer can be 
viewed at a time. Fig 4b shows only active OPB 
cycles – the LA_RCS captures data only when 
OPB_xferAck signal is active. This figure provides 
much more information than Fig 4a and the designer 
can trace the microprocessor state much easier. Fig 
4c shows only active OPB cycles that refer to the 
UART. This figure allows the designer to concentrate 
only on the UART and this simplifies significantly 
the design verification. 

 

a)  

b)  



c)  
Fig. 2. The LA_RCS results for different Clock Enable Logic: a) no clock enable logic, b) capture only active 

OPB cycles, c) capture only UART data transfers 
 
 
4.3. Software Interface 
 
The LA_RCS does not incorporate its own GUI. The 
APSI script interpreter is only used to control the 
hardware and to transfer the captured data from the 
LA_RCS to the PC. In order to watch the captured 
signals a special VHDL module denoted as la_view 
was designed. This module reads the captured data 
from the hard disk and displays them using a 
standard VHDL simulator. This gives additional 
possibilities: 
1) The captured signals can be further processed 
directly in the VHDL simulator. 
2) The captured signals can be used as stimulus for 
simulation. 
3) The simulation and captured signals can be 
automatically compared and differences quickly 
detected. 
 
The above features are significant and may form a 
very powerful tool. For example, the authors often 
use the LA_RCS as a stimulus to check whether the 
real signals captured by the LA_RCS causes a 
designed module to work correctly during simulation. 
 
 

5. CONCLUSIONS 
 

This paper presents a complete prototyping system 
which includes PC interface, its simulation model 
and the internal logic state analyzer. The APSI 
system makes the design cycle much quicker, the 
simulation and testing time is significantly reduced. 
Let us give an example of practical use of the APSI 
system. Only 40% of students’ designs functioned 
properly before the APSI system was introduced. 
Nowadays about 90% of projects are working 
properly, furthermore these projects are more 
complicated and much better tested. 
 The proposed system is under development, now 
only the PP interface is supported, however other 
communication ports can be adopted to the system. 
The system has been thoroughly tested on the XSV 

board [13] but other FPGA-based boards can be 
straightforward adopted to the APSI system. 
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