
 1

A NOVEL PARALLEL-SERIAL ARCHITECTURE FOR NEURAL

NETWORKS IMPLEMENTED IN FPGAS

Ernest Jamro Kazimierz Wiatr

AGH University of Sience and Technollogy

al. Mickiewicz 30, 30-051, Poland

Acaddemic Computer Centre CYFRONET

ul. Nawojki 11, Kraków 30-950, Poland

jamro@agh.edu.pl wiatr@agh.edu.pl

Abstract. This article presents a novel Parallel-Serial Architecture for Neural

Networks (PSAN) optimized for digital hardware implementation, especially in

FPGAs. The PSAN architecture is strongly parameterized by two parameters: the

parallel P and serial S. These parameters can be adjusted independently which

allows for substantial circuit optimization. The PSAN is especially efficient for

multi-layer Neural Networks (NN) with different numbers of neurons in each

layer, or for the NNs, for which the required throughput (calculation time) makes

neither fully parallel nor serial architecture suitable. The PSAN was developed

and tested for already trained feed-forward NN.

1 Introduction

The NNs require significant computation power and therefore they are very often

implemented in dedicated hardware. A significant work has been done for analog

implementation of NN e.g. [1, 2]. The NNs implemented in FPGAs require different design

approach, and several hardware implementation has been adopted. One of them is a serial

approach [3] for which only a single multiplication per a neuron is performed at the time.

Another approach denoted as time-multiplexed interconnection was presented in [4]. In this

approach only a single NN layer is implemented in hardware and it is shared by different NN

layers at different time slots. Hardware implementations of NN were presented in e.g. [5, 6, 7,

8], nerveless these papers usually focus on hardware implementation rather than the optimal

NN hardware architecture. They also consider different aspects of NN like e.g. the Activation

Function (AF).

 In this paper only a feed-forward NNs are considered which architecture and weights

are defined (constant) before the implementation process, i.e. at first the NN is trained on the

PC and then the resultant NN is implemented in hardware. The training process might include

finding the optimal number of layers, number of neurons in each layer, data width (number of

bits each data is presented), and the values of weights.

 In this paper several assumptions were made. Firstly, when calculating the sum of

products within each neuron a constant offset value might be implemented without

 2

multiplication. Nevertheless in this paper the offset value employs the multiplier. As a result,

the offset value does not require additional memory block to be stored in.

When counting the number of NN layers the input layer is usually included. In this

paper however the input layer for which no calculation is carried out is not taken into account.

Summing up, the number of layers is defined by the number of hidden layers and the output

layer.

At the first part of this paper the previous work is described. Then the parameters

parallel P and serial S are introduced and examples of circuits for different parameters values

are given. Then the optimal choice of these parameters for different throughput is considered.

At the end, the example of hardware implementation is presented.

2 Standard parallel and serial NN architectures

A block diagram of the fully parallel neuron is given in Fig. 1. The parallel neuron

calculates a basic function - sum of products for which all inputs can be changed at every

clock cycle and the output is valid in the same clock cycle or with a few clock cycles latency

in the case of a pipeline architecture. It should be noted that the Activation Function (AF) is

inserted and will be considered

adder

weight 1

input 1

constant

output

product 1

weight 2

input 2 product 2

weight 3

input 3 product 3

Fig. 1. Block diagram of a fully parallel neuron with 3 inputs

A whole fully-parallel Neural Network (NN) can be built from the parallel neurons presented

in Fig. 1. An example of a single layer is given in the Fig. 2. This layer can be further used to

build a whole multi-layer NN.

neuron 1

input 1

neuron 2

neuron 2

input 2

input 3

output 2
Activation

function

Activation

function 1

Activation

function

output 1

output 3

Fig. 2. A fully-parallel 3-input 3-output neural network layer

 3

The fully-parallel NNs can be relatively easily built however they occupy a great number of

FPGA resources. The number of multipliers and Activation Functions (AFs) required for a

single layer is given in eq. 1.

 nm= nino (1a)

 naf=no (1b)

where: nm – the number of multipliers in a single NN layer, naf – the number of AF modules,

ni – the number of inputs to the NN layer (constant offset included), no – the number of

outputs of the NN layer.

The latest FPGA contains up to 444 multipliers (Xilinx XC2VP100) however according to eq.

1a these resources can be very quickly used even by a relatively small NN. Alternatively the

multipliers can be implemented in general purpose logic – Configurable Logic Blocks

(CLBs), however these resources are also limited. Furthermore, the fully-parallel NN offers a

great computational power which often cannot be fully used as the NN throughput is often

limited by the input/output data transfers from e.g. external memory. Consequently a serial

approach is often adopted. An example of a serial NN is given in Fig. 3 and Fig. 4.

ROM

Accumulator

address

weight

input output product

load

Fig. 3. Block diagram of a single neuron (serial architecture)

For the serial architecture presented e.g. in [3] there is one multiplier and one 2-input adder

(accumulator) per neuron and one activation function (AF) module per layer. The inputs are

fed serially to the neuron and the corresponding weights are stored in the ROMs whose

address is incremented at every clock cycle to match the input and the weight index. In most

cases when the number of neuron weights is relatively small (less than 3264), ROMs can be

effectively implemented inside the Look-Up Table (LUT) memory in CLBs. The number of

resources used is significantly reduced in comparison to the fully-parallel version, however to

compute a single output vector, the ni (ni – number of inputs) clock cycles are required. The

valid neurons’ output are latched in flip-flops (FFs) every ni-th clock cycle, and then time-

multiplexed to provide proper data sequence for the next NN layer. In addition, the AF is

placed at the multiplexer output. Therefore even when the considered NN layer is the last

(output) layer, the multiplexer should be also employed as this reduces the number of the

AFs.

 4

neuron 1

address

neuron 2

neuron 2

input

load
mux

sel

output
Activation

function
(AF)

Fig. 4. Block diagram of a layer consisting of 3 neurons (serial architecture).

In the case of the multi-layer NN, the serial architecture has a severe drawback: the number of

clock cycles required to compute a single output vector is limited by the slowest layer – the

layer with the greatest number of inputs. The quicker NN layers must insert wait states in

order to synchronize with the slowest layer.

Example 1

For a 2 – 6 – 1 NN (2 – inputs (one variable input and the offset), 6 – hidden (offset included),

1 – output node, 6 clock cycles are required to compute each output value, 2 clock cycles for

the first layer and 6 clock cycles for the second layer. The first layer has to insert 4 wait states

until the second layer finishes the calculation process; consequently the first layer is used only

in 33% clock cycles.

The actual hardware utilization is very often specified by the external interface and its

input/output throughput.

Example 2

Let us consider the previous example of the 2 – 6 – 1 NN, and 3-clock cycles external

interface throughput (calculation process should take 3 clock cycles per input/output vector).

The above 3 clock cycles throughput might be defined e.g. by the external memory

throughput: 1- input transfer (2 clock cycles for a read) and 1-output transfer (1-clock cycle

for a write). In this case neither fully parallel (1-clock throughput) nor fully-serial (6-clocks)

solution is optimal.

In Ex. 2, a hybrid architecture might be a better solution, for which the first layer

employs the serial architecture and the second layer employs the fully-parallel architecture. In

this case however the first layer is used in 67% and the second layer only in 33% clock

cycles. Furthermore this hybrid architecture requires activation function (AF) modules to be

placed after every neuron in the first layer.

 5

3 Novel Architecture
3.1 Introduction

In order to resolve the above drawbacks a novel Parallel-Serial Architecture for NN

(PSAN) is proposed. Each layer of the PSAN is defined by two independent parameters:

serial S and parallel P. The serial parameter S defines how many times each neuron is used to

calculate a single output vector for the specified layer, i.e. instead of using S independent

neurons (parallel or serial described in the previous section) a single neuron is used S – times

to calculate S independent outputs within a single output vector. The parallel parameter P

defines the number of multipliers implemented in a single neuron. Consequently the PSAN

architecture is equivalent to the serial architecture [3] when S=1 and P=1. Similarly, if S=1

and P=ni (ni – number of inputs – the size of the input vector with offset included) then the

standard fully-parallel architecture is obtained. For S= no (no – number of outputs) and P=1

only a single multiplier is required for the whole NN layer; and this architecture works in a

similar way as a multiply and accumulate (MAC) processor does.

ROM 1

Accumulator

address

weight 1

input 1

output

product 1

load

ROM 2

weight 2

input 2 product 2

Adder

Fig. 5. Block diagram of a single neuron for PSAN (P=2)

An example of the PSAN for S=1, P=2 for a 6-inputs 3-outputs NN layer is given in Fig. 5

and Fig. 6. This architecture has two multipliers per neuron therefore two inputs has to be

presented at the time. For the first input, at the first clock cycle, input data 1 is presented

(constant value), at the second clock cycle input data 3, at the third clock cycle input data 5.

Similarly the second input is fed with the input value 2, then 4 and 6. Accordingly the ROM 1

stores weights 1, 3, 5, the ROM 2 stores weights 2, 4, 6. The number of clock cycles required

to calculate a single output is equal 3 and is halved in comparison to the serial architecture.

 6

neuron 1

address

neuron 2

neuron 2

input 1

load

mux

sel

output
Activation

function

(AF) input 2

Fig. 6. Block diagram for a single layer 6-inputs, 3-outputs, PSAN (S= 1)

Let us consider another example of the same 6-input and 3-output NN layer but the different

PSAN, P=6 and S=3. For this architecture the whole NN layer contains only a single neuron

given in Fig. 7. The neuron architecture is very similar to the fully-parallel version,

nevertheless the same neuron is used several times to calculate three different output values

for a single output vector. At the first clock cycle, the first output is calculated, therefore the

weights values should be the same as for the first neuron. At the second clock cycle, the

output for the second neuron is calculated and the ROMs should feed the multipliers with the

second neuron weights, etc. This PSAN requires 3 clock cycles to calculate a single output

vector and the input should be stable for that time. The stable input value is an advantage of

this architecture as an additional Parallel In Serial Out (PISO) interface is not required as it is

the case for the serial architecture.

weight 6

weight 2

adder

weight 1

input 1

output

product 1

input 2 product 2

input 6 product 6

ROM 1

ROM 2

ROM 6

address

Fig. 7. The PSAN, S>1 and P=6

Let us consider another more complex example of the same 6-input and 3-output NN

layer for the PSAN: P=2 and S=3. This NN layer contains only a single neuron with 2

multipliers and requires 9 clock cycles to calculate a single output vector. The neuron

architecture is similar as for the PSAN: S=1, P=2 given in Fig. 5. The only difference is the

 7

larger size of the ROMs, which must store values not only for different inputs but also for

different neurons. Each ROM should store 9 different weights (3 for each neuron). The

behavior of the PSAN (S=3, P=2) at different clock cycles is given in Tab. 1. At the first

clock cycles the ROM address should be set to 1 (or to 0 when a real hardware

implementation is considered), the input 1 should be fed with the first input value, the input 2

should be fed with the second input value, the ROM 1 should provide the weight value for the

first neuron and the first input, the ROM 2 should provide the weight value for the first neuron

and the second input, the accumulator Load signal should be 1. The output provides the value

of the third neuron of the previous output vector. The next clock cycles can be continued in

the similar way as it is given in Tab. 1.

clock

(address)

input 1 input 2 ROM 1 ROM 2 Accum.

Load

Output

neuron index neuron index

1 1 2 1 1 1 2 1 3

2 3 4 1 3 1 4 0

3 5 6 1 5 1 6 0

4 1 2 2 1 2 2 1 1

5 3 4 2 3 2 4 0

6 5 6 2 5 2 6 0

7 1 2 3 1 3 2 1 2

8 3 4 3 3 3 4 0

9 5 6 3 5 3 6 0

10 (1) 1 2 1 1 1 2 1 3

Tab. 1. The neuron input index, ROMs output values, Load signal and the output index for PSAN S=3,

P=2

3.2 Choice of parameters S and P

 The above examples explain how the PSAN operates for different parameters S, P.

Now, let us consider the hardware requirements and calculation time for a single NN layer.

The number of clock cycles required to calculate a single output vector, tc is as follows

n
i

C tS
P

n
St 








 (2)

where: ni- the number of inputs (the size of the input vector, the offset is included);

tn – the number of clock cycles required to calculate a single output value for a neuron:

 









P

n
t i

n (2a)

It should be noted that the same calculation time tc can be obtained by several different pairs

of the parameters S and P, i.e. when both parameters S and P are increased (or decreased)

proportionally the calculation time tc is roughly constant. Similarly, the circuit area is roughly

the same as far as the ratio const
P

S
 .

Consequently, the user has to define one of the parameters P or S. When the parameter P is

defined, the number of neurons implemented in hardware Nn is as follows:

 8































n

o
n

t

t

n
N (3)

where t – the user defined number of clock cycles required to calculate a single output vector

(required design throughput).

There is a slight difference between the numbers of clock cycles tc which are taken to

calculate a single output vector and the number of clock cycles t forced by the user and

defined mostly by the input/output interface requirements. When t>tc then idle cycles are

inserted and therefore the circuit efficiency decreases.

The number of address locations of each ROM is the same as the number of clock

cycles tc. Each neuron is used S-times to calculate a single output vector, therefore the

parameter S can be calculated as follows:

 









n

o

N

n
S . (4)

The number of multipliers (and ROMs) inside a single neuron is equal P, consequently the

total number of multipliers Nm within a NN layer is as follows:

 Nm= PNn. (5a)

The only exception from eq. 5a is for the PSAN: S=1 and P=ni for which the fully-parallel

architecture is obtained – this architecture does not require ROM memories.

The number of 2-input adders N2a inside a single neuron is as follows:

 N2a= P. (5b)

The number of multipliers P within a single neuron cannot be greater than the number of

inputs to the neuron:

 inP 1 . (6)

The parameter S shall not be greater than the number of outputs:

 onS 1 . (7)

When selecting optimal values of the parameters P and S, fractions in eq. 2, 3 and 4 should

give integers – rounding functions should be avoided. Besides the number of clock cycles tc

taken by the circuit to calculate a single output vector should be the same as the number of

clock cycles t forced by an user. The forced parameter t is defined mostly by the external

interface or other layers of the same NN. The circuit works correctly when t>tc but this

significantly influences circuit efficiency. In many cases, the external interface of the NN

layer forces not optimal conditions, thus the hardware redundancy R should be defined:

t

nn
NPR oi

n


 (8)

The redundancy R defines the number of implemented multipliers nNP  minus the theoretical

number of required multiplications nino/t carried out in a single clock cycle. Alternative

definition of the redundancy Rt is the total number of additional multiplications carried out by

the NN layer to calculate a single output vector:

oint nntNPtRR  (9)

 9

The redundancy R (eq. 8) should be used when the hardware requirements are considered.

Conversely the total redundancy Rt (eq. 9) is usually employed when the whole circuit

efficiency is taken into account.

By employing eq. 2 and eq. 4, the redundancy Rt can be expressed as followings:

 oi
i

n

o
n

c

t nn
P

n
P

N

n
N

t

t
R 

















)()(. (10)

It can be seen from the above equation that if the fractions no/Nn and ni/P give integers (the

ceiling function is not used) and tc=t the redundancy is equal zero. Consequently when

selecting optimal value of the parameters P and S, the ceiling functions in eq. 10 should be

avoided and no idle cycle (t-tc) should be inserted. In the cases when it is not possible, the

parameters P and S should be selected in such a way that the redundancy Rt is minimized.

 Eq. 10 can be also employed to calculate the redundancy Rt for the fully serial (Nn=1,

P=1) and parallel (P=ni, Nn=no) NN and can be simplified to the following formula:

 oi

c

c
t nn

t

tt
R 


 (11)

In general, eq. 11 can be used to calculate the redundancy Rt for the PSAN for which

Rt(t=tc)= 0, i.e. no/Nn and ni/P give integers. For example, eq. 11 can be used for the circuit

with no redundancy for t= tc, for which the number of clock cycles t increases but the circuit

is not changed.

 In some cases the relative redundancy R1 might be employed for which the

redundancy Rt is scaled by the number of required multiplications nino:

 11 






 oi

n

oi

t

nn

tNP

nn

R
R (12)

The redundancy R1 presents the number of redundant multiplications in comparison to

the number of required multiplications.

In most cases the NN parameters: the number of inputs ni, number of outputs no and

required calculation time t are forced and only the values of the parameters P or S can be

selected. In this case the algorithm given in Listing 1 might be employed in order to find the

optimal Popt, Sopt values.

Listing 1. The algorithm searching for the optimal solution

1) Initialize 









t

n
P i

0 , calculate S0 (from eq. 3 and 4), k=1.

2) Only a single solution (S, P)= (no, 1)?

 if S0>no then S0=no and finish.

3) Initialize the optimal values Popt=P0, Sopt=S0, Ropt=Rt(S0, P0).

4) Next iteration: increment Pk: Pk= Pk+1.

5) Check for the proper Pk range if Pk>ni then finish;

6) Calculate the new Nn,k Sk (from eq. 3 and 4)
7) Eliminate insignificant solutions: if Nn,k=Nn,k-1 then go to point 4

8) Check Sk range: if Sk>no then finish

9) Calculate the redundancy: Rk= Rt(Sk, Pk) (or the implemented circuit efficiency)

10) Select the lowest redundancy circuit:

 if Rk<Ropt then Ropt=Rk, Sopt= Sk, Popt= Pk

11) Go to the next iteration: k= k+1, go to point 4.

 10

The point 1 of the above algorithm initialize parameters S, P to the minimum suitable values.

The point 2 checks whether only a single solution can be found because tnino, and only a

single multiplication is carried out in the NN layer. The most important part of the above

algorithm is the point 7, which eliminates insignificant pairs (P, S). Increasing the parameter

P by 1 often gives a trivial solution which does not reduces the number of clock cycle











P

n
t i

n required to calculate an output value of a single neuron. Consequently only the

number of multipliers P increases but the calculation time tn is not reduced. Furthermore, even

if the value of tn decreases, the number of neurons Nn might not decrease (see eq. 3) and

consequently only the number of multipliers increases.

Example 3

Let us consider a NN layer with the following external interface parameters: ni=5 (offset

included), no=8, t=6.

The following pairs S, P will be now considered:

P0=1, S0=1, tn=5, Nn=8, tc=5, R0=8 - consider

P1=2, S1=2, tn=3, Nn=4, tc=6, R1=8 – consider

P2=3, S2=3, tn=2, Nn=3, tc=6, R2=14 – consider

P3=4, S3=3, tn=2, Nn=3, tc=6, R3=32 – disregard (S3=S2)

P3=5, S3=4, tn=1, Nn=2, tc=4, R3=20 – consider

The optimal circuit is obtained for (P, S)= (1,1) or (2,2). However as it will be explained in

the next sections also pairs (3, 3) and (5, 4) might be considered for the total circuit

optimization.

3.3 Input Output Interface

 The choice of the parameters S and P is determined not only by the circuit redundancy

R, but also by the input output interface. The parameters S, P determine the input output data

sequence and therefore it is beneficial to select the parameters S, P in such the way that the

input output data sequence converter is not required. The converter consists mostly from

Serial-In Parallel-Out (SIPO), Parallel-In Serial-Out (PISO), First-In Multiple-First-Out

(FIMFO) modules, which occupy relatively small area, however in the case when several pair

of (S, P) have similar redundancy R, the choice might be defined by the input output interface.

 For the parameter S greater than 1, the same data should be fed several, non-

consecutive times (see e.g. Tab. 1). Consequently a special module denoted as the First-In

Multiple-First-Out (FIMFO) is employed. The FIMFO is a modification of the First-In First-

Out (FIFO) for which input data are stored inside the FIFO memory as in the standard FIFO.

The only difference is at the output where the same data are fed S-times in ni-packets.

Consequently for the ni=4, S=2 and the input data sequence:

d00, d01, d02, d03, d10, d11, d12, d13, d20 …

the output sequence is as follows:

 d00, d01, d02, d03, d00, d01, d02, d03, d10, d11, d12, d13, d10, d11, d12, d13, d20 …

As a result, the slight modification of the FIFO output logic is required. The output counter

which addresses the FIFO dual-port memory is normally incremented after every output

transfer. For the FIMFO, this counter is also loaded (S-1)-times with the address of the first

data in the sequence, i.e. with the address of data d00, d10, d20, … Summing up, the additional

hardware for the FIMFO in comparison with FIFO is insignificant.

 11

As the result the parameter S>1 requires special interface and is seldom used when the

input interface defines the choice of the optimal parameters S, P. The only exception is for

P=ni for which all inputs should only be stable for S clock cycles – a single input value per

input does not require additional data sequence conversion.

The optimum input output interface is summarized in Tab. 2. For example, for serial input

interface, i.e. every input value is fed serially one at the time, the optimum PSAN solution

(when the input-output interface is only taken into account) is for parameters S=1, P=1, for

which the PSAN does not require input data sequence conversion.

 input output

serial S= 1, P=1 S= no

parallel P= ni S=1

Tab. 2. Input output interface and the choice of the parameters S, P

The input-output interface is often also defined by the activation function (AF) modules

which hardware requirements are considerable. If the AFs are placed at the NN layer outputs,

the serial output interface is preferable as only a single AF module is required. Furthermore,

even if the output interface is parallel, it is still worthy to implement a PISO, a single AF and

a SIPO module in order to reduce the number of AF modules.

3.4 Multi-layer PSAN

Motivation for the PSAN

The primary advantage of the PSAN is that parameters S and P are independent and

can be adjust accordingly to the user needs. This argument is particularly important when

multi-layer NN is considered.

 Let us define a number of nodes of the NN: n0 – the number of inputs to the whole NN

and number of inputs to the first PSAN layer 1 (offset included), nj-1 – the number of outputs

from the layer j; nj – the number of inputs to the layer j+1 (offset included), nL – the number

of outputs from the whole NN and from the last layer L, L- the number of the PSAN layers.

Example 4

Let us consider the example of the 2 – 6 – 1 NN (n0= 2, n1= 6, n2= 1, L=2) already

given for the hybrid serial-parallel NN in example 2. The required calculation time t=3.

Consequently for the first layer: ni1=no= 2, no1=n1-1=5, for P1= 2 employing eq. 3 and 4 we

obtain: Nn1=2, S1= 3. Consequently, employing eq. 9, the redundancy for the first layer is:

Rt1=2. Similar results can be obtained for the second layer and are given in Tab. 3. As a

comparison also the fully parallel and hybrid (serial for the first layer and parallel for the

second layer) results are presented in Tab. 3. It can be seen that the PSAN architecture

performs only 2 redundant multiplications per calculation cycle in comparison to the other

architectures which require 32 (parallel) and 17 (hybrid) redundant multiplications. The

number of required multiplications is 16 per calculation cycle. It should be noted that for the

some multiplications are not nese

Archit. layer 1 layer 2 total

P Nn S Rt P Nn S Rt Rt

PSAN 2 2 3 2 2 1 1 0 2

Parallel 2 5 1 20 6 1 1 12 32

Hibrid 1 5 1 5 6 1 1 12 17

 12

 Tab. 3. Results for the 2 – 6 – 1 NN, for PSAN, parallel and hybrid solution given in example 2.

each NN layer is used in every clock cycle, the circuit has no redundancy R and no

input output data sequence conversion is required. It should be noted that the same example

was considered for the fully serial and parallel NN, and these NNs have significant overheads.

Input output interface

 The interface between different layers of the NN plays the key role when selecting

optimal S, P parameters. When the AF is considered the preferable output interface is serial,

which requires S= no. Nevertheless for S>1 and P<ni input data sequence is more complex

than for other options (FIMFO should be used).

Let us consider now a very basic NN: n=n0=n1=n2=n3, and t= n for which the optimal

architecture is shown in Fig. 8. Two different options are considered: parallel Fig. 8a and

serial Fig. 8b and Fig. 8c. For the serial option data sequence conversion can be implemented

either after the neurons layer (S=1, P=1) (Fig. 8b) or before the neurons layer (S=no, P=ni)

(Fig. 8c). It should be noted that architecture in Fig. 8b is identical with the serial NN.

Both architectures presented in Fig. 8a and Fig. 8c have one idle clock cycle per a calculation

cycle (Rt=ni) as the constant offset value need not be calculated (ni= no+1), this does not

apply to the last layer. Consequently the architecture presented in Fig. 8b is slightly more

efficient in comparison to the architecture presented in Fig. 8c.

In this paper the offset value is calculated in a separate clock cycle, nevertheless offset

can be implemented as accumulator initial value and consequently no additional clock cycle is

required to calculate the offset. The latest approach results that ni=no for Fig. 8 and

consequently Fig. 8b and Fig. 8c are equally efficient.

S= no

P= ni
P S AF S S=1

P=1
P PISO S S=1

P=1
P S AF

S=1

P=1
S P AF S S=1

P=1
P PISO S S=1

P=1
P S AF PISO S PISO S

S=no

P= ni

S AF S SIPO P S=no

P= ni

S AF S SIPO P S=no

P= ni

S S SIPO P

a)

b)

c)

Fig. 8. Block diagram for 3 PSAN layers NN for parallel (P) or serial (S) input output

interface

In the case when the calculation time t is shortened i.e. kt=n (k – an integer), the

above architecture can be straightforward modified. Instead of the PSAN S=no, P=ni, the

PSAN S=n0/k, P=ni should be used. Similarly, the PSAN S=1, P=1 should be replaced with

the PSAN S=1, P=k. Besides instead of a single AF per NN layer, k AFs should be used. The

case is more complicated when n/k does not give an integer. In this case either idle cycles can

be inserted or the input output interface is disregarded when selecting the optimal parameters

S and P.

In the case when the required calculation time t is increased: t=kn, Fig. 8 can also be

straightforward modified. The following blocks should be exchanged: (S=1, P=1) with (S=k,

P=1), and (S=no, P=ni) with (S=no, P=ni/k). Unfortunately both (S=k, P=1) and (S=no,

 13

P=ni/k) require data sequence converter which causes that the input-output interface can be

disregarded when selecting the optimal parameters S, P. It should be noted that the increase of

the required calculation time t does not influence the number of AFs – this architecture still

requires one AF per NN layer.

In more general case when: n0n1n2n3 the input output interface should be

considered individually for each layer and in most cases can be disregarded when selecting

the optimal PSAN architecture.

4 Implementation results
 In order to present the implementation results of the PSAN, the example of the 2-6-1

NN with parallel input is considered. The data width (the number of bits) for different

arithmetic path is as follows:

 input data width: 8

 weight width (ROM width): 8

 multiplier (input  weight = product): 88= 16

 accumulator: 17 (the first layer), 19 (the second layer)

 activation function input: 12 (disregard the LSBs of the accumulator)

 activation function output: 8

The AF is implemented as a simple saturation function given in Fig. 9.

12-bit

12-bit

8-bit

8-bit

Output

Input

Fig. 9. Activation Function (AF) used for the presented implementation results

Tab. 4 presents implementation results for different required calculation time t and the

resultant optimal PSAN architecture. Column 2 and 3 presents the number of 4-input LUTs

and the number of Flip-Flop (FF) used for the input interface. The input interface is used only

for t=4, S=2 and P=1 when the parallel data format is converted to serial (PISO) and the

same input data are fed twice (FIMFO). The data format conversion between the first and the

second PSAN layer is implemented within the first layer. Column 4,5 and 11,12 present the

optimal S and P parameters for the first and the second layer respectable. Column 6 and 17

presents the number of implemented neurons for the first PSAN layer and the total number of

implemented neurons – for the second layer only a single neuron is always implemented.

Column 7, 13 and 18 presents the number of multipliers Nm for the first, second layer and the

total. It should be noted that the multipliers are implemented employing CLB logic – the

built-in multiplier blocks, e.g. in Virtex II, are not used. Column 8, 14 and 19 presents

redundancy R for the first, second layer and the total, respectably. Column 9,10 and 15, 16

and 20, 21 presents the number of 4-input LUTs and the number of flip-flops (FFs) for the

first, second layer and the total, respectably.

 14

 The pipeline architecture is parameterized. The presented implementation results are

presented for an middle pipeline mode (p=2 – pipeline FF are inserted after 2 layers of LUT

logic), consequently the architecture can be further speed-up by increasing the number of FFs

(p=1) or the number of the FF can be reduced by the cost of lower clock frequency (p>2).

The implemented circuit can be clocked with the frequency 100 MHz (for p=2 and Xilinx

Spartan 2E: XC2S300E -pq208 -6), the clock frequency is roughly the same for every t.

1

Input Layer 1 Layer 2 Total

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

t LUT FF S P Nn Nm R LUT FF S P Nm R LUT FF Nn Nm R LUT FF

1 0 0 1 2 5 10 0 895 447 1 6 6 0 553 272 6 16 0 1448 719

2 0 0 2 2 3 6 1 652 341 1 3 3 0 299 154 4 9 1 951 495

3 0 0 3 2 2 4 0.67 445 235 1 2 2 0 209 154 3 6 0.67 654 389

4 0 0 3 2 2 4 1.5 445 235 1 2 2 0.5 209 107 3 6 2 654 342

31 15 2 1 3 3 0.5 387 213 1 2 2 0.5 209 107 4 5 1 627 335

5 0 0 5 2 1 2 0 235 114 1 2 2 0.8 209 107 2 4 0.8 444 221

6 0 0 5 2 1 2 0.33 240 130 1 1 1 0 117 59 2 3 0.33 357 189

7 0 0 5 2 1 2 0.57 240 130 1 1 1 0.14 117 59 2 3 0.71 357 189

8 0 0 5 2 1 2 0.75 240 130 1 1 1 0.25 117 59 2 3 1 357 189

9 0 0 5 2 1 2 0.89 240 130 1 1 1 0.33 117 59 2 3 1.22 357 189

10 0 0 5 1 1 1 0 148 82 1 1 1 0.4 117 59 2 2 0.4 265 141

Tab. 4. Hardware implementation of the 2-6-1 NN for different required calculation time t.

 Two different solutions are considered for the first layer and for t=4: (S, P) = (3,2) and

(2,1). For (S, P) = (3,2) a larger redundancy R is obtained but no additional input data format

converter is required. According to the implementation result it is beneficial to implement the

latter circuit (S, P) = (2,1) for which the input interface is required but the redundancy is

lower.

It can be seen from Tab. 4 for t=1 and t=2 that doubling t does not cause that the

occupied area is halved. This can be explained by the fact that for t=1 different multiplication

method is used: constant multiplication (t=1) instead of the variable multiplication (t>1). It

should be noted that the constant multiplication is not optimized (only VHDL synthesis

optimization is used) and therefore further work is still required for this case. Besides for the

first layer and t=2 the redundancy R>0. In order to better illustrate the circuit efficiency for

different t, Tab. 5 was introduced. The value At presents the product of area (number of 4-

input LUTs) and required calculation time t. In addition the product At was scaled by the

redundancy R1 i.e. (At/(1+R1)) in order to make the circuit efficiency independent from the

redundancy R1. It can be seen from Tab. 5 that for the greater t the circuit efficiency is lower.

This is caused by the additional control circuit which further influence the total circuit area for

lager t (for grater t the active arithmetic area is lower). Besides additional circuit such as

weights ROMs, Activation Functions (AFs) are not scaled proportionally with required

calculation time t.

 15

t Layer 1 Layer 2 Total
At R1 (At)/(1+R1) At R1 (At)/(1+R1) At

1 895 0 895 553 0.00 553 1448

2 1304 0.2 1087 598 0.00 598 1902

3 1335 0.2 1113 627 0.00 627 1962

4 1780 0.6 1113 836 0.33 627 2616

4 1548 0.2 1290 836 0.33 627 2508

5 1175 0 1175 1045 0.67 627 2220

6 1440 0.2 1200 702 0.00 702 2142

7 1680 0.4 1200 819 0.17 702 2499

8 1920 0.6 1200 936 0.33 702 2856

9 2160 0.8 1200 1053 0.50 702 3213

10 1480 0 1480 1170 0.67 702 2650

Tab. 5. At product for different t

For the developed VHDL code of the PSAN, the number of AFs in a single layer is the

lower value of: the number of implemented neurons Nn or the number of parallel outputs. For

the presented example for the first PSAN layer the number of AFs is equal Nn. In general the

minimum number of AFs NAF_min is as follow:











t

n
N o

AF min_ (13)

To obtain the number of AFs NAF equal the minimum number of AF NAF_min, an addition

multiplexer / registers are required in some cases. This additional circuit was not implemented

in the presented implementation results therefore one additional AF was required for t=4, S=

2 and P=1 (see Tab. 4, for the first layer no=5).

 When designing VHDL code of the PSAN layer, the most difficult part of the design

was interface between different NN layers. This interface is strongly parameterized and

therefore it is rather difficult to develop the optimal interface for every parameters set. For

example in Tab. 4 for t=4, S=2 and P=1, the input interface was used which occupied 31 4-

inputs LUTs. A similar result might be obtained when only a 8-bit multiplexer and a modulo

2 counter were employed (the total area would be roughly 10 LUTs).

 The PSAN architecture uses strobe (stb), acknowledge (ack) handshake between

different layers of NN, i.e. a NN layer drives stb signal high when its output data are valid and

in reply, the next NN layer drives ack signal high when it is ready to accept the new input

data. This approach causes that the stb-ack chain might grown very long and the propagation

time would be defined by the control path. As a solution to this problem, FIFO buffers are

inserted inside every PSAN layers (inside the interface logic). This causes that the stb-ack

chain propagated only within a single PSAN layer. The FIFO buffer was also implemented

inside the input interface converter in Tab. 4 for t=4, S=2 and P=1, and this explains

additional area requirements for this circuit. For serial parameter S>1, the FIFO buffer is

replays with the FIMFO (First-In Multiple-First-Out) buffer (as it is the case for the t=4, S=2

and P=1).

5 Conclusions
In this paper a novel Parallel-Serial Architecture for NN (PSAN) has been presented. The

PSAN architecture is especially suitable for already trained feed-forward NN and for different

number of neurons in each layer. One of the most important feature of the SPAN is that it is

 16

strongly parameterized by the parallel P and serial S parameters and therefore different circuit

can be selected for different input parameters. The required calculation time t (the number of

clock cycles a single output vector is calculated) is the most important parameter when

selecting optimal architecture. Usually fully parallel, serial or single multiply and accumulate

(MAC) approaches were implemented. The SPAN broadens significantly the number of

possible solutions by introducing additional circuits which are more or less parallel or serial.

As a result the area occupied by the PSAN may be significantly reduced.

[1] Lasner J., Lehmann T. An analog CMOS chip set neural networks with arbitrary topologies, IEEE Trans.

Neural Networks, 1993, Vol. 4. pp. 441-444

[2] Wilamowski B.M., Jaeger R.C., Kaynak M.O., Neuro-Fuzzy Architecture for CMOS Implementation, IEEE

Trans. on Industrial Electronics, Vol. 46, No. 6, Dec. 1999, pp. 1132-1136

[3] Savran A., Unsal S., Hardware Implementation of a Feedforward Neural Network using FPGAs,

International Conference on Electrical and Electronics Engineering, 3-7 Dec. 2003, Bursa, Turkey,

http://eleco.emo.org.tr/eleco2003/ELECO2003/bsession/B1-17.pdf

[4] Beuchat J.L. Haenni J.O., Sanchez E., Hardware Reconfigurable Neural Networks, International Parallel and

Distributed Processing Symposium, Orlando, Florida, Mar 30 - Apr. 3, 1998,

http://ipdps.eece.unm.edu/1998/raw/haenni.pdf

[5] Ayala J. L., Lomena A. G., Lopez-Vallejo M., Fernandez A. Design of a pipelined hardware architecture for

real-time neural network computations, EEE Midwest Symposium on Circuits and Systems, Tulsa (Oklahoma,

USA), August 2002

[6] Steven A. Guccione and Mario J. Gonzalez, A Neural Network Implementation Using Reconfigurable

Architectures, "More FPGAs", Will Moore and Wayne Luk, Abingdon EE&CS Books, Abingdon, England,

1993, 443-451.

[7] Nordström, T. and B. Svensson, Using and designing massively parallel computers for artificial neural

networks, Journal of Parallel and Distributed Computing, vol. 14, no. 3, pp. 260-285, 1992

[8] Jihan Zhu and Peter Sutton, FPGA Implementations of Neural Networks – a Survey of a Decade of Progress,

in Proceedings of 13th International Conference on Field Programmable Logic and Applications (FPL 2003),

Lisbon, Sep 2003.

