

FPGA IMPLEMENTATION OF THE DYNAMIC HUFFMAN ENCODER

Ernest Jamro, Maciej Wielgosz, Kazimierz Wiatr

AGH University of Science and Technology

al. Mickiewicz 30, 30-051, Poland

Academic Computer Center CYFRONET

ul. Nawojki 11, Kraków 30-950, Poland

email: jamro / wiatr@agh.edu.pl

Abstract: At first part of this paper, the architecture for quasi-static Huffman encoder is

described which main part is Look-Up Table (LUT). In order to reduce the hardware

requirements, the maximum length of the encoded word is limited. This reduces the

compression ratio insignificantly which is proved in this paper. The dynamic encoding is

achieved by a change of the LUT contents and hardware-software co-design approach.

Consequently counting the input words statistics (histogram) and sorting the resultant

histogram is implemented in hardware. The final calculation of the new LUT contents

and controlling the whole system is achieved by the soft-processor MicroBlaze.

Keywords: data compression, adaptive algorithms, signal processing, hardware-software

1. INTRODUCTION

Huffman coding [1] is one of the basic and the most

frequently employed lossless compression method. It

takes advantage of input words statistics. Input

words, which appear more frequently, are assigned to

shorter codes. Conversely words, which occur fewer

times, obtain longer codes. This reduces the total

number of bits necessary to code the whole

information. The Huffman code is based on the input

signal entropy. The entropy limits the maximum

compression ratio.

There are many implementations of Huffman coders

in VLSI technology [2, 3] but they are not optimal

for FPGAs. Many examples of FPGA static Huffman

coders can be found, e.g. [4,5,6,7,8]. They assume

that the signal distribution (histogram) is known prior

the implementation. This kind of algorithms does not

involve any modifications of the coding assignments.

If statistics of input data changes in time, these types

of algorithms results in coding overheads and should

not be employed. This paper proposes dynamic

Huffman encoder, which updates encoding scheme

every (transmit) session.

The design process employs the modular structure.

Several modules compatible with Embedded

Development Kit (EDK) provided by Xilinx Inc. and

On-chip Peripheral Bus provided by IBM [9] were

designed. Besides the EDK provides soft-processor

MicroBlaze which is frequently used in the system to

perform program-driven algorithms, e.g. constructing

the Huffman tree. summing up, construction of the

final system took place in the EDK environment. In

the presented system hardware-software co-design

approach was adopted, i.e. the whole algorithm was

divided into software and hardware part. In the case

when only MicroBlaze is employed, the coding

process would be significantly slowed down.

Conversely, completely hardware approach would

significantly complicate adaptation of Huffman

coding and would increase the FPGA area.

This paper present results of 8-bit input word. Coded

word can be lengthened but it would increase the size

of the employed memory from 2
8
 to 2

n
 locations (n is

a bit-length of a single input word). Currently

available FPGA chips support enough internal

memory for n less than roughly 12. Attempt to

increase n over 12 invokes external memory

utilization and consequently the significant coder

rebuilding.

At the beginning of this paper the proposed

architecture of the static Huffman encoder is

described. The proposed architecture slightly

modifies the original Huffman algorithm, therefore

the compression ratio might be slightly changed,

which is also studied. Then the architecture of the

dynamic Huffman encoder is approached. This

encoder consists of four major parts: 1) quasi-static

Huffman encoder, 2) Histogram module, 3) Sorting

module, 4) soft-processor MicroBlaze. All the above

mentioned parts, except the MicroBlaze, are

dedicated hardware for dynamic Huffman encoder.

2. STATIC HUFFMAN ENCODING

At the beginning the static Huffman encoder will be

described as this encoder is also employed as a part

of the dynamic Huffman coder. The main part of the

static encoder is the Look-Up Table (LUT) memory,

which is addressed by 8-bit input words. The output

of the LUT provides the code (maximum 12-bit) and

length (4-bit) assigned to each input word. Similar

algorithm was employed in [6, 7, 8], but these papers

did not include any information about quality of

obtained compression ratio when the maximum

codeword length is limited.

The Virtex FPGA contains 256x16-bit BRAMs,

therefore in the adopted algorithm each of 256 input

words occupy sixteen bits of the LUT. The output

code is located in twelve LSBs, four MSBs determine

the length of the output code. This coding format

causes some limitation of the coding algorithm. Input

words appearing very rarely can be coded on up to 12

bits. This results in a degradation of the compression

ratio, which will be studied in the next paragraph.

2.1. Adopted coding method and compression ratio

The information Ii of coded word depends on the

input word probability pi as follows [8]:

 Ii= -log2(pi). (1)

The Huffman coding procedure uses the integer

number of bits di for the coded words, and thus the

following is satisfied:

 di<1 - log2(pi) (2)

For the described algorithm, the compression ratio is

maximally degraded in the case when (m+k) bits are

required to code almost all input symbols, where m is

the maximum length of a single coded word (in our

case m = 12); k is the number of additional bits

which are skipped because of the proposed algorithm

constrains. Fortunately, according to eq. 2 (di= m+k)

each input symbol which cannot be efficiently coded

occurs with the probability:

12

1

kmip .

(3)

The number of redundant bits R, required to code a

single n-bit input word (2
n
 is the number of all input

words) stands as follows:

12

)2(

nkmi

n k
pkjR (4)

where: j is the number of symbols which are

correctly coded (mdi), and the assumption is made

that j is a very small number (the worst case

assumption).

It can be calculated from eq. 4 that the largest

redundancy R is obtained for k=1/ln(2)1.44 and

therefore the following is satisfied:

nmnm

R

2

1

2

53.0
1

 (5)

Consequently the worst possible degradation of the

compression ratio in the proposed coding format

(n=8, m=12) is less than roughly 0.066 bit per coded

word. This is a small value that can be accepted. It

should be noted that the worst case was hereby

considered and in the most cases degradation of the

compression ratio is significantly lowered. Even the

theoretical simplifications cause that the given

maximum redundancy R in eq. 5 is greater than the

practical one. Besides, the proposed coding format

(n=8, m=12) in many cases improves the

compression ratio because limiting maximum length

of the coded word also limits size of the code table.

The code table should be also sent to a receiver (at

least at beginning of the transmission) together with

the coded data therefore its size influences the total

compression ratio. Moreover code table for rarely

occurring words does not have to be sent because

input data might be delivered without change to the

receiver, only a specific (m-n)-bit preamble might be

added.

2.2. Architecture of the Static Huffman Coder

The proposed static Huffman encoder denoted as

opb_huff is presented in Fig. 1 and contains two

independent OPB buses (master and slave).

- slave bus is used to receive input data and to

modify LUT contents (used for quasi-static

version)

- master bus is used to transfer out the coded words

The main part of the opb_huff is code table (LUT)

implemented as dual port block RAM (BRAM). As

an input word appears on the address port of the

BRAM, output code word (12 bits) and code-length

(4 bits) can be read from the BRAM output. Then the

code word feeds the module denoted as barrel

shifter. The module barrel shifter concatenates

consecutive variable-length words received from the

BRAM into fixed-length (16-bit) words which can be

further processed (e.g. transmitted). The

concatenation requires bit-alignment of the previous

and the next variable-length words, which involves a

special barrel shifter. This barrel shifter module

contains also registers and accumulators and its detail

description is given in [6].

opb_slave
OPB

BRAM

control and data

formation

8 bit

16 bit

barrel shifter

module

16 bit

FIFO opb_master

OPB

16 bit

16 bit

input

word

12-bit code and 4-bit length

coded word
bram

write

Fig. 1. Opb_huff block diagram – the architecture of

the static Huffman coder

3. DYNAMIC HUFFMAN ENCODER

The above proposed static Huffman encoder can be

also employed as a part of the dynamic Huffman

encoder. Only a new code table must be written to

the BRAM memory in order to change the whole

coding scheme. The static Huffman encoder for

which the contents of the BRAM can be changed is

further denoted as a quasi-static Huffman encoder.

The main problem for the adaptive Huffman encoder

is calculating new BRAM contests at every data

frame. The dynamic Huffman encoder should work

in the real time system therefore the speed is a

critical factor. The dynamic Huffman encoder

consists of three different modules:

1) Histogram – calculates the input data statistics

while a new image or data frame is grabbed to a

buffer (external memory).

2) LUT Contents Calculation module – this

module calculates and updates the new contents

of the BRAM memory.

3) Quasi-static Huffman encoder – this module

was described in Section 2.

It should be noted that these modules can work

independently at the same time using a pipeline

architecture. Consequently, while the histogram

calculates the input data statistics for frame 3,

module 2 calculates the new BRAM contents for

frame 2, and the quasi-static Huffman encoder

encodes frame 1, and so on.

3.1. Histogram Calculation

Histogram calculation is the first stage of code table

generating process. The calculation speed is the

critical criterion so two different methods: software

and hardware of histogram calculation will be

compared. C-language code calculating the

histogram was implemented on the soft-processor

MicroBlaze. This code results in twelve assembler

instructions and takes about 30 clock cycles to

process a single input word (single loop). Such a long

calculation time is unacceptable for real time

systems.

As a result, a hardware counterpart denoted as

opb_hist was designed. This module requires only 1

clock cycle per input word and consists of two

independent OPB bus interfaces.

- DOPB accepts the input data (OPB slave).

- COPB is used to read the calculated histogram and

also to initialize opb_hist internal counters (OPB

slave).

The simplified block diagram of the opb_hist is given

in Fig. 2A. Input data (DataIn) address the BRAM.

Every value of data feeding the opb_hist has its own

memory cell which stores the number of occurrence

of this particular data value. This number is increased

by one for every new occurrence of the data and is

written back to BRAM memory (Din port).

 Adr Din

BRAM

Dout

+1
 Adr0

Dout0

Saturate +1

 Adr1 Din1

Dout1

FF DataIn

DataIn

DOPB

Address

COPB

Dout COPB

B) A)

Fig.2. opb_hist block diagram A) simplified,

B) implemented

The block diagram of the implemented histogram is

given in Fig 2B and is much more complicated in

order to speed up the calculation process. The main

problem was that BRAM read access time is a whole

clock cycle. Consequently a single input data would

require 2 clock cycle: the fist clock cycle for reading

the previous histogram state from the BRAM and the

second cycle for the incrementing previously read

value and writing it back to BRAM at the same

address. Such a long calculation time may be

unacceptable. One of the solution presented in [13] is

to use a local clock with a double frequency. This

causes that some part of the logic has shorter

propagation time limit. Another solution, proposed in

this paper is to use both ports of the dual port

BRAM, for which the first port is used to read the

occurrence count (Dout0 in Fig. 2), and the second

port (Din1) is used to write the incremented count in

the next clock cycle. Both ports are addressed by the

input data DataIn, however the address on the second

port is delayed by one clock cycle in the module FF.

Additional address multiplexer at Adr1 is used to

initialize and read the resultant histogram. The

proposed hardware implementation has several

advantages. First of all it allows fetching new input

data every clock cycle. Secondly reduces the

hardware requirements, MicroBlaze occupies much

more logic than the opb_hist (see Tab. 1 for

comparison).

3.2. Calculating the Huffman tree

The next step is to calculate the new BRAM contents

of the quasi-static Huffman encoder. The main part

of this step is to find out the Huffman tree which

consists of two stages:

1. Finding two the least elements of the histogram

and adding them. In this way a new root of the tree

is created and the previous two are removed.

2. Repeat step one until there are at least two

elements of histogram left

An example of the Huffman tree is given in Fig. 3.

0.4

0.3

0.2

0.1

0.3

0

1

0.6

0

1

0

1 1.0

A (1)

B (00)

C (010)

D (011)

Fig. 3. Example of creating Huffman tree

3.3. Sorting the histogram

The most time consuming operation when calculating

the Huffman tree is finding two least elements of the

histogram. This can be achieved efficiently by at first

sorting the whole histogram (table) and then just

taking out the last two elements from the sorted table.

The new element (sum of the least two elements) is

then properly inserted to the sorted table with respect

to the element value. Consequently at every stage the

table is sorted and therefore finding two least

elements is a trivial task.

While forming a new root of the Huffman tree, a new

element is inserted to the table. Consequently, the

insert-sort algorithm is selected. The insert-sort

algorithm requires N
2
/4 on average and N

2
/2 on

maximum comparison and shift operations; where N

is the number elements in the sorted table. For 8-bit

input data, N=256, so the average number of shift

and comparison operations equals roughly 8000. If a

faster algorithm is used (e.g. quick-sort)

computational time will be shorten to roughly

Nlog2N. In the presented system it would require

roughly 2000 comparisons and shifts. Unfortunately,

the construction of the Huffman tree prefers the

insert-sort. Besides usage of the quick-sort algorithm

results in a more complicated code which might

significantly reduce the algorithm speed-up. At last

but not least, in the case when the sorter is

implemented in hardware, the algorithm simplicity

and sequential-memory access is the key issue.

Summing up, the insert-sort algorithm is the final

choice.

MicroBlaze processor would require a few dozens of

assembler instructions to complete a single

comparison and shift operation. As a result, the

whole sort procedure would take too many clock

cycles. Consequently, the specialized hardware

module denoted as opb_sort has been designed. The

opb_sort contains three independent OPB buses (two

masters and one slave).

- SOPB (slave). This bus is used to control the

opb_sort: write a new word which will be inserted

to the table, write the start address of the table and

the number of already sorted elements in the table.

- MSOPB (master). Fetches data from the input

table.

- MDOPB (master). Sends data to the output table.

The opb_sort inserts properly only a single element

to the already sorted table. Consequently, an external

control machine (e.g. MicroBlaze) is required to

control the opb_sort and to write sequentially new

elements to the opb_sort when the sorter has finished

the previous job. The block diagram of the sorting

system in given in Fig. 4. The opb_sort has access to

both BRAM ports. Such a solution speeds up BRAM

transfers because data can be read and write at the

same time and the sequential addressing is employed

when accessing the memory. Summing up, both a

single comparison and move operations can be

accomplished in every clock cycle.

SOPB

opb_sort

MDOPB MSOPB

Dual port

BRAM

Micro-

Blaze

opb_hist

Fig. 4. A simplified block diagram of the sorting

system

3.4. Calculating the LUT contents

The next step is to calculate the BRAM contents of

the quasi-static Huffman encoder. This algorithm

uses the previously determined Huffman tree and

requires relatively small number of cycles.

Consequently it is implemented on the MicroBlaze.

The most popular implementations of this algorithm

are recurrent. As a result they consume large amount

of heap memory that might not be available in the

system as the heap memory was located in the

internal FPGA memory to speed up the access time.

Consequently, non-recurrent algorithm was adapted

in the presented system.

4. THE WHOLE SYSTEM

In this section the whole system will be introduced

with focus on interconnection and cooperation

between different modules. A diagram of the system

is presented Fig 5.

Fig. 5 contains the following modules (all modules

were designed by the authors of this paper, otherwise

the source of the module is given):

- MicroBlaze soft-processor (module provided by

Xilinx in EDK)

- ilmb_bram_ifctrl – Local Memory Bus (LMB)

controller for MicroBlaze program memory

(module provided by Xilinx in EDK)

- dlmb_bram_ifctrl – Local Memory Bus (LMB)

controller for MicroBlaze data memory (module

provided by Xilinx in EDK)

- bram_1 – MicroBlaze internal program and data

memory (module provided by Xilinx in EDK)

- opb2opb_mb – OPB to OPB bridge with data

width conversion and First-In First-Out (FIFO)

buffer, this module is used to separate the

MicroBlaze and the rest of the modules. The

separation allows for local memory transfers and

reduces propagation time

- opb2opb_dma– converts 32-bit data from SRAM

to 8-bit data to feed opb_hist and opb_huff (8-bit

data length format is accepted by these modules).

- opb_dma_hist – Direct Memory Access – transfers

data from the SRAM memory to opb_hist module.

- opb_dma_huff– Direct Memory Access – transfers

data from the SRAM memory to opb_huff module

- opb_sort – module which conducts sorting

operation

- opb2opb_huff_out– converts 16-bit data from

opb_huff to 32-bit data transferred to opb_sram.

Additional FIFO buffer is used as the SRAM

memory is shared by other modules

- opb_epp – interface between OPB and EPP port.

During testing, the input and output data are

transferred by Parallel Port and APSI system [12]

- opb_sram – interface between OPB and external

SRAM memory

- opb_hist – histogram calculation module

- bram_2 – block memory utilized by opb_sort

module to store data being sorted. When sorting

process is finished bram_2 contains sorted data

- opb_bram_if_ctrl_0 – OPB bus memory controller

(module provided by Xilinx in EDK), enables

access to sorted data (stored in bram_2)

- opb_bram_if_ctrl_1 – OPB bus memory controller

(module provided by Xilinx in EDK), employed to

communicate between bram_2 and opb_sort

modules

- opb_huff – quasi-static Huffman encoder

Fig. 5. EDK screen capture of the whole system

As the Microblaze controls the whole system it is

worthy to enumerate all tasks it performs in sequence

to explain the system operation:

1. Write the new LUT memory contents to the

module opb_huff. The LUT memory contents was

calculate in the previous time-frame.

2. Write control registers of the DMA module:

opb_dma_huff to transfer data from external

memory to Huffman encoder.

3. Read histogram data calculated in the previous

time-frame and assign index to each histogram

data.

4. Write control registers of the DMA module:

opb_dma_hist to transfer data from external

memory to module opb_hist in order to calculate

the histogram.

5. Preliminary sorting (opb_sort employed)

6. Constructing the Huffman tree and calculating the

opb_huff LUT contents for the next time-frame.

5. IMPLEMENTATION RESULTS

The whole Huffman dynamic encoder was built in

EDK environment and contains several modules

compatible with the OPB bus. The encoder was

implemented in XSV board equipped with a Virtex

FPGA XSV800. Input data is read from the external

SRAM memory by the DMA module (opb_dma).

The FPGA area occupied by the designed modules

are given in Tab. 1. These values are approximated

because almost every module is associated with

additional logics which cannot be easily determined,

e.g. OPB bus elements and control logics.

Consequently only the whole system results are

precise.

Tab.1. Implementation results

Moduł # 4-input

LUT

flip-

flops

4-kb

BRAM

opb_huff 378 157 1

opb_hist 62 10 1

opb_sort 283 98 0

MicroBlaze 1139 410 0

The whole

system

3007 1042 13

6. CONCLUSIONS

Modules designed in the presented system (opb_huff,

opb_hist, opb_sort) are compatible with On-chip

Peripheral Bus (OPB) and Xilinx Embedded

Development Kit (EDK). Because the modular

design methodology was adopted, the proposed

system can be relatively easily extended or modified

and the design time was significantly shortened.

Furthermore hardware-software co-design approach

was adopted, which also significantly reduced the

design cycle. The most time-consuming operations:

counting the input words occurrences (histogram)

and sorting the resultant histogram is implemented in

hardware. The final calculating of the new contents

of the LUT memory and controlling the whole

system is achieved by the soft-processor MicroBlaze.

The primary aim of this design: adapting coding

schedule at every frame of the image (512x512

pixels, 25 frames/s) was achieved.

REFERENCES

[1] D.A.Huffman, A method for the construction of

minimum-redundancy codes, In Proc. Inst. Radio

Eng, Vol.40, No.9, pp.1098-1101, Sep. 1952

[2] A. Mukherjee, N. Ranganathan, M. Bassiouni,

Efficient VLSI designs for data transformation of

tree-based codes, IEEE Trans. Circuits and

Systems, Vol.38, pp.306-314, Mar. 1991

[3] H. Park, V. K. Prasanna, Area efficient VLSI

architectures for Huffman coding, IEEE Trans.

Analog and Digital Signal Processing, Vol.40,

pp.568-575, Sep. 1993

[4] Taeyeon Lee and Jaehong Park, Design and

implementation of static Huffman encoding

hardware using a parallel shifting algorithm, IEEE

Transactions on Nuclear Science, Vol. 51, Issue 5,

pp. 2073-2080, October 2004

[5] OpenCores Org. Video compression systems

www.opencores.org

[6] Till Jahnke, Sven Schößler, Kolja Sulimma,

Pipelined Huffman Encoder

with 10 bit Input, 32 bit Output, EDA group of the

Department of Computer Science at the University

of Frankfurt, http://www.sulimma.de

/prak/ss00/projekte/huffman/Huffman.html

[7] S. G. Mathen Wavelet Transform based adaptive

image compression on FPGA, M.Sc. Thesis,

University of Calicut, Calicut, India, 1996,

http://www.ittc.ku.edu/projects/ACS/documents/sa

rin_thesis.pdf

[8] Jari Nikara Parallel Huffman Decoder with an

OPtimize Look Up Table Option on FPGA, Ph.D.

Thesis, Tampere University of Technology, 2004

[9] IBM, CoreConnect™ bus architecture,

http://www-

3.ibm.com/chips/products/coreconnect/

[10] C. E. Shannon, A Mathematical Theory of

Communication, Bell System Technical Journal,

27: pp. 379-423, 623-656, 1948

[11] Xess Corp. XSV Board V1.1 Manual, 2001,

www.xess.com

[12] Jamro E. Waitr K. Heterogeneous Hardware-

Software Prototyping System for PC-controlled

FPGA-based Designs, Proc. of IFAC Workshop on

Programmable Devices and Systems PDS,

Cracow, Nov. 18-19 2004, pp. 186-191

[13] Garcia E. Implementing A Histogram for Image

Processing Applications, Xcell Journal Online,

Xilinx: xcell38_46.pdf.

mailto:jahnke@stud.uni-frankfurt.de
mailto:schoessl@stud.uni-frankfurt.de
mailto:kolja@prowokulta.org

