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Abstract: At first part of this paper, the architecture for quasi-static Huffman encoder is 

described which main part is Look-Up Table (LUT). In order to reduce the hardware 

requirements, the maximum length of the encoded word is limited. This reduces the 

compression ratio insignificantly which is proved in this paper. The dynamic encoding is 

achieved by a change of the LUT contents and  hardware-software co-design approach. 

Consequently counting the input words statistics (histogram) and sorting the resultant 

histogram is implemented in hardware. The final calculation of the new LUT contents 

and controlling the whole system is achieved by the soft-processor MicroBlaze. 
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1.  INTRODUCTION 

 

Huffman coding [1] is one of the basic and the most 

frequently employed lossless compression method. It 

takes advantage of input words statistics. Input 

words, which appear more frequently, are assigned to 

shorter codes. Conversely words, which occur fewer 

times, obtain longer codes. This reduces the total 

number of bits necessary to code the whole 

information. The Huffman code is based on the input 

signal entropy. The entropy limits the maximum 

compression ratio.  

 

There are many implementations of Huffman coders 

in VLSI technology [2, 3] but they are not optimal 

for FPGAs. Many examples of FPGA static Huffman 

coders can be found, e.g. [4,5,6,7,8]. They assume 

that the signal distribution (histogram) is known prior 

the implementation. This kind of algorithms does not 

involve any modifications of the coding assignments. 

If statistics of input data changes in time, these types 

of algorithms results in coding overheads and should 

not be employed. This paper proposes dynamic 

Huffman encoder, which updates encoding scheme 

every (transmit) session.  

The design process employs the modular structure. 

Several modules compatible with Embedded 

Development Kit (EDK) provided by Xilinx Inc. and 

On-chip Peripheral Bus provided by IBM [9] were 

designed. Besides the EDK provides soft-processor 

MicroBlaze which is frequently used in the system to 

perform program-driven algorithms, e.g. constructing 

the Huffman tree. summing up, construction of the 

final system took place in the EDK environment. In 

the presented system hardware-software co-design 

approach was adopted, i.e. the whole algorithm was 

divided into software and hardware part. In the case 

when only MicroBlaze is employed, the coding 

process would be significantly slowed down. 

Conversely, completely hardware approach would 

significantly complicate adaptation of Huffman 

coding and would increase the FPGA area.  

 

This paper present results of 8-bit input word. Coded 

word can be lengthened but it would increase the size 

of the employed memory from 2
8
 to 2

n
 locations (n is 

a bit-length of a single input word). Currently 

available FPGA chips support enough internal 

memory for n less than roughly 12. Attempt to 

increase n over 12 invokes external memory 



utilization and consequently the significant coder 

rebuilding. 

 

At the beginning of this paper the proposed 

architecture of the static Huffman encoder is 

described. The proposed architecture slightly 

modifies the original  Huffman algorithm, therefore 

the compression ratio might be slightly changed, 

which is also studied. Then the architecture of the 

dynamic Huffman encoder is approached. This 

encoder consists of four major parts: 1) quasi-static 

Huffman encoder, 2) Histogram module, 3) Sorting 

module, 4) soft-processor MicroBlaze. All the above 

mentioned parts, except the MicroBlaze, are 

dedicated hardware for dynamic Huffman encoder. 

 

 

2. STATIC HUFFMAN ENCODING 

 

At the beginning the static Huffman encoder will be 

described as this encoder is also employed as a part 

of the dynamic Huffman coder. The main part of the 

static encoder is the Look-Up Table (LUT) memory, 

which is addressed by 8-bit input words. The output 

of the LUT provides the code (maximum 12-bit) and 

length (4-bit) assigned to each input word. Similar 

algorithm was employed in [6, 7, 8], but these papers 

did not include any information about quality of 

obtained compression ratio when the maximum 

codeword length is limited. 

 

The Virtex FPGA contains 256x16-bit BRAMs, 

therefore in the adopted algorithm each of 256 input 

words occupy sixteen bits of the LUT. The output 

code is located in twelve LSBs, four MSBs determine 

the length of the output code. This coding format 

causes some limitation of the coding algorithm. Input 

words appearing very rarely can be coded on up to 12 

bits. This results in a degradation of the compression 

ratio, which will be studied in the next paragraph. 

 

 

2.1. Adopted coding method and compression ratio 

 

The information Ii of coded word depends on the 

input word probability pi as follows [8]: 

 

 Ii= -log2(pi). (1) 

 

The Huffman coding procedure uses the integer 

number of bits di for the coded words, and thus the 

following is satisfied: 

 

 di<1 - log2(pi) (2) 

 

For the described algorithm, the compression ratio is 

maximally degraded in the case when  (m+k) bits are 

required to code almost all input symbols, where m is 

the maximum length of a single coded word (in our 

case m = 12); k is the number of additional bits 

which are skipped because of the proposed algorithm 

constrains. Fortunately, according to eq. 2 (di= m+k) 

each input symbol which cannot be efficiently coded 

occurs with the probability: 
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The number of redundant bits R, required to code a 

single n-bit input word (2
n
 is the number of all input 

words) stands as follows: 
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where: j is the number of symbols which are 

correctly coded (mdi), and the assumption is made 

that j is a very small number (the worst case 

assumption).  

 

It can be calculated from eq. 4 that the largest 

redundancy R is obtained for k=1/ln(2)1.44 and 

therefore the following is satisfied: 
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Consequently the worst possible degradation of the 

compression ratio in the proposed coding format 

(n=8, m=12) is less than roughly 0.066 bit per coded 

word. This is a small value that can be accepted. It 

should be noted that the worst case was hereby 

considered and in the most cases degradation of the 

compression ratio is significantly lowered. Even the 

theoretical simplifications cause that the given 

maximum redundancy R in eq. 5 is greater than the 

practical one. Besides, the proposed coding format 

(n=8, m=12) in many cases improves the 

compression ratio because limiting maximum length 

of the coded word also limits size of the code table. 

The code table should be also sent to a receiver (at 

least at beginning of the transmission) together with 

the coded data therefore its size influences the total 

compression ratio. Moreover code table for rarely 

occurring words does not have to be sent because 

input data might be delivered without change to the 

receiver, only a specific (m-n)-bit preamble might be 

added. 

 

2.2. Architecture of the Static Huffman Coder 

 

The proposed static Huffman encoder denoted as 

opb_huff is presented in Fig. 1 and contains two 

independent OPB buses (master and slave). 

- slave bus is used to receive input data and to 

modify LUT contents (used for quasi-static 

version) 

-  master bus is used to transfer out the coded words  

The main part of the opb_huff is code table (LUT) 

implemented as dual port block RAM (BRAM). As 



an input word appears on the address port of the 

BRAM, output code word (12 bits) and code-length 

(4 bits) can be read from the BRAM output. Then the 

code word feeds the module denoted as barrel 

shifter. The module barrel shifter concatenates 

consecutive variable-length words received from the 

BRAM into fixed-length (16-bit) words which can be 

further processed (e.g. transmitted). The 

concatenation requires bit-alignment of the previous 

and the next variable-length words, which involves a 

special barrel shifter. This barrel shifter module 

contains also registers and accumulators and its detail 

description is given in [6].  
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Fig. 1. Opb_huff block diagram – the architecture of 

the static Huffman coder 

 

 

 

3. DYNAMIC HUFFMAN ENCODER 

 

The above proposed static Huffman encoder can be 

also employed as a part of the dynamic Huffman 

encoder. Only a new code table must be written to 

the BRAM memory in order to change the whole 

coding scheme. The static Huffman encoder for 

which the contents of the BRAM can be changed is 

further denoted as a quasi-static Huffman encoder. 

The main problem for the adaptive Huffman encoder 

is calculating new BRAM contests at every data 

frame. The dynamic Huffman encoder should work 

in the real time system therefore the speed is a 

critical factor. The dynamic Huffman encoder 

consists of three different modules: 

1)  Histogram – calculates the input data statistics 

while a new image or data frame is grabbed to a 

buffer (external memory). 

2)  LUT Contents Calculation module – this 

module calculates and updates the new contents 

of the BRAM memory. 

3)  Quasi-static Huffman encoder – this module 

was described in Section 2. 

 

It should be noted that these modules can work 

independently at the same time using a pipeline 

architecture. Consequently, while the histogram 

calculates the input data statistics for frame 3, 

module 2 calculates the new BRAM contents for 

frame 2, and the quasi-static Huffman encoder 

encodes frame 1, and so on. 

 

3.1. Histogram Calculation 

 

Histogram calculation is the first stage of code table 

generating process. The calculation speed is the 

critical criterion so two different methods: software 

and hardware of histogram calculation will be 

compared. C-language code calculating the 

histogram was implemented on the soft-processor 

MicroBlaze. This code results in twelve assembler 

instructions and takes about 30 clock cycles to 

process a single input word (single loop). Such a long 

calculation time is unacceptable for real time 

systems. 

 

As a result, a hardware counterpart denoted as 

opb_hist was designed. This module requires only 1 

clock cycle per input word and consists of two 

independent OPB bus interfaces. 

- DOPB accepts the input data (OPB slave). 

- COPB is used to read the calculated histogram and 

also to initialize opb_hist internal counters (OPB 

slave). 

The simplified block diagram of the opb_hist is given 

in Fig. 2A. Input data (DataIn) address the BRAM. 

Every value of data feeding the opb_hist has its own 

memory cell which stores the number of occurrence 

of this particular data value. This number is increased 

by one for every new occurrence of the data and is 

written back to BRAM memory (Din port). 
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Fig.2. opb_hist block diagram A) simplified,  

B) implemented  

 

The block diagram of the implemented histogram is 

given in Fig 2B and is much more complicated in 

order to speed up the calculation process. The main 

problem was that BRAM read access time is a whole 

clock cycle. Consequently a single input data would 

require 2 clock cycle: the fist clock cycle for reading 

the previous histogram state from the BRAM and the 

second cycle for the incrementing previously read 

value and writing it back to BRAM at the same 

address. Such a long calculation time may be  

unacceptable. One of the solution presented in [13] is 

to use a local clock with a double frequency. This 

causes that some part of the logic has shorter 

propagation time limit. Another solution, proposed in 

this paper is to use both ports of the dual port 

BRAM, for which the first port is used to read the 

occurrence count (Dout0 in Fig. 2), and the second 

port (Din1) is used to write the incremented count in 



the next clock cycle. Both ports are addressed by the 

input data DataIn, however the address on the second 

port is delayed by one clock cycle in the module FF. 

Additional address multiplexer at Adr1 is used to 

initialize and read the resultant histogram. The 

proposed hardware implementation has several 

advantages. First of all it allows fetching new input 

data every clock cycle. Secondly reduces the 

hardware requirements, MicroBlaze occupies much 

more logic than the opb_hist (see Tab. 1 for 

comparison). 

 

 

3.2. Calculating the Huffman tree 

 

The next step is to calculate the new BRAM contents 

of the quasi-static Huffman encoder. The main part 

of this step is to find out the Huffman tree which 

consists of two stages: 

1. Finding two the least elements of the histogram 

and adding them. In this way a new root of the tree 

is created and the previous two are removed.  

2. Repeat step one until there are at least two 

elements of histogram left 

An example of the Huffman tree is given in Fig. 3.  
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Fig. 3. Example of creating Huffman tree 

 

 

3.3. Sorting the histogram 

 

The most time consuming operation when calculating 

the Huffman tree is finding two least elements of the 

histogram. This can be achieved efficiently by at first 

sorting the whole histogram (table) and then just 

taking out the last two elements from the sorted table. 

The new element (sum of the least two elements) is 

then properly inserted to the sorted table with respect 

to the element value. Consequently at every stage the 

table is sorted and therefore finding two least 

elements is a trivial task.  

 

While forming a new root of the Huffman tree, a new 

element is inserted to the table. Consequently, the 

insert-sort algorithm is selected. The insert-sort 

algorithm requires N
2
/4 on average and N

2
/2 on 

maximum comparison and shift operations; where N 

is the number elements in the sorted table. For 8-bit 

input data, N=256, so the average number of shift 

and comparison operations equals roughly 8000. If a 

faster algorithm is used (e.g. quick-sort) 

computational time will be shorten to roughly 

Nlog2N. In the presented system it would require 

roughly 2000 comparisons and shifts. Unfortunately, 

the construction of the Huffman tree prefers the 

insert-sort. Besides usage of the quick-sort algorithm 

results in a more complicated code which might 

significantly reduce the algorithm speed-up. At last 

but not least, in the case when the sorter is 

implemented in hardware, the algorithm simplicity 

and sequential-memory access is the key issue. 

Summing up, the insert-sort algorithm is the final 

choice. 

 

MicroBlaze processor would require a few dozens of 

assembler instructions to complete a single 

comparison and shift operation. As a result, the 

whole sort procedure would take too many clock 

cycles. Consequently, the specialized hardware 

module denoted as opb_sort has been designed. The 

opb_sort contains three independent OPB buses (two 

masters and one slave). 

- SOPB (slave). This bus is used to control the 

opb_sort: write a new word which will be inserted 

to the table, write the start address of the table and 

the number of already sorted elements in the table. 

- MSOPB (master). Fetches data from the input 

table. 

- MDOPB (master). Sends data to the output table. 

 

The opb_sort inserts properly only a single element 

to the already sorted table. Consequently, an external 

control machine (e.g. MicroBlaze) is required to 

control the opb_sort and to write sequentially new 

elements to the opb_sort when the sorter has finished 

the previous job. The block diagram of the sorting 

system in given in Fig. 4. The opb_sort has access to 

both BRAM ports. Such a solution speeds up BRAM 

transfers because data can be read and write at the 

same time and the sequential addressing is employed 

when accessing the memory. Summing up, both a 

single comparison and move operations can be 

accomplished in every clock cycle. 
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Fig. 4. A simplified block diagram of the sorting 

system  

 

 

3.4. Calculating the LUT contents 

 

The next step is to calculate the BRAM contents of 

the quasi-static Huffman encoder. This algorithm 



uses the previously determined Huffman tree and 

requires relatively small number of cycles. 

Consequently it is implemented on the MicroBlaze. 

The most popular implementations of this algorithm 

are recurrent. As a result they consume large amount 

of heap memory that might not be available in the 

system as the heap memory was located in the 

internal FPGA memory to speed up the access time. 

Consequently, non-recurrent algorithm was adapted 

in the presented system. 

 

 

4. THE WHOLE SYSTEM 

 

In this section the whole system will be introduced 

with focus on interconnection and cooperation 

between different modules. A diagram of the system 

is presented Fig 5. 

 

Fig. 5 contains the following modules (all modules 

were designed by the authors of this paper, otherwise 

the source of the module is given): 

- MicroBlaze soft-processor (module provided by 

Xilinx in EDK) 

- ilmb_bram_ifctrl – Local Memory Bus (LMB) 

controller for MicroBlaze program memory  

(module provided by Xilinx in EDK)  

- dlmb_bram_ifctrl – Local Memory Bus (LMB) 

controller for MicroBlaze data memory  (module 

provided by Xilinx in EDK) 

- bram_1 – MicroBlaze internal program and data 

memory  (module provided by Xilinx in EDK) 

- opb2opb_mb – OPB to OPB bridge with data 

width conversion and First-In First-Out (FIFO) 

buffer, this module is used to separate the 

MicroBlaze and the rest of the modules. The 

separation allows for local memory transfers and 

reduces propagation time 

- opb2opb_dma–  converts 32-bit data from SRAM 

to 8-bit data to feed opb_hist and opb_huff  (8-bit 

data length format is accepted by these modules). 

- opb_dma_hist – Direct Memory Access – transfers 

data from the SRAM memory to opb_hist module. 

- opb_dma_huff– Direct Memory Access – transfers 

data from the SRAM memory to opb_huff  module 

- opb_sort – module which conducts sorting 

operation  

- opb2opb_huff_out– converts 16-bit data from 

opb_huff to 32-bit data transferred to opb_sram. 

Additional FIFO buffer is used as the SRAM 

memory is shared by other modules 

- opb_epp – interface between OPB and EPP port. 

During testing, the input and output data are 

transferred by Parallel Port and APSI system [12] 

- opb_sram – interface between OPB and external 

SRAM memory  

- opb_hist – histogram calculation module 

- bram_2 – block memory utilized by opb_sort 

module to store data being sorted. When sorting 

process is finished bram_2 contains sorted data 

- opb_bram_if_ctrl_0 – OPB bus memory controller  

(module provided by Xilinx in EDK), enables 

access to sorted data (stored in bram_2) 

- opb_bram_if_ctrl_1 – OPB bus memory controller  

(module provided by Xilinx in EDK), employed to 

communicate between bram_2 and opb_sort 

modules 

- opb_huff – quasi-static Huffman encoder 

 

 

Fig. 5. EDK screen capture of the whole system

 

As the Microblaze controls the whole system it is 

worthy to enumerate all tasks it performs in sequence 

to explain the system operation: 

1. Write the new LUT memory contents to the 

module opb_huff. The LUT memory contents was 

calculate in the previous time-frame. 



2. Write control registers of the DMA module: 

opb_dma_huff to transfer data from external 

memory to Huffman encoder. 

3. Read histogram data calculated in the previous 

time-frame and assign index to each histogram 

data.  

4. Write control registers of the DMA module: 

opb_dma_hist to transfer data from external 

memory to module opb_hist in order to calculate 

the histogram. 

5. Preliminary sorting (opb_sort employed)  

6. Constructing the  Huffman tree and calculating the 

opb_huff LUT contents for the next time-frame. 

 

 

5. IMPLEMENTATION RESULTS 

 

The whole Huffman dynamic encoder was built in 

EDK environment and contains several modules 

compatible with the OPB bus. The encoder was 

implemented in XSV board equipped with a Virtex 

FPGA XSV800. Input data is read from the external 

SRAM memory by the DMA module (opb_dma). 

The FPGA area occupied by the designed modules 

are given in Tab. 1. These values are approximated 

because almost every module is associated with 

additional logics which cannot be easily determined, 

e.g. OPB bus elements and control logics. 

Consequently only the whole system results are 

precise.  

 

Tab.1. Implementation results 

 

Moduł # 4-input 

LUT 

# flip-

flops 

# 4-kb 

BRAM 

opb_huff 378 157 1 

opb_hist 62 10 1 

opb_sort 283 98 0 

MicroBlaze 1139 410 0 

The whole 

system 

3007 1042 13 

 

 

6. CONCLUSIONS 

 

Modules designed in the presented system (opb_huff, 

opb_hist, opb_sort) are compatible with On-chip 

Peripheral Bus (OPB) and Xilinx Embedded 

Development Kit (EDK). Because the modular 

design methodology was adopted, the proposed 

system can be relatively easily extended or modified 

and the design time was significantly shortened. 

Furthermore hardware-software co-design approach 

was adopted, which also significantly reduced the 

design cycle. The most time-consuming operations: 

counting the input words occurrences (histogram) 

and sorting the resultant histogram is implemented in 

hardware. The final calculating of the new contents 

of the LUT memory and controlling the whole 

system is achieved by the soft-processor MicroBlaze. 

The primary aim of this design: adapting coding 

schedule at every frame of the image (512x512 

pixels, 25 frames/s) was achieved.  
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