
FPGA Implementation of Strongly Parallel Histogram Equalization

Ernest Jamro, Maciej Wielgosz, Kazimierz Wiatr
AGH University of Science and Technology

al. Mickiewicz 30, 30-051, Poland
Academic Computer Center CYFRONET
ul. Nawojki 11, Kraków 30-950, Poland

email: jamro / wielgosz / wiatr @agh.edu.pl

Abstract - Highly parallel architecture for local histogram
equalisation is studed. Three different kinds of approaches to the
parallel architecture are regarded in this paper. 1) Module-level –
which focuses on processing as many data as possible within a
single module. 2) 1D – Several modules conducting simultaneously
histogram equalization on partially overlapping (either
horizontally or vertically) frames. 3) 2D – utilizes the same
approach as 1D but in two dimensions. Beside above-mentioned
solutions, differencial processing of overlapping frames was also
considered. At the end of this paper the optimal proportion of the
above mention solutions are studied and implementation results
given.

I. INTRODUCTION

Histogram equalization is a relatively simply operation and is
often performed by general-purpose processors. Nevertheless it
may require hardware acceleration to satisfy the high speed
requirements for real-time systems. Face detection systems [1]
based on neural networks may serve as an example. The neural
network is fed with square-shape 20×20 pixel frames of an
input picture. The frame (mask) is gradually moved by 1 pixel
step by step over the whole input image in order to detect
whether it contains any faces. In the case of 512×512 pixel
input image, this operation is conducted 492×492 times on
20×20 pixel frames. Local histogram equalization operation
must be performed before the frame is passed to the neutral
network. Histogram calculation is one of processes conducted
during histogram equalisation [2]. Consequently, histogram
calculation for a single 512×512 picture requires
492×492×20×20≈ 108 counts of input pixels. It is worth to
mention that the above evaluated number refers only to original
scale of the picture. The same calculations should be done for
the sequence of gradually decreased scale picture to evaluate
the total number of pixel counts. Summing up, hardware
solution combined with strong parallel architecture is designed
to speed up the calculation of histogram. Unfortunately, the
operation of histogram calculation in contrast to neural network
[3] cannot be easily parallelized because of sequential counting
process of input pixels. Therefore this paper introduces several
solution of parallel architectures adapted to histogram
equalization module.1

The hardware implementation of parallel histogram
equalisation, up to the authors’ knowledge, has not been
considered in literature. The examples of histogram calculation

1This work was support by Polish scientific research funds

implementations can be found in [4, 5]. Calculation time
required by these systems is too large for our case, therefore
some enhancements have to be introduced.

In-module parallel histogram calculation will be described in
the first part of this paper. For this architecture a single module
can accept several input pixels in a single clock cycle. In
Section IV studies differential histogram calculation. The result
of histogram calculation for neighboring frames is partially the
same as the input frames overlap. Consequently differential
histogram calculation utilizes the above fact and therefore
calculations are conducted only for not-overlapping input
pixels. Section V considers multi-module parallel architecture
for which several parallel modules operates on the same
(partially overlapping) input data. Two different options: 1-
dimentional and 2-dimentional are further studied. Section VI
describes interference between differential histogram
calculation and multi-module parallelism. Section VII
considers cooperation between histogram calculation and LUT
conversion. The last chapter of this paper includes
implementation results of these system.

II. HARDWARE IMPLEMENTATION OF HISTOGRAM
CALCULATION

At the first glance the histogram calculation module is
regarded as composed of Block RAM (BRAM) memory and
incremental logic as it is shown on Fig. 1A. Module operates as
follows: Input data (of which histogram is being evaluated)
address the BRAM. The BRAM data_out shows the count of
DataIn’s prior occurrences at the BRAM address bus. Then
this count is incremented by one and written back to the
BRAM at the same address; and so on.

 Adr Din
BRAM

Dout

+1

DataIn

A)

 Adr0

Dout0

+1

 Adr1 Din1

Dout1

FF
DataIn

Address

Dout

B)

Fig. 1. Opb_hist block diagram; A) Simplified diagram, B) real diagram

Unfortunately, the BRAM memory limits the calculation

speed as the BRAM output data is one clock cycle delayed in
comparison to the address bus (a synchronous memory data

read). Consequently, evaluation of a single input pixel involves
two clock cycles. A similar system was proposed in article [5].

In order to speed up the above circuit to evaluate a single
input pixel in a single clock cycle, a dual ports BRAM in
employed [4] (Fig. 1B). The first port is utilized to read the
prior input data count, the second one is dedicated to write
back the incremented count. An additional multiplexer is
employed (addressed with Adr1 signal) to enables reading of
calculated histogram.

III. IN-MODULE PARALLELISM

In order to speed-up the histogram calculation process, in-
module parallelism is introduced, which operates on many
input pixels at once. An example of two parallel units system
is presented in Fig 2. Two input data (DataIn0, DataIn1) are
fetched at a single clock cycle. The resultant histogram is an
aggregate of two fractional operation results. The disadvantage
of this solution is that the histogram calculation time is
comparable to histogram reading time. The calculation time is
20×20/2= 200 clock cycles for 20×20 pixel input frame and
two parallel units. Reading the result and setting to zero all
memory cells take 2×256 clock cycles for 8-bit pixels.
Therefore the more histogram calculation sub-modules work
together the worse proportion between calculation and read
time is obtained. Read time becomes the dominant part.
Therefore parallel connecting of many histogram calculation
units is not advisable.

 Adr0

Dout0

±1

 Adr1 Din1

Dout1

FF
DataIn0
 Address +1

+

Dout (Address+1)

Address

 Adr0

Dout0

±1

 Adr1
Din1

FF
DataIn1
 Address+1

Address

+

Dout (Address)

Fig. 2. Block diagram of parallel histogram calculation (solid line) and reading

(dashed line)

Fortunately, reading process can also be spped-up. The first
solution, shown in Fig. 2, is based on utilization of two
concurrent BRAM ports and therefore it doesn’t involve much
more additional hardware. Two additional multiplexers are
essential, one of them at Adr0 port and the second one at Adr1.
As a result of this modification the read time is reduced by a
half. Unfortunately, the number of BRAM ports is limited to
two, therefore further reading seed-up is not available for this
method.

Consequently to further speed-up the reading process, the
number of BRAM memory should be increased. In this
method, the whole memory is regarded twofold by the rest of

the system. During histogram calculation process BRAM
memory is considered as one large memory whereas during the
reading process the same memory is regarded as composed of
several independent smaller BRAMs. In case of two BRAM’s,
odd pixels (odd numbered pixels) are read from the first
memory while even pixels are read from the second memory.
Instance of such system is presented in Fig. 3.

 Adr0

Dout0

±1

 Adr1 Din1

we
Dout1

FF
DataIn (bit 1-7)

Adr + 1
(bit 1-7)

Dout (A)

Adr.

 Adr0

Dout0

 Adr1 Din1

we
Dout1

FF
DataIn (bit 1-7)

Adr+1
(bit 1-7) Adr

(bit 1-7)

DataIn
(bit 0)

Dout (A+2) Dout (A+1) Dout (A+3)

Fig. 3. Parallel histogram reading (4 reads at the time).

Ability to use smaller memories can be considered as certain
benefit from parallel reading. Unfortunately, the size of BRAM
memory available in FPGA is so large that decreasing the size
of a single memory does not result in fall down of the total
number of used BRAMs. Alternative solution is utilization of
distributed memories 16×1 included in CLB (Configurable
Logic Block). Consequently for highly parallel reading (factor
of about 8 or more) the size of a single memory used for
reading is so small (32-bit deep or less) that the distributed
RAM should be employed.

For Xilinx Virtex2, BRAM memory size is 18kb, and the
data bus width is up to 36-bit. Consequently instead of using 4
independent 256×9-bit BRAMs a single 256×36-bit BRAM can
be used for reading. This significantly reduces the total number
of BRAMs. Consequently a single 256×36-bit dual port BRAM
can be used for up to 8-parallel reads.

It is worth to emphasize that parallel approach to reading and
calculation processes are independent of each other.
Consequently, the total number of utilized BRAMs is a product
of the number of BRAMs employed in parallel histogram
calculation and parallel histogram reading. Therefore it is not
profitable to apply both calculation and read parallelism.

In addition to the above drawback, highly parallel histogram
reading makes difficult cooperation between other modules.
This holds, for instance, for Look-Up Tables (LUT) which are
programmed according to the data read from the histogram
module. Parallel writing the LUT memory suffers from the
similar phenomena as it is the case for the parallel histogram
reading.

IV. DIFFERENTIAL HISTOGRAM CALCULATION FOR
NEIGHBORING FRAMES

Face detection system considered in this paper requires
histogram equalization for neighboring frames. Consequently,
histogram that has been calculated in the previous step (for the
preceding frame) can be utilized to evaluate histogram for the
next frame (one pixel right). Hardware module should be able

to increment and decrement the number of pixels to perform
differential histogram calculation. This operation is presented
in the Fig. 4.
An input frame can be divided into three part:
A) Decrement area – this part of the picture belonged to the

previous frame but does not belong to the presently
evaluated frame. Pixels which are lying in this area, are
counted down during histogram calculation.

B) Area that is directly copied – the common part of the
previously and presently calculated histogram. No operations
are conducted on this area.

C) Incremental area – area that does not belong to previous
frame but it is a part of presently calculated frame. Standard
histogram calculation is conducted for this area (increment).

histogram
decrements area

Area that is copied with
no changes

histogram
increments area

Fig . 4. Different frame areas utilized by differential histogram calculation

It can be easily noticed from Fig. 4, that differential

histogram calculation requires significantly fewer operations.
For W×W pixels frame, only 2×W input pixels are required to
calculate the histogram of the new frame. This holds as the
differential histogram is decremented by W pixels (area A) and
incremented by W pixels (area C).

An additional advantage of differential calculation is no need
to reset BRAM memory cells before the new frame starts to be
calculated. Therefore the histogram reading time is also shorten
by a half (the reset process is included to reading time).
Nevertheless the read time is still significantly longer than the
calculation time. Therefore the recommended parallel ratio for
histogram calculation is 1 (a single input pixel at the time). For
histogram reading, the parallel ratio is 2 (or 4) for BRAM
256×16 (Virtex) or up to 8 for 256×36 BRAM (Virtex 2 or
latter).

V. MULTI-MODULE PARALLELISM.

In-module high-level parallelism is not very efficient
because the hardware requirements rapidly grows with the
growing parallelism level. Besides, the external memory
interface often limits the maximum number of input pixels fed
to the histogram. Therefore multi-module parallelism is
regarded as a more convenient method to speed-up the
calculations. For multi-module parallelism, histograms of many
neighboring frames are calculated at a time. It is recommended
to calculate neighboring frames because input pixels of
neighboring frames partially overlap each other, therefore
single external memory interface is employed. One dimension
and two dimension parallel approach will be presented in the
forthcoming sections.

A. One Dimension Parallelism
Computations are conducted concurrently for either vertical

or horizontal neighboring frames. Let us evaluate the number
of input pixels required to calculate histograms for N frames. It
can be easily seen that for W×W pixel input frame, the total
number of pixels P1D that must be fetched is as follows:
 P1D= W⋅(W+N-1). (1)

 N
N
NWWP D ⋅



 −+⋅= 1'1 (1a)

Eq. (1a) considers the padding effect when the first and (or)
the last word in the line are not fully utilize, i.e. N- input pixels
are fed at the time and usually it is not possible to break the
word alignments.

W+N-1

W

W+N-1

W+M-1

1D 2D

Fig . 5. Input data for histogram calculation,1D – horizontally, 2D –

vertically and horizontally.
Unfortunately, all parallel modules cannot work concurrently

all the time (not all pixels are valid for every module),
therefore average utilization of each module is given as
follows:

11

1 −+
=⋅=

NW
W

P
WWR
D

D
 (2)

N
N
NW
W

P
WWR
D

D

⋅



 −+

=⋅=
1'

'
1

1
 (2a)

It can be easily noticed from (2) that the best utilization of
parallel modules is obtained for small N. For small N (N<<W)
average utilization is close to one and parallelism efficiency is
high. Unfortunately, the calculation speed N⋅R saturates
relatively fast and this method is not efficient for N>W. It is
worth to mention that the above equation refers only to
histogram calculation time, read and reset time is ignored
hereby.

B. Two Dimensions Parallelism

For 2-D parallelism computations are conducted
concurrently for both vertical and horizontal neighboring
frames. In general case N vertical and M horizontal parallelism
can be employed. Consequently, the total number of parallel
modules is N×M. The number of input pixels fetched for this
solution is given as follows:
 P2D= (W+N-1)⋅(W+M-1). (3)

M
M
MWN

N
NWP D ⋅



 −+⋅⋅



 −+= 11'2 (3a)

Eq. 3a (similarly like eq. 1a) considers the padding effect.
Average utilization R2D of each module is given as follows:

)1()1(

2

2

2

2 −+⋅−+
==

MWNW
W

P
WR

D
D

 (4)

M
M
MWN

N
NW

WW
P

WWR
D

D

⋅



 −+⋅⋅



 −+

⋅=⋅=
11'

'
2

2

 (4a)

Comparison of average utilization R’1D and R’2D for different
parallel approaches: 1D and 2D and the same number of
computational units is presented in Fig 6.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

M

R
'

R'1D

R'2D

Fig. 6. Average utilization R in the function of the number parallel units 1D) N
= M2; 2D) N = M

According to Fig. 6 for 1D and M = 4 (N= M2=16 parallel

units) average utilization R1D= 0.42. Conversely, for 2D
approach N=M=4 (the same number of parallel units as for 1D)
average utilization R2D = 0.7. Consequently for the larger
number of units, the 2D approach is more efficient.

VI. PARALLELISM VS. DIFFERENTIAL HISTOGRAM
CALCULATION

Parallelism impacts strongly deferential histogram
calculation. It is recommended to implement differential
calculation vertically and parallel calculation horizontally. This
method will be further denoted as 1DD. To calculate 1DD
histogram it is essential to deliver P1DD input pixels:
 P1DD= 2⋅(W+N-1) (5)
 N

N
NWP DD ⋅



 −+⋅= 12'1 (5a)

It is worth to note that the combination of parallel 1D and
differential calculation does not disturb each other. This is very
important feature, which stays quite opposite to 2D parallel
approach and differential histogram calculation, denoted
further as 2DD. In the case of 2DD approach disturbances
cause significant decrease in effectiveness. It has been
illustrated in Fig. 7.

The number of input pixels which must be delivered during
histogram calculation (sum of area A and C in Fig. 7) is
increased and is given as follows:
 P2DD= (W+N-1)⋅2⋅M (6)

 MN
N
NWP DD ⋅⋅⋅



 −+= 21'2 (6a)

While analyzing (6), it is easy to discern that for a constant
number of parallel units (N⋅M = const) optimal solution is
reached by increasing N and remaining M = 1, which is indeed
implementation of 1DD.

W+N-1

A

B

C

W+M-1

M

Fig. 7. 2DD parallel approach

VII. HISTOGRAM CALCULATION AND LUT CONVERSION

A. In-Module Parallelism
Parallel LUT conversion experience similar parallelism

problems as histogram calculation. Parallel writing
(programming) new LUT contents can be achieved in similar
way as parallel histogram reading, the main difference is the
data bus width which is 8-bit. Consequently using a dual port
256×16-bit BRAM (Xilinx Virtex), four LUT address locations
can be written in a single clock cycle – a single 16-bit data bus
performs two separate 8-bit writes in a single clock cycle. For a
256×32-bit dual port BRAM (Virtex2 or latter) up to eight
LUT writes can be achieved in a single clock cycle. Increasing
a number of parallel writes requires several BRAMs to be used
during LUT programming and these BRAMs are then merged
into a single large BRAM during LUT conversion operation.
Similar architecture was used for strongly parallel histogram
reading and resetting.

Parallel LUT conversion is conducted in similar way as
histogram calculation. Nevertheless, a dual port BRAM can
conduct up to 2 parallel LUT conversions, therefore the
number of BRAMs is halved. Greater level of parallelism
requires several BRAM modules to be used in similar way as it
was the case for histogram calculation. Unfortunately, the
differential LUT conversion is not possible as it is the case for
histogram calculation. It should be noted that the total number
of BRAMs is the product of the number of BRAMs required
for parallel LUT programming and LUT conversion operations.
Summing up, high-level in-module parallelism for both LUT
programming and conversion is not recommended.

Histogram equalization can be divided into three different
stages:
1) histogram calculation
2) reading previously calculated histogram and programming

LUT memory, in this step just read histogram data are used
to calculate a new LUT conversion table.

3) LUT conversion

B. Multi-Module Parallelism
As it has been described in the previous sections in-module

parallelism quickly saturates – requires much greater hardware
resources for relatively small speed-ups. Consequently multi-
module parallelism is further studied. Parallel multi-module
histogram equalization behaves in similar way as it is the case
for multi-module histogram operation. The main difference is
that differential LUT operation is not feasibly. Optimal solution
for LUT conversion according to Fig. 6 and eq. 4 is 2D parallel
approach (M=N). Conversely for differential histogram
calculation the optimum solution is for M=1 (see Section VI).

To make cooperation between histogram and LUT module
effective, the number of parallel units N and M should be the
same for both histogram and LUT operation. Unfortunately
optimal performance condition for histogram and LUT
operations are different and both operations have to be taken
under consideration in order to implement an effective system.
Let us make an assumption that optimal solution is obtained for
the circuit for which the minimum input data transfers P is
obtained. The total number of fetched input pixels P is the sum
of input pixels P2DD (see (6)) required by differential histogram
calculation and the number of input pixels required by 2D LUT
conversion P2D (see (3)):

 P= P2DD + P2D = (W+N-1)⋅(W+3⋅M-1) (7)
From (7) for the constant number of parallel units L= N⋅M,

the minimum number of input transfers is obtained for:
 LN ⋅= 3 3

LM = N= 3⋅M. (8)

It should be noted that (8) holds for systems for which
external memory interface limits the whole system throughput.
Otherwise, a designer has to find out whether increase in-
module or multi-module level of parallelism. In this case AT
product (product of occupied area and calculation time) should
be considered.
Tab. 1 presents recommended solutions for different
calculation times t (average number of clock cycles required to
compute a 20×20 frame). Column 2 (MAX(tHD, tL)) presents
the number of clock cycles required for simultaneous
differential histogram calculation tHD and LUT conversion tL.
Column 3 (tP) presents the number of clock cycles required to
read histogram and program LUT memory. Column BH and BL
denotes the number of BRAMs required for a single module to
calculate histogram and LUT respectively. Btot denotes the total
number BRAMs (including all modules). Columns N, M –
presents horizontal and vertical multi-module parallelism.
Column AT denotes AT product.

From Tab. 1 the following conclusions can be drawn:
decreasing the calculation time causes that at first the in-
module parallelism is increased up to the level when up to the 8
LUT writes or 4 (or even 8) LUT conversions are carried out in
a single clock cycles. Then the multi-module parallelism is
introduced at first 1D (M=1) and then 2D. Introducing 2D
parallelism (M>1) causes that differential histogram calculation
requires more hardware resources, thus M is significantly
smaller than N. Increasing multi-module parallelism causes that
the efficiency drops (AT product increase) consequently also
in-module parallelism also should increase. Summing up, the

following conclusion can be drawn: decreasing calculation time
below about t<12.25 causes significant increase of the AT
product.

TABLE 1.
RECOMMENDED IN-MODULE AND MULTI-MODULE PARALLELISM FOR

DIFFERENT CALCULATION TIMES

t
MAX

(tHD, tL) tp BH BL Btot N M AT

656 400 256 1 1 2 1 1 1312

456 200 256 1 1 2 1 1 912

328 200 128 1 1 2 1 1 656

264 200 64 1 1 2 1 1 528

232 200 32 1 1 2 1 1 464

164 100 64 1 2 3 1 1 492

132 100 32 1 2 3 1 1 396

82 50 32 1 4 5 1 1 410

71 55 16 1 2 6 2 1 426

72 40 32 1 8 9 1 1 648

57 25 32 2 8 10 1 1 570

43.5 27.5 16 1 4 10 2 1 435

38 30 8 1 2 12 4 1 456

23 15 8 1 4 20 4 1 460

20.5 16.5 4 1 2 24 4 2 492

14 10 4 1 4 40 8 1 560

12.25 8.25 4 2 4 48 4 2 588

11 9 2 2 2 64 4 4 704

7.5 5.5 2 2 4 96 8 2 720

6.5 4.5 2 4 4 128 4 4 832

4.75 2.75 2 4 8 192 8 2 912

4 3 1 4 4 256 8 4 1024

3.5 2.5 1 2 8 320 32 1 1120

3.25 2.75 0.5 2 4 384 32 2 1248

2.75 2.25 0.5 4 4 512 16 4 1408

1.875 1.375 0.5 4 8 768 32 2 1440

1.625 1.125 0.5 8 8 1024 16 4 1664

1 0.75 0.25 8 8 2048 32 4 2048

VIII. IMPLEMENTATION OF HISTOGRAM EQUALIZATION

New LUT programming values are calculated according to
equation:

 ∑
−

=

−=
1

0
2][1 K

i
k iHistogram

W
Kv (9)

where: K- levels of grayscale (K=256 for 8-bit image), W-
frame size.

The module conducting base operation of histogram
equalization is shown in Fig. 8. The system has been
implemented in Xess evaluation Board [6].

The main module denoted Hist_equ_block is comprised of
three parts: Histogram calculation module, Equation module
and the LUT memory (two port BRAM memory). Through
DataIn0 input data is being fed to histogram module. After
histogram has been calculated both histogram module outputs

are utilized to read data (Dout0 and Dout1) and send them do
equalization module. After equation operation has been
performed, data is passed to the BRAM memory. There are two
multiplexers connected to the BRAM memory, which enable
BRAM memory to act twofold. Firstly, BRAM memory is
addressed by equalization module to program BRAM memory.
Secondly, to perform LUT operation, i.e. after the BRAM has
been properly programmed in the first step it is addressed by
the input frame pixels.

 Adr0

Dout0

±1

 Adr1 Din1

Dout1

FF
DataIn0

DataIn1

+

+

FF

Multiply by constant:
2bit_depth/pic_size

 even data odd data

BRAM

FF FF

Histogram Calculation

Equalization Module

Look-Up
Table

Fig. 8. Hist_equ_block – block diagram of histogram equalization logic

Implementation results of opb_hist_equ are presented in Tab.

2. Column 2 presents the total area occupied by histogram
equalization module with only a single hist_equ_block.
Column 3 presents the area of the hist_equ_block alone (see
Fig. 8). It is easy to estimate the resources absorbed when more
than one hist_equ_block modules are implemented since the
difference between column 2 and 3 is consumed by control
logic, which is relatively constant for different number of
hist_equ_block modules.

In this paper area consumption is approximated by the
number of BRAMs. This assumption is made as the total
number of occupied LUTs (CLBs) comparison to the available
FPGA LUT resources is very low. This does not holds for
BRAM memories.

The design module is compatible with IBM On-chip
Peripheral Bus (OPB) and Xilinx Embedded Development Kit
(EDK). The OPB and EDK are employed for easy connection
of on-chip peripheral devices. They provides a common design
point for various on-chip peripherals. Modular design
methodology can be easily adopted and the designed system
can be easily extended or modified.

TABLE 2.
IMPLEMENTATION RESULTS

Area Whole circuit hist_equ_block
4-input LUT 96 62
Slices 64 41
BRAM 2 2

IX. CONCLUSIONS

In this paper the following aspects of parallel architectures
are considered:
• In-module parallelism, when a single module can accept

several input data in a single clock cycle. The main
drawback of this architecture is that the total number of
BRAMs is the product of the number of BRAMs required for
parallel histogram calculation (or LUT programming) and
histogram reading (LUT conversion). Consequently, the
level of in-module parallelism is rather limited.

• Multi-module parallelism, for which the same input data are
used by different neighboring modules. In this case 1-
Dimenctional (1D) and 2D parallelism should be considered.
For high level of parallelism 2D is much more efficient.

• Differential histogram calculation which exploits the fact
that neighboring frames partially overlap. Consequently only
difference between two neighboring frames need to be
considered. Unfortunately differential histogram calculation
influence 2D multi-module parallelism and can be applied
only for histogram (not for LUT conversion). Consequently a
trade-off between multi-module and differential calculation
should be considered.
Summing up, the optimal parallel architecture are presented

in Tab. 1. The parallelism gives a huge speed-up to the system
but one has to keep in mind to employ appropriate parallelism
approach that will match throughput of the system.

REFERENCES

[1] Rowley H. A., Baluja S., Kanade T., Neural Network-Based Face
Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 20, no. 1, January 1998, pp. 23-38
[2] Gonzalez, R. , Wintz P., Digital Image Processing, Addision-Wesley 1987.
[3] Jamro E., Wiatr K. A Novel Parallel-Serial Architecture for Neural
Networks Implemented in FPGAs, Proc. of IEEE Design and Diagnostics of
Electronics Circuits and Systems Workshop, Sopron, 13-16 Apr. 2005, pp.121-
128.
[4] Jamro E., Wielgosz M., Wiatr K., FPGA Implementation of the Dynamic
Huffman Encoder, Proc. IFAC Workshop on Programmable Devices and
Embedded Systems, Brno, Feb. 14-16, 2006, pp.60-65
[5] Garcia E. Implementing A Histogram for Image Processing Applications,
Xcell Journal Online, Xilinx: xcell38_46.pdf.
[6] Xess Corp. XSV Board V1.1 Manual, 2001, www.xess.com

