
Highly efficient structure of 64-bit exponential function

implemented in FPGAs

Maciej Wielgosz
1,2

, Ernest Jamro
1,2

, Kazimierz Wiatr
1,2

1. AGH University of Science and Technology,

Al. Mickiewicza 30, 30-059 Kraków

2. Academic Computer Centre Cyfronet AGH,

ul. Nawojki 11, 30-950 Kraków

 email: {wielgosz, jamro, wiatr}@agh.edu.pl

Abstract. This paper presents implementation of the double precision

exponential function. A novel table-based architecture, together with short

Taylor expansion, provides low latency (30 clock cycles) which is comparable

to 32-bit implementations. Low area consumption of a single exp() module

(roughtly 4% of XC4LX200) allows implementation of several parallel

modules on a single FPGAs. The exp() function was implemented on the SGI

RASC platform, thus external memory interface limitation allowed only a twin

module parallelism. Each module is capable of processing at speed of 200 MHz

with max. error of 1 ulp, RMSE equals 0,62. This implementation aims

primarily to meet quantum chemistry’s huge and strict requirements of

precision and speed.

Key words: HPRC (High Performance Reconfigurable Computing), FPGA,

elementary function, exponent function.

1 Introduction

The HPRC (High Performance Reconfigurable Computing) has important

advantages over HPC (High Performance Computing) like significantly lower power

consumption and more efficient silicon coverage. Unfortunately conducting floating-

point operation within FPGA absorbs much more area than fixed-point calculations,

therefore for a long time, FPGAs had not been employed to support double precision

operation. Nowadays, there are some implementations of single precision floating-

point operations[1,2,3]. Since the proposed exp() module aims to speed up HPC

chemistry and physics calculations, it has to be compatible with the data format

employed so far. Consequently, the IEEE-754 double precision standard is adopted.

2 Architecture of Exp module

To evaluate exp function the following commonly known mathematical identities

are employed:

exxxexx ii ee 22 log/log
22

−⋅ ⋅==
(1)

e
x+y

= e
x⋅ey

 (2)

where xi

is an integer part of x⋅log2e.

The equation (1) is employed to separate input argument into the integer part xi and

fractional part xf. Integer part xi is used directly to evaluate the exponent part of the

final result 2
xi
. Therefore the main problem is evaluation of the fractional part exp(xf).

The proposed architecture of the exp function evaluation employs two methods to

evaluate the fractional part:

• Look-Up Table (LUT) based architecture

• polynomial approximation.

The partial results of these two methods are combined employing equation (2).

Furthermore, (2) can be also used to divide one large LUT memory into several

smaller LUT memories. Therefore employment of (2) is the main idea of the proposed

architecture.

The mixed method adoption always leads to the dilemma of the trade-off between

LUT memories’ size and polynomial part evaluation cost. In the case of exp function

implementation, increase of LUT memory size results in a decrease of the

multiplication area. Nevertheless, analysis of the resources occupied by multipliers

and LUT memories has led to the conclusion that employment of Block RAMs

(BRAMs) embedded in the FPGAs would be the best solution. Replacement of

floating-point multipliers with fixed-point ones further reduces occupied FPGA

resources. It is possible because the input data was previously converted into a fixed-

point format. Furthermore input data smaller than 2
-60

 may be neglected during the

calculation as they have unnoticeable impact on the final result.

In the proposed architecture the polynomial approximation is significantly

simplified. According to Taylor-Maclaurin exp(x) can be evaluated as follows:

e
x
= 1 + x + x

2
/2 + x

3
/6 + …. (3)

In order to disregard x
2
/2 and higher degree expressions, the input argument must

be very small to satisfy maximum mantissa error < 2
-54

for double precision format.

This is satisfied for x<2
-27

. Consequently the most significant 27 bits of input xf

are

calculated employing LUT-based methods, the reset less-significant bits are

calculated using Taylor-Maclaurin expansion limited to: e
x≈ 1 + x. To obtain the final

result, the results of the LUT-based algorithm and polynomial approximation are

multiplied according to (2). It should be noted that (2) allows to use only LUT-based

method, nevertheless employment of the polynomial approximation results in a

significant decrease of the number of multipliers and LUTs.

Summing up, the input argument x after conversion to fixed-point format is divided

into 5 sections:

1. integer part (11-bit), xi, which evaluates 2
Xi

 (exponent part of the result),

2. fractional MSB part, xM, bits 2
-1 ÷ 2

-9
,

3. fractional middle-bits part, xD, bits 2
-10÷2

-18
,

4. fractional LSB part, xL, bits 2
-19÷2

-27
,

5. fractional Taylor part, xT, bits 2
-28

…

Conversion to fixed-point 5 clock cycles

Delay alignment
Multiplication by constant

1/ln(2)

2 clock cycles

Integer and fractional

part separation

LUT MSB LUT LSB LUT MID

5 clock cycles

Multiplier 6 clk

Multiplier 6 clk

Maclaurin

add and round 1 clk

 Round and add 2 clk

6 clk cycles delay

Delay 5 clk

1 clock cycle

exponent out

Floating-point argument

Delay 17 clk

Normalize 1 clk

mantissa out

Multiplier 4 clk Delay 5 clk

Align and add 1clk

Delay alignment Delay alignment Delay alignment Delay alignment 1 clock cycle

Round 1 clk

Delay 1 clk

Delay 6 clk

Fig. 1. Exp() module block diagram and its pipeline latency

Afterwards the following mathematical operations are employed:

xI= x⋅log2(e)) (4)

xF= xM & xD & xL & xT= x - xI⋅ (log2(2))
-1

 (5)

)1(2 T

xxxx
xeeey LDMI +⋅⋅⋅⋅= (6)

where: & - bit concatenation, x - rounding to the greatest integer xI such that xI≤x.

Using (4) and (5) enables separation of the integer and fractional parts. This step

can be considered to be a scaling process that transforms input data to interval of

boundaries at 0 and ln(2). It should be noted that xI is a small integer represented on

10 bits, otherwise exp(x) results in infinity. Therefore this approach in practice

replaces a large multiplication (required by identity e
x
 = 2

X/ln(2)
)

with two smaller

multiplications, one to compute inaccurately xI according to (4), second to compute

(accurately but with reduced width) xI⋅ln(2) according to (5).

3.1 Error analysis

In the proposed architecture the following sources of errors can be distinguished:

1. Taylor series expansion,

2. multiplier (and LUT) width limitation.

The Taylor series expansion is limited only to: e
x≈ 1 + x. For x→0 the expansion

error can be approximated by the next omitted expression, i.e. x
2
/2. As input argument

xT<2
-27

 the Taylor series expansion error is limited roughly by 2
-55

. It should be noted

that the input value is xT≥0, thus the result yT= 1+xT ≥1. Consequently relative error is

also ≤ 2
-55

. Summing up, Taylor series expansion error is much lower than the double

precision format accuracy.
The multiplier inputs are roughly 54-bit wide, therefore the product width is 108-

bit wide. Such a bit-width is far beyond the required precision, therefore the LSBs of

the product are usually disregarded. As a result, in the proposed architecture, some of

the LSBs logic is not implemented at all. Unfortunately, calculation error is much

greater for the given architecture. To decrease this error, some additional guard bits

are provided. i.e. calculations are carried out on 62-bits. Similarly LUT memory bit-

width is extended by additional guard bits, as a single calculation error generated by

LUT memory is within required double precision format, nevertheless aggregate

whole system error can be outside requirements.

4 Implementation results

The exp function was implemented on SGI Reconfigurable Application-Specific

Computing (RASC) platform [4]. The presented in Tab. 1 and Tab. 2 implementation

results contain exp module logic consumption together with RASC core services,

essential to provide compatibility with Altix 4700. The RC100 Blade is connected

using the low latency NUMALink interconnect to the SGI Altix 4700 Host System,

for a rated peak bandwidth of 6.4GB per second.

The RASC RC100 Blade consist of two Virtex-4 LX 200 FPGAs, with 40 MB of

SRAM logically organized as two 16MB blocks and an 8MB block. The SRAM are

36-bit QDR devices, thus transferring 128-bit data every clock cycle.

128-bit data vectors are read from one SRAM bank, spread into two substreams

consisting of 64-bit each. Every clock cycle (due to pipelining) data is processed by

two exponential modules and results are concatenated to 128-bit vector which is

finally written to the second SRAM bank. Afterwards the result is transferred through

the NUMAlink to the rest of the system.

Table 1. Implementation results

Implementation results # 4-input LUT # flip-flops # 18-Kb BRAMs

Single exp() module 13,614 (7%) 19,704 (11%) 29 (8%)

Twin exp() module 17,897 (10%) 25,461 (14%) 35 (10%)

Table 2. The RASC system parameters

Max. frequency 200 Mhz

Max. error 1 ulp

Root mean square error 0,6186052

Pipeline latency 30 clk

To compare the calculation speed-up achieved by the RASC, average double

precision calculation time per single exp function [5] is given in Tab. 3 for Pentium 4

and Itanium processors. It is assumed that processors (Table 3) work at 2 GHz while

single FPGA was clocked at 200 MHz. The RASC platform provides two FPGA

chips (Xilinx Virtex 4 LX200), that allows to double the calculation rate by

employing the second FPGA (this is not taken into account in Fig. 2 and Tab. 3).

Fig. 2. Exp calculation on different platforms

Table 3. Average calculation time [ns] per an exp calculation

 Pentium 4 Itanium / Itanium 2 RASC

Exp() 13.65 3.08 2.5

The calculation speed-up achieved by the RASC is not significant, nevertheless it

should be noted that the throughput can be doubled by employing two FPGAs.

Secondly, the calculation throughput is limited by external memory transfers and only

10% of FPGA resources are occupied. Thus additional arithmetic functions can be

incorporated in the same FPGA. Besides, by improving external memory interface,

the number of parallel exp modules can be increased.

It should be noted from Fig. 2 that for general-purpose processors, the calculation

time decreases with increasing vector size only up to a curtain limit. Then the

calculation time rapidly increases. Probably the reason of this increase is that input or

output data cannot be incorporated into internal processor cache memory, and

external memory transfers significantly influence the whole system throughput.

Summing up, both FPGA and general-purpose processors throughput degradation is

caused by external memory access. Nevertheless, this degradation is not taken into

account for the general-purpose processors in Tab.3.

6 Summary

This paper describes a novel architecture of double precision exponential function

implemented in FPGAs and SGI RASC platform. The presented exp architecture

introduces several novel hardware solutions never used for exp function: a) 3

independent LUTs and Taylor series expansion for exp function, b) sign-migration to

integer part xI, fractional part xF is always positive, c) optimized reduce-width

multipliers.

There are two improvements considerations worth introducing. Source code of

quantum – chemistry software application can be substantially investigated in the

future in order to eliminate a precision overhead. There is still a lot of silicon space on

the FPGA (approximately 80%) that can easily fit addition logic. Investigations are

being conducted to expand exp() function with additional logic of the hot spots found

in quantum chemistry application source code.

References

[1] Doss C.C., Riley R.L., Jr., FPGA-Based Implementation of a Robust IEEE-754 Exponential

Unit, 12th Annual IEEE Symposium on Field-Programmable Custom Computing Machines

(FCCM’04), pp. 229- 238

[2] Bui H.T., Tahar S., Design and Synthesis of an IEEE-754 Exponential Function, 1999

IEEE Canadian Conference on Electrical and Computer Engineering Shaw Conference

Center, Edmonton, Alberta, Canada May 9-12 1999, pp. 450-455 vol.1

[3] Detrey J., de Dinechin F., A parameterized foating-point exponential function for FPGAs,

IEEE International Conference on Field-Programmable Technology (FPT'05), Singapore,

December 2005, pp. 27-34.

[4] Silicon Graphics, Inc., Reconfigurable Application-Specific Computing User’s Guide, Ver.

004, Mar 2006, SGI

[5] The University of Texas in Austin, TACC Intel Math Kernel Library,

http://www.tacc.utexas.edu/services/userguides/mkl/functions/exp.html, Nov. 22, 2007

