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Abstract. This paper presents implementation of the double precision 

exponential function. A novel table-based architecture, together with short 

Taylor expansion, provides low latency (30 clock cycles) which is comparable 

to 32-bit implementations. Low area consumption of a single exp() module 

(roughtly 4% of XC4LX200) allows implementation of several parallel 

modules on a single FPGAs. The exp() function was implemented on the SGI 

RASC platform, thus external memory interface limitation allowed only a twin 

module parallelism. Each module is capable of processing at speed of 200 MHz 

with max. error of 1 ulp, RMSE equals 0,62. This implementation aims 

primarily to meet quantum chemistry’s huge and strict requirements of 

precision and speed. 
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1 Introduction  

The HPRC (High Performance Reconfigurable Computing) has important 

advantages over HPC (High Performance Computing) like significantly lower power 

consumption and more efficient silicon coverage. Unfortunately conducting floating-

point operation within FPGA absorbs much more area than fixed-point calculations, 

therefore for a long time, FPGAs had not been employed to support double precision 

operation. Nowadays, there are some implementations of single precision floating-

point operations[1,2,3]. Since the proposed exp() module aims to speed up HPC 

chemistry and physics calculations, it has to be compatible with the data format 

employed so far. Consequently, the IEEE-754 double precision standard is adopted. 

2 Architecture of Exp module 

To evaluate exp function the following commonly known mathematical identities 

are employed: 
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where xi
 
is an integer part of x⋅log2e. 

The equation (1) is employed to separate input argument into the integer part xi and 

fractional part xf. Integer part xi is used directly to evaluate the exponent part of the 

final result 2
xi
. Therefore the main problem is evaluation of the fractional part exp(xf). 

The proposed architecture of the exp function evaluation employs two methods to 

evaluate the fractional part: 

• Look-Up Table (LUT) based architecture 

• polynomial approximation. 

The partial results of these two methods are combined employing equation (2). 

Furthermore, (2) can be also used to divide one large LUT memory into several 

smaller LUT memories. Therefore employment of (2) is the main idea of the proposed 

architecture.  

The mixed method adoption always leads to the dilemma of the trade-off between 

LUT memories’ size  and  polynomial part evaluation cost. In the case of exp function 

implementation, increase of LUT memory size results in a decrease of the 

multiplication area. Nevertheless, analysis of the resources occupied by multipliers 

and LUT memories has led to the conclusion that employment of Block RAMs 

(BRAMs) embedded in the FPGAs would be the best solution. Replacement of 

floating-point multipliers with fixed-point ones further reduces occupied FPGA 

resources. It is possible because the input data was previously converted into a fixed-

point format. Furthermore input data smaller than 2
-60

 may be neglected during the 

calculation as they have unnoticeable impact on the final result. 

In the proposed architecture the polynomial approximation is significantly 

simplified. According to Taylor-Maclaurin exp(x) can be evaluated as follows:  

e
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In order to disregard x
2
/2 and higher degree expressions, the input argument must 

be very small to satisfy maximum mantissa error < 2
-54 

for double precision format.  

This is satisfied for x<2
-27

. Consequently the most significant 27 bits of input xf
  

are 

calculated employing LUT-based methods, the reset less-significant bits are 

calculated using Taylor-Maclaurin expansion limited to: e
x≈ 1 + x. To obtain the final 

result, the results of the LUT-based algorithm and polynomial approximation are 

multiplied according to (2). It should be noted that (2) allows to use only LUT-based 

method, nevertheless employment of the polynomial approximation results in a 

significant decrease of the number of multipliers and LUTs. 

Summing up, the input argument x after conversion to fixed-point format is divided 

into 5 sections: 

1. integer part (11-bit), xi, which evaluates 2
Xi

 (exponent part of the result), 

2. fractional MSB part, xM, bits 2
-1 ÷ 2

-9
, 

3. fractional middle-bits part, xD, bits 2
-10÷2

-18
, 

4. fractional LSB part, xL, bits 2
-19÷2

-27
, 

5. fractional Taylor part, xT, bits 2
-28

… 
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Fig. 1. Exp() module block diagram and its pipeline latency 

 

Afterwards the following mathematical operations are employed: 

xI= x⋅log2(e)) (4) 

xF= xM & xD & xL & xT= x - xI⋅ (log2(2))
-1

 (5) 
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where: & - bit concatenation, x - rounding to the greatest integer xI such that xI≤x. 



Using (4) and (5) enables separation of the integer and fractional parts. This step 

can be considered to be a scaling process that transforms input data to interval of 

boundaries at 0 and ln(2). It should be noted that xI is a small integer represented on 

10 bits, otherwise exp(x) results in infinity. Therefore this approach in practice 

replaces a large multiplication (required by identity e
x
 = 2

X/ln(2)
)

 
with two smaller 

multiplications, one to compute inaccurately xI according to (4), second to compute 

(accurately but with reduced width) xI⋅ln(2) according to (5). 

3.1 Error analysis 

In the proposed architecture the following sources of errors can be distinguished: 

1. Taylor series expansion, 

2. multiplier (and LUT) width limitation. 

The Taylor series expansion is limited only to: e
x≈ 1 + x. For x→0 the expansion 

error can be approximated by the next omitted expression, i.e. x
2
/2. As input argument 

xT<2
-27

 the Taylor series expansion error is limited roughly by 2
-55

. It should be noted 

that the input value is xT≥0, thus the result yT= 1+xT ≥1. Consequently relative error is 

also ≤ 2
-55

. Summing up, Taylor series expansion error is much lower than the double 

precision format accuracy. 
The multiplier inputs are roughly 54-bit wide, therefore the product width is 108-

bit wide. Such a bit-width is far beyond the required precision, therefore the LSBs of 

the product are usually disregarded. As a result, in the proposed architecture, some of 

the LSBs logic is not implemented at all. Unfortunately, calculation error is much 

greater for the given architecture. To decrease this error, some additional guard bits 

are provided. i.e. calculations are carried out on 62-bits. Similarly LUT memory bit-

width is extended by additional guard bits, as a single calculation error generated by 

LUT memory is within required double precision format, nevertheless aggregate 

whole system error can be outside requirements. 

4 Implementation results 

The exp function was implemented on SGI Reconfigurable Application-Specific 

Computing (RASC) platform [4]. The presented in Tab. 1 and Tab. 2 implementation 

results contain exp module logic consumption together with RASC core services, 

essential to  provide compatibility with Altix 4700. The RC100 Blade is connected 

using the low latency NUMALink interconnect to the SGI Altix 4700 Host System, 

for a rated peak bandwidth of 6.4GB per second. 

The RASC RC100 Blade consist of two Virtex-4 LX 200 FPGAs, with 40 MB of 

SRAM logically organized as two 16MB blocks and an 8MB block. The SRAM are 

36-bit QDR devices, thus transferring 128-bit data every clock cycle.  

128-bit data vectors are read from one SRAM bank, spread into two substreams 

consisting of 64-bit each. Every clock cycle (due to pipelining) data is processed by 

two exponential modules and results are concatenated to 128-bit vector which is 



finally written to the second SRAM bank. Afterwards the result is transferred through 

the NUMAlink to the rest of the system. 

Table 1. Implementation results 

Implementation results # 4-input LUT # flip-flops # 18-Kb BRAMs 

Single exp() module 13,614 (7%) 19,704 (11%) 29 (8%) 

Twin exp() module 17,897 (10%) 25,461 (14%) 35 (10%) 

Table 2. The RASC system parameters 

Max. frequency 200 Mhz 

Max. error 1 ulp 

Root mean square error 0,6186052 

Pipeline latency 30 clk 

 

To compare the calculation speed-up achieved by the RASC, average double 

precision calculation time per single exp function [5] is given in Tab. 3 for Pentium 4 

and Itanium processors. It is assumed that processors (Table 3) work at 2 GHz while 

single FPGA was clocked at 200 MHz. The RASC platform provides two FPGA 

chips (Xilinx Virtex 4 LX200), that allows to double the calculation rate by 

employing the second FPGA (this is not taken into account in Fig. 2 and Tab. 3). 

Fig. 2. Exp calculation on different platforms 

Table 3. Average calculation time [ns] per an exp calculation 

 Pentium 4 Itanium / Itanium 2 RASC 

Exp()  13.65 3.08 2.5 

 
The calculation speed-up achieved by the RASC is not significant, nevertheless it 

should be noted that the throughput can be doubled by employing two FPGAs. 

Secondly, the calculation throughput is limited by external memory transfers and only 

10% of FPGA resources are occupied. Thus additional arithmetic functions can be 

incorporated in the same FPGA. Besides, by improving external memory interface, 

the number of parallel exp modules can be increased. 



It should be noted from Fig. 2 that for general-purpose processors, the calculation 

time decreases with increasing vector size only up to a curtain limit. Then the 

calculation time rapidly increases. Probably the reason of this increase is that input or 

output data cannot be incorporated into internal processor cache memory, and 

external memory transfers significantly influence the whole system throughput. 

Summing up, both FPGA and general-purpose processors throughput degradation is 

caused by external memory access. Nevertheless, this degradation is not taken into 

account for the general-purpose processors in Tab.3. 

6 Summary  

This paper describes a novel architecture of double precision exponential function 

implemented in FPGAs and SGI RASC platform. The presented exp architecture 

introduces several novel hardware solutions never used for exp function: a) 3 

independent LUTs and Taylor series expansion for exp function, b) sign-migration to 

integer part xI, fractional part xF is always positive, c) optimized reduce-width 

multipliers.  

There are two improvements considerations worth introducing. Source code of 

quantum – chemistry software application can be substantially investigated in the 

future in order to eliminate a precision overhead. There is still a lot of silicon space on 

the FPGA (approximately 80%) that can easily fit addition logic. Investigations are 

being conducted to expand exp() function with additional logic of the hot spots found 

in quantum chemistry application source code. 
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