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Abstract 
This paper presents results of the tests performed to determine high speed calculations capabilities of 

the SGI RASC platform. Different data transfer modes and memory management approaches were 

examined to choose the most effective combination of the Host and RASC memory adjustments. 

Obtained results of measurements revealed that Direct I/O mode together with DMA transfer provides 

the highest data throughput between the Host and RASC slice. Nevertheless, for some application 

multi-buffering may appear to be more suitable in terms of concurrent data transfer capabilities and 

FPGA algorithm execution. As an example of calculation to be accelerated the exponent function is 

taken for which computation speed is far beyond data transfer capability of the RASC platform. 

 

 

Introduction 
It has been investigated for a long time how to employ FPGA chips in HPC systems, not only as 

coprocessors, but also as a highly efficient computation module. It is worth enumerating several factors 

preventing FPGAs from being widely implemented in HPC solutions. The first one would be the need to 

increase effectiveness of the floating point calculations on FPGAs since this sort of computation is the 

predominant part of scientific applications run on HPC machines. SGI RASC RC100 [1] has been 

challenged on this issue by implementing double precision floating point modules as the test bench 

structure, results of which are presented in this paper. Another factor is GPUs [2] (Graphic Processor Unit) 

rising capabilities of high speed calculations, posing a challenge for FPGAs which are still struggling with 

interface issues within one system. Many vendors (e.g. SGI, SRC, DRC, Xtreme-Data) try to address these 

issues by releasing platforms which are equipped with multi-dimensional data transmutation systems to 

keep up with the computational demands.  

This paper presents a slightly different approach: we try to evaluate RASC capability of achieving 

acceleration of quantum chemistry algorithms just by writing a customized VHDL code which, however, 

adheres to all SGI design recommendations. The quantum chemistry application [3] (Hartree-Fock method 

of Schroedinger evaluation) which will be partially implemented on RASC may be regarded as a certain 

kind of verification environment for HPRC platforms. The exponential function implemented on FPGAs 

offers significant acceleration in comparison to the General Purpose Processors (GPP) implementations [4]. 

The exponential function is commonly used in quantum chemistry algorithms. Therefore a question arise 

whether a single exp() function calculation can be accelerated on FPGAs; whether system overheads i.e. 

data transfers cause that employing FPGAs results in calculation speed-up. Consequently different data 

transfer modes have been tested both on the host and RASC side to provide the highest achievable data 

bandwidth. 

SGI provides RASC together with C-language software drivers. Nevertheless no implementation 

results (e.g. real data transfer throughput, latency) are provided. Therefore the main idea behind this article 

is to find out how FPGAs configuration time, data transfer influence the whole system speed-up. Similar 

considerations were publish in [5] nevertheless in this paper all data transfer and configuration modes are 

considered. Besides FPGAs configuration time on the host side was measured and possibility of concurrent 

software routines execution was tested. It should be noted that for both wavelet transform [5] and 

exponential function, the performance bottleneck is data transfer limit rather than FPGAs calculation speed. 

 



SGI Altix 4700 with RASC  
The Altix 4700 series is a family of multiprocessor distributed shared memory (DSM) computer 

systems that currently ranges from 8 to 512 CPU sockets (up to 1,024 processor cores) and can 

accommodate up to 6TB of globally shared memory in a single system while delivering a teraflop of 

performance in a small-footprint rack.  

The RASC communication module is based on an application-specific integrated circuit (ASIC) 

called TIO which attaches to the Altix system NUMAlink interconnect directly instead of being driven 

from a compute node. TIO supports the Scalable System Port (SSP) port that is used to connect the Field 

Programmable Gate Array (FPGA) to the rest of the Altix system for the RASC program.  

 

Fig. 1  Block diagram of the RASC slice (half of all resources are presented)
Błąd! Nie zdefiniowano zakładki.

 

 

The RASC hardware blade contains two computational FPGAs, two TIO ASICs, and a loader FPGA for 

loading bitstreams into the FPGAs. The RASC blade has two Xilinx Virtx-4 LX200s on the board and 

memory resources with 10 synchronous static RAM modules (SSRAM DIMMs), which are grouped in 

three logical memory structures. 
Two exp() functions have been implemented [4], each of which processes a 64-bit data chunk, so 

each clock cycle one 128 bit input word is fed into the implemented twin module structure and one result is 

obtained. SGI RASC v2.1 [1] device has four transmission/managing modes, two Host and two RASC 

settings. These options cover the huge spectrum of potential memory division and managing methods.  
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Fig. 2 Different data transfer modes available on Altix 4700 machine with the RASC slice 

 

It is worth emphasizing that data transfer optimization is done on the Host side as well as on the RASC 

side. The method to apply the presented modes will be described later on in this paper. 
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  Fig. 3 Communication paths between host node and RASC slice 

 

There are two FPGAs available on the RASC platform, but no link between them has been provided. It is 

possible to communicate across both FPGAs, but only by an external hub device - adding communication 

overhead because of delays associated with long lines and routing time.   



 

RASC memory managing modes  

SRAM buffering 

This mode involves allocating data to the RASC SRAM memory. Input data must be transferred to 

one of the three SRAM banks, then user logic implemented in FPGA starts execution of the algorithm 

routine and calculations results are written back to memory. It is advisable to choose two different memory 

banks to make application execution more fluent.  
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Fig. 4 Data transfer steps of the SRAM buffering mode  

All the steps presented in the Figure 4 are conducted in sequence in contrast to multi-buffering mode 

(Fig.5).  As it has been shown in Figure 4,  implementation of the SRAM buffering mode leads to a three-

stage data transfer operation for a single algorithm execution which in turn is time-consuming. However 

there is multi-buffering transfer mode which allows FPGA to concurrently transfer the data and perform 

calculations since Core services logic allows these two activities to be done simultaneously.     

 



 

Fig. 5 Multi-buffering operation mode 

 

Core services (Fig.4,5) maintains communication between memory, TIO ASIC and algorithm in FPGA. It 

is a pre-synthesized bundle of modules which must be implemented together with a user algorithm. 

Moreover, a dedicated wrapper within Core services is provided to facilitate design implementation, which 

also serves as an interface between Core Services and the algorithm. 

   

 The RASC algorithm execution procedure, from processor’s perspective, is composed of several 

functions which reserve resources, queue commands and perform other preparation steps. It is noteworthy 

(Fig.6) that the time consumed by the functions remains roughly the same value, independent of the 

algorithm being executed. The resource reservation procedure, once conducted, allows many runnings of 

the algorithm – which amounts to huge time savings, since the procedure takes approximately 7.5 ms, 

which is roughly 99 % of overall execution time of the algorithm.  
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Fig. 6 Time estimations of rasclib functions execution 

 

Rasclib_algorithm_commit() and rasclib_algorithm_wait() calls are considered to be the key (Fig.5) part of 

the RASC software execution routine. The first one activates FPGA algorithm, the second one waits for the 

completion flag. The period between these two commands is the transfer and algorithm execution time. All 

curves (Fig.8,9) reflect overall processing time of the same amount of data, but differ in size of the single 

data chunk, which varies from 1024x64 bit = 8 kB to 1048576x64 bit = 8 MB. It has been observed that for 

the bigger chunk much better results are achieved in terms of effective execution time. However above 1 

MB, a decrease of effective execution time seems to indicate saturation, therefore sending data in bigger 

portions may not improve the performance of the system so much. The most effective execution time of 

single exp() function for SRAM buffering mode is 12 ns, so 9,5 ns is transport overhead due to bus delays. 

Theoretical calculation time of single exp()function (data transfer is not taken into account) is 2,5 ns 

because two exp() are implemented on the RASC and clocked at 200 Mhz. 

 

DMA streaming  
This mode does not involve allocating SRAM memory to the RASC platform. Such an approach allows to 

save the time that would otherwise be consumed delivering data to onboard memory and then fetch the 

results from SRAM.  
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Fig. 7 DMA streaming 

 

Data is streaming directly through the Core Services logic to the algorithm block (Fig.11. Streaming DMA 

reduces effective time of single exp() execution  to 7,8 ns. 
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Fig. 8 Time of transferring data and executing FPGA algorithm (2 exp() functions) 
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Fig. 9 Effective execution time of single exp() function  

 

Host memory modes 
Operating systems try to make the best use of the limited number of TLB (Translation Lookaside 

Buffer) resources. This optimization is more critical now as bigger and bigger physical memories (several 

GBs) are more readily available. A hugepage is a memory page of larger size than an ordinary page. They 

are usually available in multiple sizes, often up to several megabytes. Each hugepage occupies only one 

entry in the TLB, so the TLB coverage dramatically increases. This results in performance improvements 

of over 30% in many cases
6
. There are two memory modes available on the host, Buffered and Direct 

mode. The Direct mode takes advantage of hugepages to accelerate data transfers.  

Buffered I/O mode  
Buffered I/O involves allocating memory for input and output data in the user space on the host. 

Unfortunately transferring the data to / from the SRAM on RC100 blade using buffered I/O involves an 

additional copy in the kernel memory space, thus lowering the maximum throughput. 
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Fig. 10 Buffered I/O mode data transfer path 

Kernel memory and Hugepage memory have been separated in Fig. 12 and 13 only to indicate that there are 

two different memory configuration options available on RASC. In fact these two memory spaces are 

usually combined in one physical memory.   

Direct I/O mode  
  Data to be processed by the algorithm is located on the hugepages by issuing dedicated API 

functions. The data is streamed from the hugepage’s memory on the host to the SRAM on the RC100 

Blade, which results in significantly shorter transfer time in contrast to Buffered I/O mode. 
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Fig. 11 Direct I/O mode data transfer flow 

 
Host memory management plays a crucial role, therefore it  is advisable to take advantage of the hugepages 

by choosing the Direct I/O  mode to achieve the highest acceleration. Switching between Buffered I/O and 

Direct I/O mode is quite a simple operation and requires only a change of the flag in rasclib_open function.  

 

 



Summary 
SGI RASC is the modern platform providing a handy tool to design HPRC applications. 

According to the results of the tests that were carried out to verify SGI transfer rate estimations, 3.2 GB/s as 

the top bandwidth has not been reached. Several measurements that have been conducted, applying 

different adjustments of the transfer parameters, have shown that DMA streaming together with Direct I/O 

is the most effective data transfer mode for the quantum chemistry application that we aim to accelerate. 

The multi-buffering mode is also considered to be effective in terms of data transfer and algorithm 

execution time optimization. Certain applications have large input data sets that have the same processing 

performed on subsets and only require that new input data be available in order to maintain continuous 

processing. These requirements bring up the notion of multi-buffering of a large data set through an 

algorithm. Multi-buffering data provides a continuous and parallel flow of data to and from the algorithm. 

In order for the hardware-accelerated algorithm to run efficiently on large data sets, it is recommended to 

overlap data loading and unloading with algorithm execution. Algorithm Block can execute one segment 

while the next data segment is loaded by the Read DMA Engine and the previous output data segment is 

unloaded by the Write DMA Engine. 
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